Universidade de São Paulo Instituto de Astronomia, Geofísica e Ciências Atmosféricas Departamento de Astronomia

Otavio Sebastião Krinski Moreira

Caos e Estabilidade: Comparando Sistemas Planetários

São Paulo 2023

Otavio Sebastião Krinski Moreira

Caos e Estabilidade: Comparando Sistemas Planetários

Trabalho de Conclusão de Curso apresentado ao Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo como requisito para a obtenção do título de bacharel em Astronomia.

Vertente: Pesquisa básica Orientadora: Profa. Dra. Tatiana Alexandrovna Michtchenko (Capítulo Exoplanetas)

São Paulo 2023

Aos meus pais, Márcia e Miguel.

Agradecimentos

Aos meus pais, meu irmão, meus avós, tios e tias, à minha família, por todo o apoio e inspiração que me deram.

À orientadora Tatiana Alexandrovna Michtchenko, por me guiar, pela paciência, e pela disposição a me ensinar.

Aos meus amigos, de São Paulo e Curitiba, do colégio, escotismo e da universidade, que me acompanharam nessa jornada.

Ao PUB, pelo apoio financeiro, sob o projeto nº 1104 do ano 2022.

Esta pesquisa fez uso do NASA Exoplanet Archive, que é operado pelo Instituto de Tecnologia da Califórnia, sob contrato com a Administração Nacional de Aeronáutica e Espaço no âmbito do Programa de Exploração de Exoplanetas.

Esta tese/dissertação foi escrita em LATEX com a classe IAGTESE, para teses e dissertações do IAG.

"Not all those who wander are lost."

J. R. R. Tolkien

"Leave this world a little better than you found it."

Robert Baden-Powell

Resumo

Na presente monografia, introduzimos o problema gravitacional de dois e três corpos, criamos um integrador do problema de três corpos e simulamos o sistema Sol-Júpiter-Saturno, usando análise espectral para estudar a presença de caos em séries temporais. Iniciamos o estudo dos espaços de fase a partir da função perturbadora secular, e utilizando a base de dados NASA Exoplanet Archive, fizemos algumas distribuições dos parâmetros orbitais, que, de forma conjunta com os métodos de detecção, permitiram uma visão geral da grande variedade de propriedades físicas e orbitais dos exoplanetas e sistemas extrassolares.

Abstract

In this monograph, we introduce the gravitational problem of two and three bodies. We develop an integrator for the three-body problem and simulate the Sun-Jupiter-Saturn system, employing spectral analysis to investigate the presence of chaos in the time series. We begin our study of phase spaces with the secular perturbing function. By utilizing the NASA Exoplanet Archive dataset, we present distributions of orbital parameters. Together with detection methods, these distributions offer a comprehensive overview of the vast array of physical and orbital properties exhibited by exoplanets and extrasolar systems.

Lista de Figuras

2.1	Ângulos e elementos orbitais	23
2.2	Erros de integração numa simulação não perturbada	27
2.3	Séries temporais dos semi-eixos de Júpiter e Saturno	28
2.4	Espectro do semi-eixo maior de Júpiter	29
2.5	Espectro do semi-eixo maior de Júpiter na ressonância	30
3.1	Mapa do Hamiltoniano secular	33
3.2	Plano das excentricidades iniciais	35
3.3	Espaço de fase	35
4.1	Base de dados NASA Exoplanet Archive	37
4.2	Distribuição das massas por períodos	40
4.3	Distribuição dos raios por massas planetárias	41
4.4	Distribuição das excentricidades por massas	42
4.5	Distribuição das temperaturas estelares por massas planetárias	43
4.6	Histograma do número de exoplanetas por sistema	43
4.7	Razão de períodos pela excentricidade	44
A.1	Erro relativo entre os Hamiltonianos seculares	52
A.2	Espaço de fase no limite não integrável	52

Lista de Tabelas

2.1	Parâmetros de Júpiter e Saturno	26
4.1	Métodos de detecção de exoplanetas	38

Sumário

1.	Intro	odução						•		•		•		•	 •	•	 •	•	 •		•	•	• •	•	•	19
2.	Diné	âmica P	Plan	etári	а.					•									 •			•	•			21
	2.1	Órbita	a Ke	epleri	iana									•		•	 •						•	•		21
	2.2	Proble	ema	de t	rês c	eorp	\mathbf{os}	cop	olai	nar	\mathbf{es}					•							•	•		22
		2.2.1	Ec	quaçõ	ies d	ifer	enc	iais	з.						 •	•	 •							•		22
		2.2.2	Ve	etores	s par	a el	lem	lent	os	or	bita	ais	•		 •	•	 •							•		24
		2.2.3	El	emen	itos (orbi	itai	s p	ara	ı ve	etoi	res				•	 •						•	•		25
		2.2.4	Si	mula	dor	• •				•				•	 •	•		•			•	•	• •	•		26
3.	Solu	ções Pe	erió	dicas															 •				•			31
	3.1	Model	lo a	nalíti	.co												 •						•	•		31
	3.2	Espaço	o de	e fase)					•				•	 •	•		•			•	•	• •	•		33
4.	Exop	planetas	s .							•				•									•	•		37
	4.1	Base d	de I	Dados	3											•	 •						•	•		37
	4.2	Métod	dos (de De	etecç	ção											 •							•		38
	4.3	Distrib	buiç	ções						•				•	 •	•					•	•	•	•		39
5.	Con	clusão								•					 •			•	 •		•	•	•	•		45
Re	ferên	cias .																								47

Apêndice

Α.	Apê	dice A	51
	A.1	Constantes	51
	A.2	Erro relativo	51
	A.3	Espaço de fase	51

Capítulo

Introdução

Até Junho de 2023, haviam sido descobertos 5438 exoplanetas, segundo o banco de dados NASA Exoplanet Archive¹. Destes, 2303 pertencem a sistemas com pelo menos dois exoplanetas, uma quantidade considerável de sistemas interessantes para o estudo da dinâmica orbital.

