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agradecimentos. Você viveu meus desafios como seus, e meus sonhos como nossos. Esta
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“There is no problem in science that can be

solved by a man that cannot be solved by a woman.”

Vera Rubin





Resumo

Estrelas Be são objetos astrof́ısicos caracterizados pela presença transitória de um disco

circunstelar gasoso, que produz linhas de emissão no espectro e padrões complexos de va-

riabilidade fotométrica. Tradicionalmente, sua identificação depende de espectroscopia,

o que limita sua detecção em grandes surveys. Com o crescimento de levantamentos fo-

tométricos massivos, como o Legacy Survey of Space and Time (LSST), conduzido pelo

Vera C. Rubin Observatory, torna-se necessário desenvolver métodos automatizados para

classificar essas estrelas com base em curvas de luz.

Neste trabalho é investigado o uso de aprendizado de máquina supervisionado para essa

tarefa, utilizando curvas de luz do Optical Gravitational Lensing Experiment (OGLE), ro-

tuladas manualmente por Figueiredo et al. (2025). Foram aplicados modelos tradicionais

(Random Forest, eXtreme Gradient Boosting, k-Nearest Neighbors, Support Vector Machine

eMultiLayer Perceptron) que usam valores numéricos, além de redes neurais convolucionais

(CNNs), que processam as imagens das curvas de luz. Os modelos tradicionais alcançaram

acurácias entre 81% e 86%, e os atributos com maior importância foram os variogramas e

ı́ndice Stetson J . A CNN binária obteve acurácia de 88%, superando ligeiramente os mode-

los tradicionais, enquanto uma versão multiclasse, que também classificava as orientações

das estrelas, atingiu 71% de acurácia.

Os resultados demonstram que ambas as abordagens são viáveis para identificação fo-

tométrica de estrelas Be, com a CNN mostrando potencial para classificação direta a partir

de imagens, sem necessidade de extração manual de atributos. O pipeline metodológico

desenvolvido constitui uma base sólida para aplicação futura em projetos de larga escala

como o LSST.





Abstract

Be stars are astrophysical objects characterized by the transient presence of a gaseous

circumstellar disk, which produces emission lines in their spectra and complex patterns

of photometric variability. Traditionally, their identification relies on spectroscopy, which

limits detection in large surveys. With the growth of massive photometric projects, such as

the Legacy Survey of Space and Time (LSST) conducted by the Vera C. Rubin Observatory,

it becomes necessary to develop automated methods to classify these stars based on light

curves.

This work investigates the use of supervised machine learning for this task, using light

curves from the Optical Gravitational Lensing Experiment (OGLE), manually labeled by

Figueiredo et al. (2025). Traditional models (Random Forest, eXtreme Gradient Boosting,

k-Nearest Neighbors, Support Vector Machine, and MultiLayer Perceptron), which operate

on numerical features, were applied alongside convolutional neural networks (CNNs) that

process images of the light curves. The traditional models achieved accuracies between 81%

and 86%, and the most relevant features were variograms and the Stetson J index. The

binary CNN obtained an accuracy of 88%, slightly outperforming the traditional models,

while a multiclass version, which also classified stellar orientations, reached 71% accuracy.

The results show that both approaches are viable for the photometric identification of

Be stars, with CNNs demonstrating potential for direct classification from images without

the need for manual feature extraction. The methodological pipeline developed here pro-

vides a solid foundation for future applications in large-scale projects such as the LSST.
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Caṕıtulo 1

Introdução

1.1 Estrelas Be e a era da fotometria massiva

A descoberta das estrelas Be remonta ao século XIX, quando o padre Angelo Secchi

observou uma “linha luminosa muito brilhante” no espectro da estrela γ Cassiopeiae (B0.5

IV), hoje reconhecida como a primeira estrela Be identificada. Inicialmente, a classificação

dessas estrelas era meramente taxonômica: qualquer estrela do tipo espectral B que apre-

sentasse linhas de emissão no espectro, especialmente nas linhas de Balmer do hidrogênio,

era agrupada sob a designação “Be”. Com o tempo, no entanto, ficou evidente que esse

grupo abrigava objetos com naturezas muito distintas, o que levou à diferenciação entre

subclasses, como as estrelas B[e], as estrelas Ae/Be de Herbig e outras classes peculiares.

