

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

Sérgio Francisco dos Santos

São Paulo State University School of Engineering Department of Materials and Technology

Content of this talk:

- About UNESP
- About School of Engineering Campus of Guaratinguetá
- About Department of Materials and Technology
- Introducing research topics
- My research topics:
 - Exploring alternative vegetable fibers
 - Functionalization of cellulose fibers
 - Fiber-cement composites
 - Mechanical properties

UNESP is located in 24 cities in the state of São Paulo in Brazil

UNESP by the numbers

- There are 34 Schools and Institutes and 7 complementary units
- > The constructed area 924,019 m². It is the size of 227 football pitches.
- Its admission test of 2016 has got 103,677 applicants for 7,355 vacancies in 183 degree options and in 69 careers.

UNESP has 51,586 students:

- 37,388 doing undergraduate degree
- 13,206 doing master's degree and PhD programs
- > 992 in the UNIVESP (Virtual University)
- ▶ UNESP has 3,880 professors and 7,071 technical-administrative collaborators.
- UNESP is the second biggest PhD releaser in Brazil. There are 2,969 a year.
- The UNESP is 40 years old and the 4th best university in Brazil, according to in the Brazil QS university ranking, the 8th in Latin America and 27th among BRICS.

School of Engineering - Campus de Guaratinguetá

Entrance

School of Engineering - Campus de Guaratinguetá Aerial view

a wanter

School of Engineering - Campus de Guaratinguetá

I work here

School of Engineering - Campus de Guaratinguetá

- Undergraduation: Mechanical Engineering, Civil Engineering, Electrical Engineering, Mechanical Production Engineering, Materials Engineering, Physics (Licentiate and Bachelor's degree), and Mathematics (Licentiate degree).
- Graduation: Mechanical Engineering (master's degree and doctorate), Physics (master's degree and doctorate), Production Engineering (professional master's degree), Production Engineering (academic master's degree)
- Physical space: 205,307.41 m²
- Constructed area: 37,962.16 m²
- 2,003 undergraduate students
- 373 graduate students
- 140 professors
- 201 technical-administrative collaborators

Department of Materials and Technology - Campus de Guaratinguetá

Lines of Research (MSc and PhD)

- A) POLYMERIC MATERIALS AND ADVANCED COMPOSITES
- B) CORROSION AND ELECTROCHEMICAL CHARACTERIZATION OF THIN FILMS AND NANOSTRUCTURED MATERIALS
- C) LIGNOCELLULOSIC COMPOSITE MATERIALS
- D) PROCESSING AND CHARACTERIZATION OF ADVANCED MATERIALS
- E) CERAMIC MATERIALS
- F) METALLIC MATERIALS

Research Area

Schematic diagram of Integrated Structures and Materials Design: Systemic approach

Research Area

Schematic diagram showing a concept process consisting of different approaches to improve the sustainability of the fiber cement industry.

Research Area

The tetrahedral interrelation of the main constituents of the complex cement based composite design

Research Area: Example

POTENTIAL USE OF COLLOIDAL SILICA IN CEMENT BASED COMPOSITES: EVALUATION.

Research Area: Example

Why not use colloidal silica suspension in cement based composites?

There is strong interest to *include functionalities* in materials for building construction to make them **smarter and more sustainable.**

Research Area: Example

Colloidal Silica as a nanostructured modifier

➤To verify the effects of the colloidal silica on the mechanical and physical behavior of the fiber-cement.

Materials

Specific surface and specific density

Raw material	BET(single-point) (m ² /g)	Specific density (g/cm ³)
Ordinary Portland cement - CPV-ARI	1.0	3.1
Limestone filler	1.1	2.8

Physical and chemical characteristics: Colloidal silica suspension

		(m /g)		рн	(%)
8.5 - 9.7	7	300	1210-1219	9-11	0.5 - 0.6

Materials

Unrefined unbleached *Eucalyptus* pulp

Pulp CSF (mL)	Length ^b (mm)	Average width (μm)	Aspect ratio	Fibrous material (10 ⁶ fibers/g)	Fines ^c content (%)
664	0.83 ± 0.05	16.4 ± 0.2	51	18 ± 1	25.7 ±0.6

^a Fibers were analyzed by a PulptecTM MFA-500 Morphology Fiber and Shive Analyser – MorFiTrac.

^b Length weight in length.

^c A fine element was considered as any detected object present in the pulp with dimensions lower than those of fibers, i.e., length under 200 μ m or width under 5 μ m.

Results

Modulus of rupture

Modulus of rupture: 5 mm/min \longrightarrow MOR = $\frac{3}{2} \cdot \frac{P_{max} \cdot S}{b \cdot w^2}$

Fracture toughness and Energy of fracture

SENB (single-edge notch bending)

Fracture toughness: 15 mm/min
Energy of fracture : 10 μm/min

Three-point bending configuration

Fracture toughness

$$K_{Ic} = \frac{P_{max}}{b \cdot w^{\frac{3}{2}}} \cdot y(\alpha)$$

$$y(\alpha) = \frac{S}{w} \cdot \left[\frac{3\alpha^{1/2}}{2(1-\alpha)^{3/2}}\right] \cdot \left[1.99 - 1.33\alpha - (3.49 - 0.68\alpha + 1.35\alpha^2) \cdot \frac{\alpha(1-\alpha)}{(1+\alpha)^2}\right]$$

Results

Results

Fracture surface

Notch

Thank you for your attention