Tais descobertas trouxeram surpresas e novos problemas, quando comparando estes novos sistemas com os planetas do Sistema Solar, pela existência de novas configurações e por limitações dos métodos de detecção. Exemplos de desafios nesta nova área são os *Hot Jupiters*, planetas de massa comparável à de Júpiter porém com órbitas muito próximas de suas estrelas, cuja origem e evolução ainda não foram resolvidas; e a não detecção de exoplanetas de massas similares a da Terra, com períodos orbitais maiores que o de Mercúrio, indicando um limite que existe atualmente das técnicas e tecnologias.

Para apresentar uma visão geral das propriedades dos exoplanetas, iremos descrever os fundamentos dos elementos orbitais, com uma breve introdução ao problema de três corpos em sistemas planetários, mostrando as equações utilizadas na construção de um simulador de três corpos coplanares. Tal programa foi desenvolvido para estudar a dinâmica planetária, em específico verificar as frequências e a presença de caos analisando um período relativamente curto de 100 mil anos.

A partir deste simulador será possível estudar futuramente as ressonâncias planetárias. Um exemplo interessante é a proximidade de Júpiter e Saturno à ressonância 5:2, sendo notável pois uma aproximação do par à ressonância pode trazer caos à sua órbita, podendo aumentar a excentricidade de Júpiter que por sua vez altera as órbitas dos asteroides,

¹ disponível no endereço https://exoplanetarchive.ipac.caltech.edu/index.html, acessado no dia 8 de Junho de 2023.

podendo expulsá-los de seus domínios. O estudo de ressonâncias é importante também na migração planetária, pois os planetas durante a expansão ou contração de suas órbitas podem entrar em ressonância com outros planetas, alterando a evolução do sistema Ferraz-Mello et al. (2005).

Depois, iniciaremos o estudo dos pontos fixos e espaços de fase, calculando as curvas de nível da Hamiltoniana perturbativa secular e buscando no espaço de fase as soluções periódicas do sistema Sol-Júpiter-Saturno. Simulamos os planetas a partir das condições iniciais estudadas, e assim obteremos o espaço de fase do sistema.

Por fim, no Capítulo Exoplanetas 4, contendo resultados obtidos durante estágio de iniciação científica, sob a orientação da Profa. Tatiana Michtchenko, seguiremos a dissertação de mestrado do Irapuan Lira Feitosa Filho (2019), apresentando o banco de dados NASA Exoplanet Archive, uma descrição dos métodos de detecção que mais descobriram exoplanetas e uma exposição das distribuições dos parâmetros físicos e orbitais. Capítulo 2

Dinâmica Planetária

2.1 Órbita Kepleriana

Ao ignorar a interação entre os planetas, em um sistema planetário no entorno de uma estrela, temos o problema dos dois corpos, descrito pela força gravitacional entre a estrela e o planeta. Sendo \mathbf{x} a posição do planeta e \mathbf{x}_0 aquela da estrela num referencial inercial, a força atuando sobre o planeta é dada pela Lei da gravitação universal de Newton:

$$\mathbf{F} = m \frac{d^2 \mathbf{x}}{dt^2} = -G \frac{mm_0}{|\mathbf{x} - \mathbf{x}_0|^3} (\mathbf{x} - \mathbf{x}_0), \qquad (2.1)$$

com G sendo a constante gravitacional universal, m a massa do planeta e m_0 da estrela. Descrevendo o sistema a partir da posição da estrela, fazemos a seguinte mudança de variáveis:

$$\mathbf{r} = \mathbf{x} - \mathbf{x}_0,\tag{2.2}$$

saindo do referencial inercial, e assim manipulando a Equação 2.1 obtemos:

$$\frac{d^2\mathbf{r}}{dt^2} = -\mu \frac{\mathbf{r}}{r^3},\tag{2.3}$$

sendo $\mu = G(m + m_0)$ o parâmetro gravitacional.

A solução da Equação 2.3 é uma elipse, com a estrela num dos focos, descrita por:

$$r(\nu) = \frac{a(1+e^2)}{1+e\cos(\nu)},$$
(2.4)

com a o semi-eixo maior, e a excentricidade e ν a anomalia verdadeira, que é o ângulo entre a posição atual do planeta com o ponto na orbita em que o corpo está mais perto da estrela, o periastro. Para uma descrição no espaço tridimensional, dado um plano e uma direção de referência, introduzimos os elementos orbitais: inclinação i, ângulo entre o plano da órbita e o plano de referência; longitude do nó ascendente Ω , ângulo entre a direção de referência e o ponto em que a órbita cruza de forma ascendente com o plano de referência; e o argumento de periastro ω , o ângulo entre Ω e o periastro.

A solução de \mathbf{r} em função do tempo t é obtida calculando a anomalia verdadeira ν da anomalia excêntrica E, que é obtida pela anomalia média M com a Equação de Kepler, expressões deduzidas em textos como Goldstein (1980) e Beutler et al. (2005), entre outros. Podemos observar as anomalias verdadeira e excêntrica, assim como o argumento de periastro e o semi-eixo maior na Figura 2.1.

A anomalia média M é dada por:

$$M = \frac{2\pi}{T}(t - t_0),$$
(2.5)

com t_0 o tempo em que o corpo estava no periastro, e T o período orbital, calculado pela terceira Lei de Kepler,

$$T^2 = \frac{4\pi^2}{\mu} a^3,$$
 (2.6)

com qual podemos calcular o movimento médio n:

$$n = \frac{2\pi}{T}.\tag{2.7}$$

Assim, temos os elementos orbitais de interesse para descrever as órbitas dos planetas: $a, e, \mu, i, \Omega, \omega \in t_0.$

2.2 Problema de três corpos coplanares

2.2.1 Equações diferenciais

Para três corpos, as equações de movimento num referencial inercial são:

$$\frac{d^2 \mathbf{x}_i}{dt^2} = -G \sum_{j=0, j \neq i}^2 m_j \frac{\mathbf{x}_i - \mathbf{x}_j}{|\mathbf{x}_i - \mathbf{x}_j|^3}, \ i = 0, 1, 2.$$
(2.8)

Assim, definindo a posição da estrela como x_0 , fazemos novamente a transformação de coordenadas para o referencial relativo da estrela, por:

$$\mathbf{r}_i = \mathbf{x}_i - \mathbf{x}_0. \tag{2.9}$$

Figura 2.1: Desenho de uma órbita elíptica com seus elementos orbitais, sendo Π o periastro, r o vetor posição do planeta em relação à estrela, para uma anomalia verdadeira ν em vermelho, p o semi-latus rectum, a o semi-eixo maior, E em azul a anomalia excêntrica, ω o argumento do periastro em verde e u o argumento de latitude em roxo.