Dentre essas, existem as chamadas estrelas Be clássicas, que são o foco deste trabalho.

Estas são estrelas de tipo B na sequência principal ou próximas a ela, que exibem rotação

elevada e, em algum momento de sua vida, formam um disco circunstelar gasoso, associado

às linhas de emissão observadas no espectro, a partir de material ejetado da própria estrela.

A identificação tradicional dessas estrelas é espectroscópica, pois detecta suas linhas de

emissão caracteŕısticas. No entanto, esse método apresenta limitações práticas e loǵısticas:

é caro, demanda tempo de telescópio em instrumentos especializados e, mais significativa-

mente, não é viável para aplicação em larga escala. A fotometria, por outro lado, permite

obter dados de milhares de estrelas em uma observação e acompanhar sua variabilidade ao

longo do tempo, de forma mais acesśıvel graças ao menor custo e à maior abundância dos

dados.

Nesse âmbito, entram levantamentos fotométricos como o OGLE (“Optical Gravita-

tional Lensing Experiment”, Udalski et al. 1992), ASAS (“All Sky Automated Survey”,
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Pojmanski 1997) e KELT (“Kilodegree Extremely Little Telescope”, Pepper et al. 2004),

que atualmente fornecem bases de dados para o estudo de variabilidade estelar. A próxima

fronteira na escala de volume de dados será inaugurada com a chegada do LSST (“Legacy

Survey of Space and Time”, Ivezic et al. 2019) do Observatório Vera C. Rubin, que, so-

zinho, produzirá milhões de alertas de variabilidade por noite. Diante desse momento de

explosão de dados na Astronomia, torna-se cada vez mais necessário o desenvolvimento de

métodos alternativos e automatizados para identificar objetos de interesse cient́ıfico, por

exemplo, estrelas Be, e usando dados mais acesśıveis e abundantes, como curvas de luz.

No caso das estrelas Be, a presença (ou ausência) de um disco circunstelar, bem como

os eventos que levam à sua formação ou dissipação, formam assinaturas caracteŕısticas nas

suas curvas de luz, as quais refletem fases de atividade do disco, erupções de brilho, cons-

trução e dissipação de material, entre outros. Como diferentes padrões de variabilidade

são reconhecidos como indicativos da natureza Be, isso permite que seja posśıvel identifi-

car manualmente (com certa precisão) essas estrelas a partir de suas curvas de luz. Um

exemplo desse tipo de abordagem é o trabalho de Figueiredo et al. (2025), no qual cerca

de 3000 curvas de luz do levantamento OGLE foram analisadas visualmente, resultando

na identificação de 1751 candidatas a estrelas Be.

A Figura 1.1, retirada de Figueiredo et al. (2025), apresenta algumas das assinaturas

t́ıpicas das curvas de luz de estrelas Be. Nela, observa-se a separação dos dados fotométricos

em diversos estágios de atividade, relacionados ao ciclo de vida do disco circunstelar, como

crescimento, dissipação, platô, entre outros. As fases de variabilidade correspondentes são

indicadas pela cor dos pontos, e linhas verticais e horizontais sinalizam as diferentes fases

de observação ou as transições entre os estágios de variabilidade. Cada painel mostra um

exemplo distinto, apresentando padrões usuais de variabilidade observados nestas estrelas.

Amostras rotuladas manualmente, como a criada por Figueiredo et al. (2025), são

valiosas para a criação de técnicas computacionais de classificação automática, pois forne-

cem um padrão de referência confiável, fundamentado na experiência humana. O uso de

métodos de aprendizado de máquina (machine learning, ML) nesses dados permite avaliar

o quanto os algoritmos reproduzem esses critérios de forma automatizada e possibilita sua

aplicação futura em levantamentos de larga escala, como o LSST.