Neste referencial, as equações de movimento são:

$$\frac{d^2 \mathbf{r}_i}{dt^2} = -G(m_0 + m_i)\frac{\mathbf{r}_i}{r_i^3} - Gm_j\left(\frac{\mathbf{r}_i - \mathbf{r}_j}{|\mathbf{r}_i - \mathbf{r}_j|^3} + \frac{\mathbf{r}_j}{r_j^3}\right), i \neq j.$$
(2.10)

Tratando-se de um sistema planetário, ou seja, $m_0 >> m_i$, o primeiro termo da Equação 2.10 é o termo principal, e o segundo é o termo perturbativo $\delta \mathbf{f}$, caso $\delta \mathbf{f}$ seja tal que:

$$|\delta \mathbf{f}| \ll |\mu_i \frac{\mathbf{r}_i}{r_i^3}|, \ i = 1, 2 \in \mu_i = G(m_0 + m_i);$$
 (2.11)

com

$$\delta \mathbf{f} = -Gm_j \left(\frac{\mathbf{r}_i - \mathbf{r}_j}{|\mathbf{r}_i - \mathbf{r}_j|^3} + \frac{\mathbf{r}_j}{r_j^3} \right), \ i \neq j.$$
(2.12)

Para um sistema com dois planetas, i = 1 e i = 2, e com \mathbf{v}_i suas velocidades, temos quatro equações diferenciais lineares de primeira ordem:

$$\frac{d\mathbf{v}_1}{dt} = \frac{d^2\mathbf{r}_1}{dt^2};\tag{2.13}$$

$$\frac{d\mathbf{v}_2}{dt} = \frac{d^2\mathbf{r}_2}{dt^2};\tag{2.14}$$

$$\frac{d\mathbf{r}_1}{dt} = \mathbf{v}_1; \tag{2.15}$$

$$\frac{d\mathbf{r}_2}{dt} = \mathbf{v}_2,\tag{2.16}$$

que podem ser integradas por métodos numéricos, sendo $\frac{d^2\mathbf{r}_1}{dt^2} e \frac{d^2\mathbf{r}_2}{dt^2}$ descritos pela Equação 2.10. Ao integrar as Equações 2.13 a 2.16, obtém se apenas novas posições e velocidades, para certo tempo t. Assim, se torna importante transformar tais coordenadas nos elementos orbitais descritos anteriormente.

Fazendo a aproximação do sistema como coplanar, podemos descartar uma dimensão espacial, com os dois planetas orbitando o mesmo plano, ambos com $i = 0^{\circ}$ e $\Omega = 0^{\circ}$. Desta forma, podemos integrar as Equações 2.13 a 2.16 usando coordenadas cartesianas, convencionando que o plano orbital é o plano xy, e para obter os elementos orbitais transformamos para coordenadas cilíndricas, com r o módulo da posição relativa à estrela e uo argumento de latitude, definido por:

$$u(t) = \arctan\left(\frac{y}{x}\right),\tag{2.17}$$

facilitando a conversão entre coordenadas e elementos orbitais.

2.2.2 Vetores para elementos orbitais

De Beutler et al. (2005), podemos transformar os vetores posição \mathbf{r} e velocidade \mathbf{v} em elementos orbitais a partir das seguintes fórmulas, começando com o cálculo do momento angular \mathbf{h} :

$$\mathbf{h} = \mathbf{r} \times \mathbf{v},\tag{2.18}$$

e da energia \tilde{E} a partir da integral da energia:

$$\tilde{E} = \frac{1}{2}\mathbf{v}^2 - \frac{\mu}{r},\tag{2.19}$$

com μ o parâmetro gravitacional. A partir de \tilde{E} e do módulo do momento angular h, obtemos a excentricidade e e o semi-latus rectum p da elipse:

$$e = \sqrt{1 + \frac{2h^2\tilde{E}}{\mu^2}}, \ e \ p = \frac{h^2}{\mu},$$
 (2.20)

com quais podemos calcular o semieixo maior a:

$$a = \frac{p}{1 - e^2}.$$
 (2.21)

O argumento de latitude u é calculado pela Equação 2.17, e sua relação com a anomalia verdadeira ν e o argumento do periastro ω é representado na Figura 2.1.

Sendo assim, temos que:

$$u = \omega + \nu, \tag{2.22}$$

então para encontrar ω precisamos determinar ν . Da Equação 2.4 e sua derivada obtemos:

$$e\cos(\nu) = \frac{p}{r} - 1;$$
 (2.23)

$$e\sin(\nu) = \frac{pr}{r^2\dot{u}},\tag{2.24}$$

com \dot{r} a componente radial de **v** em coordenadas cilíndricas e \dot{u} a componente tangencial de **v** dividida por r, com $\dot{u} = \dot{\nu}$. Assim segue que:

$$\nu = \arctan\left(\frac{\frac{p\dot{r}}{r^{2}\dot{u}}}{\frac{p}{r}-1}\right),\tag{2.25}$$

com ω obtido pela Equação 2.22.

2.2.3 Elementos orbitais para vetores

Para iniciar uma integração numérica, as posições e velocidades iniciais são necessárias, porém são encontradas na forma de elementos orbitais, portanto é preciso transformá-los nas coordenadas apropriadas.

Com $a, e, \omega \in t_0$, de um planeta, obtemos a anomalia excêntrica E(t) a partir da Equação 2.5 e da Equação de Kepler:

$$M = E - e\sin E, \qquad (2.26)$$

com M a anomalia média. A Equação de Kepler não possuí forma fechada para E, sendo resolvida numericamente. Obtemos a anomalia verdadeira ν a partir de E pela seguinte

relação:

$$\tan\frac{\nu}{2} = \sqrt{\frac{1+e}{1-e}} \tan\frac{E}{2}.$$
 (2.27)

Podemos então calcular o módulo de \mathbf{r} com a Equação 2.4, e \mathbf{r} no referencial do plano orbital, tomando a direção e sentido do periastro como a primeira coordenada, temos que:

$$\mathbf{r}_{\Pi} = (r\cos\nu, r\sin\nu, 0)_{\Pi}. \tag{2.28}$$

Da segunda Lei de Kepler, podemos calcular a velocidade angular \dot{u} :

$$\dot{u} = \frac{h}{r^2},\tag{2.29}$$

assim, ao derivar a Equação 2.28,

$$\mathbf{v}_{\Pi} = (\dot{r}\cos\nu - r\dot{\nu}\sin\nu, \dot{r}\sin\nu - r\dot{\nu}\cos\nu, 0)_{\Pi}, \qquad (2.30)$$

com a Equação 2.24 e vendo que $\dot{u} = \dot{\omega} + \dot{\nu} = \dot{\nu}$ para uma órbita em primeira aproximação não perturbada, podemos obter \mathbf{v}_{Π} como:

$$\mathbf{v}_{\Pi} = \sqrt{\frac{\mu}{p}} (\sin\nu, e + \cos\nu, 0)_{\Pi}. \tag{2.31}$$

Por último, obtemos $\mathbf{r} \in \mathbf{v}$ rotacionando $\mathbf{r}_{\Pi} \in \mathbf{v}_{\Pi}$ com o ângulo $-\omega$, assim a posição e velocidade dos dois planetas estarão no mesmo referencial.

2.2.4 Simulador

Para simular as órbitas dos planetas, desenvolvemos um programa que integra as Equações 2.13 a 2.16, com o método de Runge-Kutta de quarta ordem, com o tempo de cada passo sendo igual a um dia. Para testar o simulador, utilizamos o sistema Júpiter-Saturno, assim apresentamos os parâmetros iniciais na Tabela 2.1, retirados de Simon et al. (1994).

Tabela 2.1 - Semieixo maior, excentricidade, tempo do periastro, longitude do periastro e massa em massas terrestres de Júpiter e Saturno.

Planeta	a (ua)	е	t_0 (°)	ω (°)	Massa (M_{Terra})						
Júpiter	5.202603	0.0484979	34.351519	14.331206	317.8						
Continua na próxima página											

Tabela 2.1 - Continuação

Planeta	a (ua)	е	t_0 (°)	ω (°)	Massa (M_{Terra})
Saturno	9.554909	0.0555481	50.077444	93.057237	95.159

Para averiguar os erros numéricos da integração, simulamos o sistema sem o termo perturbativo da Equação 2.10, assim a aceleração era apenas:

$$\frac{d\mathbf{v}_i}{dt} = -\mu_i \frac{\mathbf{r}_i}{r_i^3},\tag{2.32}$$

com μ_i o parâmetro gravitacional do planeta. Na Figura 2.2, com a variação de *a* de Júpiter e Saturno ao integrar por um milhão anos, verificamos que o erro numérico é no máximo 9 ordens de magnitude menor que *a*, portanto consideramos a integração por Runge-Kutta de quarta ordem como adequada para esse intervalo de tempo.

Figura 2.2: Erros absolutos dos parâmetros orbitais de Júpiter e Saturno, sendo a subtração da série temporal por seu valor em t = 0.

Integrando agora com o termo perturbativo da Equação 2.10, temos a interação entre Júpiter e Saturno, com os semi-eixos maiores representados na Figura 2.3. Estes planetas formam um par interessante por estarem próximos à ressonância 5:2, e por podermos aproximar em primeiro caso como um sistema isolado, ignorando a perturbação dos planetas interiores por suas baixas massas. Um par de planetas i e j está em ressonância quando seus movimentos médios $n_i e n_j$, são tais que a relação $pn_i - qn_j \approx 0$ é válida, com p e qnúmeros naturais pequenos Ferraz-Mello et al. (2005) Michtchenko e Ferraz-Mello (2001).

Figura 2.3: Semi-eixo maior de Júpiter em azul e de Saturno em vermelho, sendo visível uma regularidade de alta frequência.

O método de análise espectral é uma ferramenta capaz de detectar caos no movimento dos planetas, sendo uma análise da transformada de Fourier das séries temporais geradas por uma integração numérica. Com um tempo de integração grande o suficiente, os picos espectrais da transformada tendem a Delta de Dirac, sendo assim órbitas com variações periódicas devem possuir poucos picos no espectro, enquanto órbitas caóticas são irregulares, possuindo bandas largas em seu espectro. Portanto buscamos o número espectral N, sendo o número de picos acima de um nível de ruído nas baixas frequências do espectro.

Simulamos então dois sistemas por 100 mil anos, o sistema Júpiter e Saturno com os parâmetros da Tabela 2.1 e um fictício em que o semi-eixo maior de Saturno seja 0.03 ua maior, aproximando o par à ressonância 5:2. Definindo o nível de ruído como 10 por cento do maior pico, obtivemos o número espectral N em 5 para o sistema real e 40 para o fictício, sendo visível no espectro real um pico representando uma oscilação periódica, na Figura 2.4, e no fictício uma banda de frequências significativas demonstrando o caos, na Figura 2.5, portanto pudemos obter resultados semelhantes aqueles em Michtchenko e Ferraz-Mello (2001).

Figura 2.4: Espectro da série temporal do semi-eixo maior de Júpiter, com a linha tracejada correspondendo à altura de 10 por cento do maior pico.

Figura 2.5: Espectro do semi-eixo maior de Júpiter no sistema fictício, em que o semi-eixo de Saturno foi aumentado em 0.03 ua, com a linha tracejada indicando correspondendo à altura de 10 por cento do maior pico.

Capítulo 3

Soluções Periódicas

Analisamos neste Capítulo o Sistema Sol-Júpiter-Saturno seguindo os métodos apresentados em Tittemore e Wisdom (1988), Michtchenko e Ferraz-Mello (2001) e Michtchenko e Malhotra (2004), e com o simulador descrito no Capítulo 2, buscando as suas soluções periódicas, em que as excentricidades são constantes, para construir espaços de fase.