Assim, nesse cenário, o aprendizado de máquina surge como uma alternativa promissora

para a classificação de estrelas Be em levantamentos fotométricos. Ao treinar modelos
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Figura 1.1: Exemplos de curvas de luz de estrelas Be, classificadas segundo as fases de variabilidade

do disco circunstelar. Cada cor representa uma fase: cinza (linha de base, sem disco), azul (crescimento

do disco), laranja (dissipação do disco), magenta (platô), verde (formação isolada de disco) e vermelho

(dissipação isolada). Linhas verticais indicam transições entre estágios com as coloridas representando

diferentes fases observacionais, enquanto linhas horizontais mostram o ńıvel médio de brilho no estado de

linha de base. Extráıdo, com permissão, de Figueiredo et al. (2025)

.

capazes de reconhecer padrões complexos em curvas de luz, é posśıvel automatizar parte

do trabalho que, tradicionalmente, dependeria de análise visual por especialistas. A ideia

central é aproveitar exemplos rotulados (como os identificados por Figueiredo et al. 2025)

para ensinar algoritmos a distinguir entre curvas de luz de estrelas Be e não Be.

A monografia está organizada da seguinte forma. O Caṕıtulo 2 reúne os fundamentos

teóricos, abordando tanto as propriedades das estrelas Be e sua variabilidade fotométrica

quanto os conceitos de aprendizado de máquina essenciais para a compreensão deste traba-

lho. O Caṕıtulo 3 descreve a metodologia empregada, incluindo a preparação dos dados, a

definição de atributos e modelos utilizados. O Caṕıtulo 4 apresenta e discute os resultados

obtidos no problema de classificação das estrelas Be, nos dados rotulados de Figueiredo

et al. (2025), incluindo uma discussão cŕıtica sobre a metodologia e o conjunto de da-

dos utilizados. Por fim, o Caṕıtulo 5 apresenta as conclusões gerais e perspectivas para

trabalhos futuros.
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Caṕıtulo 2

Fundamentos teóricos

2.1 Variabilidade fotométrica de estrelas Be

As propriedades observacionais das estrelas Be estão ligadas à presença e à evolução de

um disco circunstelar gasoso, cuja formação e dissipação geram assinaturas caracteŕısticas

em suas curvas de luz. Essas variações fotométricas refletem uma gama de processos f́ısicos

e podem assumir diferentes morfologias conforme o ângulo de observação e o estágio de

atividade do sistema. Em sistemas vistos de cima (pole-on), a presença do disco resulta

em um aumento no brilho e em um leve avermelhamento. Já em sistemas observados de

forma equatorial (edge-on), o disco pode obscurecer parcialmente a estrela, levando ao

avermelhamento e à redução do brilho (Haubois et al. 2012, Ŕımulo et al. 2018).

Trabalhos clássicos, como Mennickent, R. E. et al. (2002) e Sabogal et al. (2005),

propuseram classificações emṕıricas para organizar os diferentes padrões de variabilidade

observados em estrelas Be nos dados dos levantamentos OGLE e ASAS. Nesses estudos, os

autores mostraram que as curvas de luz dessas estrelas podem exibir os seguintes comporta-

mentos: outbursts1 abruptos de brilho seguidos de decĺınio suave, aumentos prolongados de

brilho, variações quase periódicas ou flutuações irregulares em múltiplas escalas de tempo.

Embora úteis para descrever a diversidade de comportamentos fotométricos, essas clas-

sificações dependem fortemente da interpretação visual do avaliador, e não traduzem ne-

cessariamente os processos f́ısicos subjacentes. Mais recentemente, trabalhos como o de

Figueiredo et al. (2025) buscaram introduzir dimensões adicionais de informação, a partir

da análise de variações simultâneas de brilho e cor nas curvas de luz.

1 Outburst : episódio de aumento repentino de brilho, normalmente associado a eventos de ejeção de

massa na estrela.
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Figura 2.1: Simulações de sistemas Be no plano ∆(V − I) por ∆I para diferentes ângulos de inclinação e

propriedades do disco. Extráıdo, com permissão, de Figueiredo et al. (2025). No painel superior, tem-se

tempo de formação e ângulos de inclinação selecionados. No inferior, variam-se as densidades mantendo

um tempo de formação fixo em tb = 1800 dias, para os mesmos ângulos selecionados. Os ćırculos indicam

a transição entre as fases de formação e dissipação do disco. Esses modelos foram utilizados como base

para classificar as geometrias observacionais (ângulos de inclinação) das curvas reais.