3.1 Modelo analítico

No sistema de coordenadas Heliocêntrico, considere o Sol, de massa M_{\odot} , Júpiter com massa m_1 e Saturno m_2 . Podemos escrever a Hamiltoniana do sistema em função das massas, posições relativas \mathbf{r}_i e momentos $\mathbf{p}_i = m_i \frac{d\mathbf{u}_i}{dt}$, com \mathbf{u}_i a posição do planeta no referencial do centro de massa. Temos então que a Hamiltoniana H do sistema é:

$$H = \sum_{i=1}^{2} \left(\frac{\mathbf{p}_{i}^{2}}{\beta_{i}} - \frac{\mu_{i}\beta_{i}}{|\mathbf{r}_{i}|} \right) - \frac{Gm_{1}m_{2}}{\Delta} + \frac{(\mathbf{p}_{1} \times \mathbf{p}_{2})}{M_{\odot}}, \qquad (3.1)$$

com G a constante gravitacional, $\Delta = |\mathbf{r}_1 - \mathbf{r}_2|$, e μ_i e β_i constantes da forma:

$$\mu_i = G(M_{\odot} + m_i) \ e \ \beta_i = \frac{M_{\odot}m_i}{M_{\odot} + m_i}$$

Dos três termos da Hamiltoniana H, o primeiro é o termo Kepleriano, e o segundo e o terceiro são perturbadores direto e indireto, respectivamente. Podemos descartar a perturbação indireta por não possuir termos seculares e ressonantes até a terceira ordem das excentricidades (Laskar 1991; Michtchenko e Ferraz-Mello 2001), e pela pequena diferença entre as inclinações dos dois planetas trataremos o sistema como coplanar. Introduzimos então as variáveis elípticas de Poincaré Laskar (1991):

$$\lambda_i = \omega_i + M_i, \tag{3.2}$$

$$L_i = \beta_i \sqrt{\mu_i a_i},\tag{3.3}$$

$$I_i = L_i (1 - \sqrt{1 - e_i^2}), \tag{3.4}$$

com λ_i a longitude média, ω_i o argumento de periastro, a_i o semi-eixo maior, e_i a excentricidade e M_i a anomalia média. Com essas variáveis podemos reescrever a Equação 3.1 como:

$$H = -\sum_{i=1}^{2} \frac{\mu_i^2 \beta_i^3}{2L_i^2} - \frac{Gm_1 m_2}{a_2} R(L_i, I_i, \lambda_i, \omega_i), \qquad (3.5)$$

onde R é a função perturbadora do sistema. A partir da proximidade do sistema à ressonância 5:2, podemos separar a função perturbadora nos termos R_{Res} ressonantes e R_{Sec} seculares,

$$R = R_{Sec} + R_{Res}$$

sendo que R_{Res} possui como argumento os ângulos $5\lambda_2 - 2\lambda_1 - k\omega_1 - l\omega_2$, com $k \in l$ inteiros tais que k + l = 3, e R_{Sec} não depende de $\lambda_1 \in \lambda_2$.

Como uma primeira aproximação, consideramos apenas a perturbação secular para a busca de condições iniciais, expandindo R_{Sec} até a segunda ordem nas excentricidades:

$$R_{Sec} = a + b\left(\frac{e_1^2}{2} + \frac{e_2^2}{2}\right) + c\left(\frac{e_1}{2}\right)\left(\frac{e_2}{2}\right)\cos(\omega_1 - \omega_2),$$
(3.6)

com as constantes a, b e c dependendo apenas da razão $\alpha = \frac{a_1}{a_2}$, vide o Apêndice A.1.

Introduzimos os ângulos σ_1 , $\sigma_2 \in \Delta \omega$ para auxiliar na escolha das condições iniciais,

$$\sigma_1 = (1+r)\lambda_2 - r\lambda_1 - \omega_1, \qquad \sigma_2 = (1+r)\lambda_2 - r\lambda_1 - \omega_2, \qquad (3.7)$$

$$\Delta \omega = \omega_1 - \omega_2 = \sigma_2 - \sigma_1, \tag{3.8}$$

com $r = \frac{p}{q}$ a razão dos inteiros $p \in q$, estes tais que a razão dos períodos $\frac{P_2}{P_1} \approx \frac{p+q}{p}$ na proximidade de uma ressonância, assim r = 2/3 para a ressonância 5 : 2. Como as soluções do sistema expressas nas coordenadas $e_i \cos(\Delta \omega)$ e $e_i \sin(\Delta \omega)$ circulam em torno das soluções constantes, em que $\dot{e}_1 = \dot{e}_2 = 0$, temos que as soluções passarão por $\Delta \omega = 0$ e $\Delta \omega = \pi$, assim temos as combinações de $\sigma_1 \in \sigma_2$ iniciais: $\sigma_1 = \sigma_2 = 0$; $\sigma_1 = \pi \in \sigma_2 = 0$; $\sigma_1 = \sigma_2 = \pi \in \sigma_1 = 0$; e $\sigma_2 = \pi$. Calculamos então as curvas de nível do Hamiltoniano

Figura 3.1: Mapa do Hamiltoniano secular em Joules (J) e curvas de nível do Hamiltoniano H_{Sec} .

 $H_{Sec} = -\frac{Gm_1m_2}{a_2}R_{Sec}$, no plano de excentricidades iniciais (e_1, e_2) representadas na Figura 3.1.

Obtemos também H_{Sec} integrando a função perturbadora da Equação 3.5 na forma:

$$H_{Sec} = -\frac{1}{(2\pi)^2} \int_0^{2\pi} \int_0^{2\pi} \frac{Gm_1m_2}{\Delta} d\lambda_1 d\lambda_2, \qquad (3.9)$$

e encontramos um erro relativo ao obtido analiticamente na ordem de 10^{-3} , vide o Apêndice A.2.