No caso deste trabalho espećıfico, o método adotado envolveu uma análise baseada

em diagramas de cor-magnitude (∆(V − I) por ∆I), constrúıdos a partir dos dados fo-

tométricos do OGLE. Esses diagramas observacionais foram comparados com diagramas

simulados (vide Figura 2.1) que preveem o comportamento esperado para diferentes ângulos

de inclinação e estágios de atividade do disco. Com base nessa comparação, os autores

estabeleceram a orientação provável (pole-on vs. edge-on) de cada sistema e identificaram

quais curvas de luz apresentavam variações compat́ıveis com os diferentes estágios de ativi-

dade de estrelas Be. A partir desses resultados, foi então criada uma amostra rotulada, na
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qual as curvas de luz foram classificadas manualmente como candidatas a estrelas Be ou

não-Be, que abriu a possibilidade, explorada neste trabalho, de aplicar métodos de apren-

dizado de máquina para reproduzir e ampliar o processo de identificação/classificação de

estrelas Be.

Para realizar essa transição da inspeção visual para a classificação computacional auto-

matizada, é necessário compreender os prinćıpios que guiam o aprendizado dos algoritmos

a partir dos dados. Por isso, a Seção 2.2 apresenta, de forma sucinta, os fundamentos

teóricos do aprendizado de máquina necessários para compreender o resto do texto.

2.2 Fundamentos de aprendizado de máquina

2.2.1 Definição e tipos de aprendizado

Em termos gerais, o aprendizado de máquina é uma área da inteligência artificial vol-

tada para o desenvolvimento de modelos computacionais capazes de reconhecer padrões e

extrair informações relevantes diretamente a partir dos dados. Em vez de seguir instruções

pré-definidas (Samuel 1995), esses modelos aprendem por meio de exemplos e ajustam seus

parâmetros internos para realizar tarefas como classificação, regressão ou agrupamento.

Podemos distinguir dois paradigmas principais: o aprendizado supervisionado, em que

o modelo é treinado com exemplos rotulados para aprender a relacionar entradas a sáıdas

conhecidas; e o não supervisionado, no qual não há rótulos e o algoritmo busca agrupa-

mentos naturais nos dados. Este trabalho concentra-se em modelos supervisionados, dada

a existência de um conjunto rotulado de curvas de luz.

2.2.2 Tratamento dos dados e escolha de atributos

Independentemente da abordagem de aprendizado utilizada, é fato que o desempenho

dos modelos é dependente da qualidade e da representação dos dados (para uma análise

detalhada sobre como diferentes dimensões de qualidade afetam tarefas de aprendizado

supervisionado e não supervisionado, ver Mohammed et al. 2025). Por isso, é importante

que sempre haja uma etapa de preparação da amostra, que pode incluir desde o tratamento

de valores ausentes, até a remoção de rúıdo, normalização dos dados, entre outros.

Outro aspecto importante é a definição das features (atributos), que são valores numéricos

extráıdos dos dados e fornecidos aos modelos para que estes façam suas tarefas. No caso de
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curvas de luz, esses atributos podem representar propriedades como amplitude, periodici-

dade e brilho médio. A escolha desses valores é fundamental, já que influencia diretamente

a performance dos modelos.

2.2.3 Modelos utilizados neste trabalho

Neste trabalho, foram empregados diferentes algoritmos de aprendizado de máquina

supervisionado, sendo eles:

• Random Forest (RF, Breiman 2001): algoritmo baseado em um conjunto de árvores

de decisão, constrúıdas de forma aleatória. Cada árvore contribui com um “voto”, e

a resposta final é dada pela maioria.

• k-Nearest Neighbors (KNN, Cover e Hart 1967): classifica um novo dado com base

nos rótulos dos k dados mais próximos (em termos de distância) no espaço de atri-

butos.

• Support Vector Machine (SVM, Cortes e Vapnik 1995): encontra uma superf́ıcie que

melhor separa as classes no espaço de atributos. Pode usar funções kernel2 para fazer

separações mais complexas.

• Multi-Layer Perceptron (MLP, David E. Rumelhart 1986): uma rede neural artificial

com várias camadas.