3.2 Espaço de fase

Como H_{Sec} não depende de λ_1 e λ_2 , e a_1 e a_2 são constantes após eliminar as altas frequências pela integração, podemos fazer a mudança de variáveis Michtchenko e Malhotra (2004):

$$\sigma_2 - \sigma_1 = \Delta \omega, \qquad K_1 = I_1, \qquad (3.10)$$

$$K_2 = I_1 + I_2, (3.11)$$

onde o problema passa a ser separável e integrável, com as equações de movimento sendo:

$$\dot{K}_1 = -\frac{\partial H_{Sec}}{\partial \Delta \omega}, \qquad \qquad \Delta \dot{\omega} = \frac{\partial H_{Sec}}{\partial K_1}, \qquad (3.12)$$

$$\dot{K}_2 = 0, \qquad -\dot{\omega}_2 = \frac{\partial H_{Sec}}{\partial K_2}.$$
 (3.13)

As soluções fixas das equações de movimento são as soluções periódicas, e as soluções gerais são as quase-periódicas. Como $\dot{K}_2 = 0$, K_2 é constante e um extremo máximo ou mínimo nas soluções periódicas para uma determinada energia H_{Sec} , assim podemos procurar as soluções periódicas encontrando o K_2 máximo P+ e mínimo P- de uma determinada energia. A solução associada com o ponto P+ é o modo I, com $\Delta \omega = 0$, e o P- o modo II, com $\Delta \omega = \pi$.

Ao encontrarmos o K_2 máximo e mínimo para uma energia arbitrária, $H_{Sec} = -5.39 \times 10^{31} J$, executamos a simulação com as excentricidades de H_{Sec} no entorno dos K_2 extremos, iniciando as simulações do modo I com $\Delta \omega = 0$ e no modo II $\Delta \omega = \pi$. Para o K_2 máximo, o sistema não foi integrável no modo I, como podemos ver na Figura A.2 do Apêndice A.2, com as curvas de cada simulação se cruzando, enquanto entorno do K_2 mínimo obtivemos espaços de fases bem comportados (Figura 3.3), com uma solução periódica para cada modo, sendo as configurações iniciais das excentricidades, assim como os K_2 e a curva de nível de H_{Sec} representados na Figura 3.2.

Figura 3.2: Plano das excentricidades iniciais, com a curva de nível de H_{Sec} em azul, as linhas tracejadas marrom e amarela sendo o K_2 mínimo e máximo, respectivamente, os pontos vermelhos as condições iniciais do modo II e os pontos pretos do modo I.

Figura 3.3: Espaço de fase gerado com as condições iniciais representadas na Figura 3.2, com as órbitas concêntricas em $e_1 \cos \Delta \omega < 0$ pertencendo ao modo II e as soluções da direita ao modo I.

Capítulo 4

Exoplanetas

4.1 Base de Dados

Utilizamos a base de dados da agência espacial estadunidense (NASA), o NASA Exoplanet Archive ¹. Temos na Figura 4.1 um *print* do site, onde se encontra a base de dados utilizada.

NASA NASA EX		LANE Science I								
Home	About Us	Data	Tools	Supp	port Lo	gin				
🧮 Select Columns 🛛 Download Table 💟 Plot Table 🔎 View Documentation User Preferences										
Planetary Systems										
Plane	× Name	🛋 ヹ 区 Host Name	Number of Stars	Number of Planets	Discovery Method	Discovery Year	Solution Type	Planetary Parameter Reference		
	?	2	2		2		Published Confirmed	2		
11 Com b		11 Com	2	1	Radial Velocity	2007	Published Confirmed	Liu et al. 2008		
11 Com b		11 Com	2	1	Radial Velocity	2007	Published Confirmed	Kunitomo et al. 2011		
11 UMi b		11 UMi	1	1	Radial Velocity	2009	Published Confirmed	Dollinger et al. 2009		
11 UMi b		11 UMi	1	1	Radial Velocity	2009	Published Confirmed	Kunitomo et al. 2011		
11 UMi b		11 UMi	1	1	Radial Velocity	2009	Published Confirmed	Stassun et al. 2017		
14 And b		14 And	1	1	Radial Velocity	2008	Published Confirmed	Sato et al. 2008		
14 And b		14 And	1	1	Radial Velocity	2008	Published Confirmed	Kunitomo et al. 2011		
14 Her b		14 Her	1	2	Radial Velocity	2002	Published Confirmed	Naef et al. 2004		
14 Her b		14 Her	1	2	Radial Velocity	2002	Published Confirmed	Rosenthal et al. 2021		
14 Her b		14 Her	1	2	Radial Velocity	2002	Published Confirmed	Gozdziewski et al. 2008		
1/I Hor h		1/ Hor	1	2	Radial Valocity	2002	Published Confirmed	Staccun at al. 2017		
Showing records 1 to 12 of 16745 (33756 total) DOI 10.26133/NEA12 Cle										

Figura 4.1: print do site do NASA Exoplanet Archive.

Da base de dados, retiramos apenas os objetos confirmados, totalizando em 17280 publicações para 5438 exoplanetas descobertos. Para não repetir o mesmo exoplaneta nas

¹ disponível no endereço https://exoplanetarchive.ipac.caltech.edu/index.html, acessado no dia 8 de Junho de 2023.

distribuições, para os exoplanetas com mais de uma publicação, escolhemos arbitrariamente a publicação mais recente que possua os dados utilizados na distribuição específica.

4.2 Métodos de Detecção

Dos 5438 exoplanetas, 5375 foram descobertos pelos métodos de trânsito, velocidade radial, microlente e imagem direta, como mostrado na Tabela 4.1. Os outros métodos são tempo de pulsar, variação do tempo de trânsito, variação do tempo de pulsação, modulação de brilho orbital, cinemática de disco, e astrometria, todos eles representando apenas 1,2% dos exoplanetas.

Tabela 4.1 - Número de exoplanetas por método de detecção.

Trânsito	Velocidade Radial	Microlente	Imagem	Outros métodos
4073	1036	199	67	63

A inclinação i dos exoplanetas é definida em relação à linha de visão da Terra, sendo que uma órbita com i = 0 é perpendicular e $i = 90^{\circ}$ é paralela a linha de visão. Sendo assim, o método de trânsito, consistindo em observar a variação do fluxo da estrela pela passagem de um planeta a orbitando, é capaz de detectar apenas planetas com $i \simeq 90$. Com o ajuste da curva de luz do trânsito, se obtém i, o semi-eixo maior a e o raio do planeta R_p , e com a duração do trânsito e estes parâmetros calcula-se o Período orbital T, não sendo possível obter a excentricidade e nem a o argumento do pericentro ω apenas do trânsito.

O método da velocidade radial é a detecção de exoplanetas medindo a variação da velocidade da estrela pelo efeito Doppler, ao orbitar o centro de massa em comum com o planeta que a orbita. A partir da semi-amplitude da velocidade radial K, é possível calcular a função de massa M:

$$M = \frac{M_p^3 \sin^3 i}{(M_\star + M_p)^2},$$
(4.1)

sendo M_{\star} a massa da estrela. Este método só permite calcular $M_p \sin i$, não sendo possível determinar M_p e *i* individualmente. Com o ajuste de *K*, é possível obter também os elementos orbitais *a*, *e*, *T*, $t_0 \in \omega$.

Para detectar um exoplaneta com microlentes gravitacionais, é preciso haver um alinhamento específico com a Terra: duas estrelas quase alinhadas, de forma que a luz da estrela de fundo seja magnificada gravitacionalmente pela estrela lente, e que haja um planeta orbitando a estrela lente, que passe na frente da imagem da estrela de fundo, alterando sua curva de luz. Tal evento é muito raro, porém com já foram detectados 199 planetas com esse método. Com ele é possível obter as massas M_{\star} da estrela lente e M_p do planeta, assim como o semieixo a de sua órbita. Por último, o método de imagem direta consiste em observar a luz refletida do planeta ou a própria radiação termal no infravermelho, e pela dificuldade de observar um objeto tão pouco luminoso em relação a estrela, foram detectados apenas exoplanetas muito mais massivos que Júpiter e orbitando longe da estrela. Uma descrição completa dos métodos de detecção se encontra em Perryman (2018).

4.3 Distribuições

Na Figura 4.2, temos a distribuição das massas planetárias em função dos períodos dos exoplanetas, com alguns planetas do Sistema Solar por comparação. É notável a presença de planetas mais massivos que Júpiter com períodos orbitais menores que cem dias, os Júpiters quentes, assim como os limites nos métodos de detecção atuais, em que não se observam exoplanetas de massa próxima ou menor e com período orbital similar que da Terra. É visível também a limitação do método de imagem, com apenas exoplanetas massivos e distantes descobertos.

Quanto aos raios planetários, segundo Chabrier et al. (2009), existe uma relação entre a massa M e o raio R da forma,

$$R \propto M^{\frac{1-n}{3-n}},\tag{4.2}$$

com n um parâmetro que depende do tipo do objeto, sendo n = 3/2 para estrelas de baixa massa, $M \sim 0.4 M_{\odot}$, $n \simeq 1$ para objetos de massa similar à Júpiter, e $n \simeq 0$ para os planetas terrestres. Sendo assim, para $n \simeq 1$ o raio planetário não depende da massa, e para $n \simeq 0$ existe uma relação de potência entre os raios e as massas, como podemos ver na Figura 4.3.

Dos 2012 exoplanetas com excentricidade e massa medidos, temos que 28% possuem excentricidade maior que a de mercúrio, e > 0.206, sendo que na Figura 4.4 é notável a quantidade de planetas massivos com excentricidades altas.

Figura 4.2: Distribuição das massas em massas terrestres, por períodos em dias, com os planetas detectados por trânsito em azul, velocidade radial em vermelho, microlente em marrom, imagem em verde e por outros métodos em roxo. Também estão representados os parâmetros de planetas do Sistema Solar com quadrados, de Mercúrio em preto, Terra em azul, Júpiter em amarelo e Netuno em rosa.

A grande maioria dos exoplanetas, 98.5%, orbitam estrelas com temperatura similar ou menor do Sol, com muitos poucos exoplanetas descobertos orbitando estrelas do tipo O, B, A, e anãs marrons, como representado na Figura 4.5. A maior parte também orbitam estrelas com apenas um planeta conhecido, sendo poucos os sistemas com o número de planetas próximo do Sistema Solar, conforme a Figura 4.6.

Separando os sistemas com mais de um exoplaneta, e selecionando os pares consecutivos em semi-eixo maior de exoplanetas de cada sistema, que possuam massa, semi-eixo maior, período orbital e excentricidade medidas, conseguimos obter um conjunto de 892 pares, representados na Figura 4.7. Nela, temos as razões de períodos em função da maior excentricidade entre os dois planetas, com P1 sendo o período do planeta mais próximo da estrela e P2 do mais distante do par. A linha inferior, de valor 0.14 representa o limite

Figura 4.3: Distribuição de raio por massa planetária, em unidades terrestres, com os planetas detectados por trânsito em azul, velocidade radial em vermelho, imagem em verde e por outros métodos em roxo. Também estão representados os parâmetros de planetas do Sistema Solar com quadrados, de Mercúrio em preto, Terra em azul, Júpiter em amarelo e Netuno em rosa, e a menor anã marrom e anã vermelha por estrelas preta e vermelha, respectivamente.

superior para a interação dos pares serem consideradas como hierárquicas, conforme a classificação dinâmica proposta por Ferraz-Mello et al. (2005), sendo que as outras linhas representam os valores das principais ressonâncias.

Figura 4.4: Distribuição das excentricidades por massas, em massas terrestres, com os planetas detectados por trânsito em azul, velocidade radial em vermelho, microlente em marrom, imagem em verde e por outros métodos em roxo. Também estão representados os parâmetros de planetas do Sistema Solar com quadrados, de Mercúrio em preto, Terra em azul, Júpiter em amarelo e Netuno em rosa.

Figura 4.5: Distribuição das temperaturas estelares efetivas, em Kelvin, por massas planetárias, em massas terrestres, com os planetas detectados por trânsito em azul, velocidade radial em vermelho, microlente em marrom, imagem em verde, variação do tempo de eclipse em preto e por outros métodos em roxo. Também estão representados os parâmetros de planetas do Sistema Solar com quadrados, de Mercúrio em preto, Terra em azul, Júpiter em amarelo e Netuno em rosa. A gradação de cores de fundo representa o tipo espectral da estrela, ma sequência de cima para baixo: O, B, A, F, G, K, M, e anãs marrons.