• eXtreme Gradient Boosting (XGBoost, Chen e Guestrin 2016): algoritmo também

baseado em árvores, construindo-as de forma sequencial, com cada nova árvore cor-

rigindo os erros da anterior (método de boosting).

• Convolutional Neural Network (CNN, O’Shea e Nash 2015): classe de rede neural que

processa diretamente imagens (ou dados em grade), em vez de medidas numéricas

isoladas (como no caso dos outros modelos acima, chamados daqui em diante de

modelos clássicos ou tradicionais). Pode ser constrúıda com diferentes tipos e ordens

de camadas, com cada uma aplicando operações diferentes nos dados.

2 Kernel: função que transforma os dados para um espaço de dimensão maior onde a separação entre

classes torna-se linear.
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2.2.4 Métricas de avaliação

Uma vez treinado, o modelo precisa ser avaliado de forma objetiva. Para tarefas su-

pervisionadas de classificação, podemos utilizar as seguintes métricas bem estabelecidas de

classificação multiclasse (Powers 2020):

• Acurácia: mede a proporção de previsões corretas em relação ao total de exemplos.

• Precisão: indica a fração de exemplos classificados como positivos que realmente

pertencem à classe. No contexto deste trabalho, entre todas as vezes que o modelo

disse que uma estrela é Be, esta métrica mede quantas realmente são.

• Revocação: em inglês recall, mede a fração de exemplos positivos corretamente iden-

tificados. Isto é, entre todas as estrelas Be da base, quantas foram reconhecidas como

tais pelo modelo. Essa métrica é relevante quando o objetivo é não deixar escapar

objetos de interesse, como é o caso neste trabalho.

• F1-score: corresponde a uma média equilibrada entre precisão e revocação.

2.2.5 Redução de dimensionalidade

Em muitos casos, técnicas de redução de dimensionalidade, como a análise de com-

ponentes principais (PCA, do inglês Principal Component Analysis), são aplicadas para

visualizar e interpretar o comportamento dos dados em espaços de menor dimensão, faci-

litando o entendimento dos resultados obtidos.

Nesse método, as novas “componentes principais” são combinações lineares das features

originais, constrúıdas para tentar capturar as direções onde há a maior variância posśıvel

dos dados. Como cada componente explica uma fração espećıfica da variância total, isso

permite identificar quais direções no espaço de atributos concentram mais informação re-

levante para o problema.
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Caṕıtulo 3

Metodologia

Neste caṕıtulo, são detalhadas as etapas metodológicas empregadas para aplicar as

técnicas de ML ao problema de classificação fotométrica de estrelas Be. Devido à natu-

reza distinta dos dados de entrada utilizados pela CNN em comparação com os demais

algoritmos, as seções subsequentes são organizadas de forma separada: uma dedicada aos

modelos tradicionais, e outra à CNN.

3.1 Modelos tradicionais

3.1.1 Organização e tratamento dos dados

O ponto de partida deste trabalho foi um conjunto de cerca de 3000 curvas de luz

provenientes do levantamento fotométrico OGLE, previamente tratadas e analisadas visu-

almente por Figueiredo et al. (2025). Diferentemente de um banco já classificado, essas

curvas não possúıam rótulos diretos de classificação como estrelas Be ou não, mas possúıam

as seguintes informações, identificadas visualmente por Figueiredo et al. (2025):

• “Metadados” correspondentes a comportamentos fotométricos espećıficos: com base

nas caracteŕısticas visuais da curva, Figueiredo et al. (2025) atribuiu múltiplas letras

a cada curva, com cada letra correspondendo a um comportamento observado:

i. “a” = presença de atividade identificada;

ii. “r” = atividade recorrente identificada (periodicidade);

iii. “m” = evento isolado identificado;

iv. “b” = linha de base identificada;

v. “n” = estrela descartada (não-Be) por análise de cor.
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• Orientação do sistema: as curvas já estavam classificadas com orientação pole-on,

edge-on ou indeterminado (unclear).