Figura 4.6: Quantidade de sistemas pelo número de exoplanetas por sistema.

Figura 4.7: Razão de períodos de pares de exoplanetas pela maior excentricidade entre os dois planetas de cada par, com barras de erro para a razão dos períodos. A linha rosa define o limite para considerar a interação como hierárquica, e as outras representam as principais ressonâncias.

Capítulo

5

Conclusão

Apresentamos uma breve descrição do problema de dois corpos e de três corpos num sistema planetário, no qual introduzimos as equações de perturbação gaussiana. Com a base de dados NASA Exoplanet Archive, e após brevemente apresentar os métodos de detecção de exoplanetas, expomos distribuições de parâmetros relevantes destes.

Após descrever os elementos orbitais, e suas relações com os vetores de posição e velocidade, com um simulador de três corpos coplanar conseguimos estudar o movimento de Júpiter e Saturno. Com os métodos de análise espectral e do número espectral, pudemos verificar que, no período relativamente curto de 100 mil anos, o sistema Sol-Júpiter-Saturno é regular, e que alterando o semi-eixo de Saturno para aproximar o par da ressonância 5:2, obtivemos caos, reproduzindo um resultado de Michtchenko e Ferraz-Mello (2001).

Iniciamos por fim o estudo da dinâmica planetária ao buscar as soluções periódicas do sistema Sol-Júpiter-Saturno e construir seu espaço de fase. Apenas usando o termo secular da função perturbadora, conseguimos encontrar um par de soluções periódicas, além de observar a rotação das soluções do sistema em torno dos pontos fixos com o espaço de fase. Temos como perspectiva para um estudo futuro a incorporação do termo ressonante e um estudo mais detalhado sobre as condições iniciais e suas implicações em termos de estabilidade e integrabilidade. Capítulo 5. Conclusão

Referências Bibliográficas

- Beutler G., Mervart L., Verdun A., Methods of Celestial Mechanics: Volume I: Physical, Mathematical, and Numerical Principles. Astronomy and Astrophysics Library, Springer Berlin Heidelberg, 2005
- Chabrier G., Baraffe I., Leconte J., Gallardo J., Barman T., The mass-radius relationship from solar-type stars to terrestrial planets: a review. In 15th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun , vol. 1094 of American Institute of Physics Conference Series, 2009, p. 102
- Ferraz-Mello S., Michtchenko T. A., Beaugé C., Callegari N., 2005 in Dvorak R., Freistetter F., Kurths J., eds, Vol. 683, Chaos and Stability in Planetary Systems. pp 219–271
- Fitzpatrick R., 2012 Secular perturbation theory. Cambridge University Press p. 172–196
- Goldstein H., Classical Mechanics. Addison-Wesley, 1980
- Irapuan Lira Feitosa Filho A., Análise das distribuições de exoplanetas no espaço de parâmetros físicos e orbitais, São Paulo: Universidade de São Paulo, 2019, Dissertação de Mestrado
- Laskar J., , 1991 Analytical Framework in Poincare Variables for the Motion of the Solar System. Springer US Boston, MA pp 93–114
- Michtchenko T., Malhotra R., Secular dynamics of the three-body problem: application to the Andromedae planetary system, Icarus, 2004, vol. 168, p. 237
- Michtchenko T. A., Ferraz-Mello S., Modeling the 5: 2 mean-motion resonance in the Jupiter-Saturn Planetary System, Icarus, 2001

Michtchenko T. A., Ferraz-Mello S., Resonant Structure of the Outer Solar System in the Neighborhood of the Planets, AJ, 2001, vol. 122, p. 474

Perryman M., The Exoplanet Handbook, 2 edn. Cambridge University Press, 2018

- Simon J. L., Bretagnon P., Chapront J., Chapront-Touze M., Francou G., Laskar J., Numerical expressions for precession formulae and mean elements for the Moon and the planets., A&A, 1994, vol. 282, p. 663
- Tittemore W. C., Wisdom J., Tidal evolution of the Uranian satellites: I. Passage of Ariel and Umbriel through the 5:3 mean-motion commensurability, Icarus, 1988, vol. 74, p. 172

Apêndice

Apêndice A_

Apêndice A

A.1 Constantes

As constantes $a, b \in c$ da equação 3.1 são expressas como:

$$a = \frac{1}{2}b_{1/2}^{(0)}, \qquad b = \frac{1}{2}\alpha b_{3/2}^{(1)}, \qquad c = -\alpha b_{3/2}^{(2)},$$

sendo $b_s^{(j)}$ os coeficientes de Laplace Fitzpatrick (2012):

$$b_s^{(j)}(\alpha) = \frac{1}{\pi} \int_0^{2\pi} \frac{\cos(j\phi)}{(1 - 2\alpha\cos\phi + \alpha^2)^s} d\phi,$$

assim a = 1.089787, b = 0.863841 e c = -1.127719.

A.2 Erro relativo

Temos, na Figura A.1, o erro relativo entre os Hamiltonianos seculares descritos pelas Equações 3.1 e 3.1, estas sendo a aproximação por série de Taylor nas excentricidades e a média da perturbação, respectivamente, com erro encontrado na ordem de 10^{-3} .

A.3 Espaço de fase

Na procura de pontos fixos do sistema Sol-Júpiter-Saturno, ao simular o sistema com diferentes condições iniciais pertencentes a mesma Hamiltoniana secular, encontramos soluções não compatíveis entre si, visto que suas trajetórias no espaços de fase se cruzavam e também possuíam centros diferentes, como na Figura A.2.

Figura A.1: Mapa do erro relativo entre o Hamiltoniano secular da Equação 3.1 e da Equação 3.1

Figura A.2: Espaço de fase gerado no entorno de K_2 máximo no modo I, as linhas de simulações diferentes se cruzando sugere que o sistema não seja integrável ou que as simulações possuem energias diferentes.