Com base nessas informações, foi posśıvel separar o conjunto em estrelas rotuladas como

candidatas a Be ou não candidatas, o que era necessário para tornar o problema tratável

como uma tarefa de aprendizado supervisionado. As estrelas candidatas a Be foram defi-

nidas como aquelas que, concomitantemente: não foram descartadas por cor (isto é, não

possúıam o metadado “n”), apresentavam orientação bem definida (pole-on ou edge-on,

pois parte da análise de Figueiredo et al. (2025) dependia desta informação), e exibiam ao

menos um metadado indicativo de atividade (“a”, “r”, “m” ou “b”). As demais curvas,

incluindo aquelas com orientação indeterminada ou sem ind́ıcios de atividade clássica de

estrelas Be, foram agrupadas na classe não Be.

Após esta etapa, foram obtidos então dois subconjuntos a partir da amostra original:

um contendo as estrelas candidatas a Be (com rótulo igual a 1) e outro representando a

classe não Be (com rótulo igual a 0), composta por objetos de variabilidade diversa.

3.1.2 Seleção e normalização de atributos (features)

Com os rótulos estabelecidos, o próximo passo consistiu em escolher, para representar

cada curva de luz, um conjunto de atributos numéricos que fossem capazes de descrever sua

variabilidade. Essa seleção foi baseada em intuições f́ısicas relacionadas à variabilidade de

estrelas Be, e também buscando maximizar o desempenho dos modelos de forma emṕırica.

Inicialmente, buscou-se empregar métricas já consolidadas na literatura de variabilidade

estelar, seguindo outros trabalhos que já lidaram com o problema de classificação super-

visionada em estrelas Be e variáveis no geral, como Pérez-Ortiz et al. (2017) e Debosscher

et al. (2007). Destes trabalhos, foram aproveitadas as métricas:

• Estat́ısticas descritivas básicas: mediana e desvio absoluto mediano (MAD), para

medidas da amplitude e dispersão da magnitude;

• Correlação fotométrica: ı́ndices Stetson J3 e K4, para medidas de similaridade

entre observações sucessivas.

3 Índice de Stetson J : mede a correlação temporal entre variações simultâneas em duas bandas fo-

tométricas.
4 Índice de Stetson K: descreve a distribuição (curtose) das variações de magnitude normalizadas.
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• Forma da distribuição: Octile Skewness (OS) e Left/Right Octile Weight (LOW

e ROW), para medidas de assimetria da curva de luz;

Além dessas features aproveitadas da literatura, foi desejado incorporar outros valores

que trouxessem informações sobre a variabilidade em função do tempo. Por isso, primeiro,

foi adaptado o conceito de variograma, bastante utilizado em geof́ısica e geoestat́ıstica,

substituindo o domı́nio espacial para o domı́nio temporal das curvas de luz. Essa adaptação

já foi feita em trabalhos como Eyer e Genton (1999), seguindo a estimativa de variograma

feita no livro de geoestat́ıstica Matheron (1962).

Adicionalmente, foi incorporada uma análise no espaço de frequências por meio do peri-

odograma de Lomb-Scargle (Lomb 1976, Scargle 1982), que é comumente empregado para

detectar periodicidades em séries temporais irregulares. Entre os parâmetros derivados,

foram considerados, como atributos para os modelos, a frequência correspondente ao maior

pico de amplitude e o valor da amplitude nesse pico.

Para normalizar os atributos, foi utilizada a função StandardScalar() da biblioteca

em Python scikit-learn (Pedregosa et al. 2011). Todos os atributos foram normalizados

de forma a seguir uma distribuição normal padrão, com média igual a zero e desvio padrão

igual a um. Isto foi feito pois garante um melhor funcionamento para os algoritmos basea-

dos em escala/distância (como o KNN e SVM), além de otimizar e melhorar a convergência

de algoritmos baseados em gradiente (como o XGBoost e MLP).

Uma PCA dos dados no espaço das features escolhidas foi feita para avaliar a capacidade

de separação entre as classes (candidatas a Be e não-Be) neste espaço — isto é, para verificar

se os atributos selecionados são eficazes para discriminar entre os dois grupos.

3.1.3 Treinamento dos modelos

Com as features extráıdas e normalizadas, é posśıvel aplicar, então, os modelos de

aprendizado de máquina ao problema de classificação de estrelas Be. Nesta etapa, foram

testados os cinco algoritmos clássicos de aprendizado supervisionado apresentados na Seção

2.2.3: RF, XGBoost, KNN, SVM e MLP, cada um representando um paradigma diferente

de aprendizado supervisionado.

Os modelos foram treinados utilizando o conjunto rotulado descrito anteriormente, com

uma divisão de 80% dos dados para treinamento e 20% para teste, de forma aleatorizada.

Ademais, a otimização dos hiperparâmetros de cada modelo foi realizada utilizando o
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método GridSearchCV novamente da biblioteca scikit-learn, que testa diferentes com-

binações de parâmetros e avalia o desempenho com validação cruzada.

3.1.4 Métricas e estratégias de avaliação

A avaliação do desempenho de cada modelo supervisionado foi conduzida com base em

métricas de classificação binária, obtidas a partir da matriz de confusão5 dos modelos. As

métricas utilizadas foram acurácia, precisão, revocação e F1-score, descritas na Subseção

2.2.4.

Além da avaliação de desempenho para cada modelo, também foi analisada a im-

portância relativa das features empregadas, estimada pelo método de importância por

permutação. Nesse método, o valor de uma única feature é aleatoriamente embaralhado,

sem alterar o restante dos dados. A redução consequente na acurácia do modelo é usada

como medida da relevância do atributo em questão para a classificação dos modelos.

A metodologia descrita até aqui diz respeito aos modelos tradicionais, que operam sobre

os atributos numéricos definidos. Além disso, também foi desenvolvida uma abordagem

paralela baseada em redes neurais convolucionais (CNNs), que atuam diretamente nos

gráficos (imagens) de magnitude por tempo das curvas de luz. As especificidades dessa

segunda estratégia são abordadas na Seção 3.2.

3.2 Rede neural convolucional (CNN)

3.2.1 Preparação do conjunto de imagens

A primeira etapa correspondeu à geração de imagens, para servir de entrada ao modelo.

Para isso, foram gerados gráficos de magnitude por tempo na banda I do OGLE, devido à

sua maior cadência observacional. Todas as curvas foram representadas na mesma escala

temporal, correspondente às fases observacionais do levantamento OGLE. A grande maioria

das curvas inclúıdas no conjunto possui observações em todas essas fases, e por isso essa

uniformização no eixo das abscissas não resultou em perda significativa de informação.

As imagens foram geradas em preto e branco, e sem eixos e rótulos, mas foram inclúıdas

5 Matriz de confusão: visualização em tabela que avalia o desempenho de um modelo de classificação,

mostrando a contagem de Verdadeiros Positivos (TP), Falsos Positivos (FP), Verdadeiros Negativos (TN)

e Falsos Negativos (FN).
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Figura 3.1: Exemplo de curva de luz processada para os modelos de CNN. A imagem foi gerada com

resolução reduzida, em preto e branco, sem eixos ou rótulos, e com marcações horizontais a cada 0,1 mag

no eixo y como referência visual da escala de variação.

pequenas marcações horizontais a cada 0.1 mag no eixo das ordenadas, para que o modelo

tivesse uma referência visual da escala de variação de brilho. A escala de magnitude

foi distinta para cada curva, correspondendo aos valores entre o máximo e mı́nimo de

magnitude para cada estrela. Neste caso, o modelo foi guiado pelas variações de magnitude,

e não pelos valores absolutos.

Foram testadas diferentes resoluções de imagem, variando o tamanho f́ısico e a den-

sidade de pixels (parâmetros “figsize” e “dpi” da biblioteca matplotlib, Hunter 2007).

Observou-se empiricamente que o aumento da resolução elevava consideravelmente o tempo

de treinamento, o que faz sentido, pois implica em um número maior de parâmetros a se-

rem ajustados na camada linear/densa da rede neural. Por exemplo, imagens três vezes

maiores resultam em aproximadamente nove vezes mais pesos a serem otimizados, o que

acarreta em um tempo de execução e custo computacional proporcionalmente maiores. Por

isso, optou-se pela menor resolução posśıvel das imagens, mas que ainda proporcionasse

um bom desempenho dos modelos. Um exemplo de imagem utilizada está dispońıvel na

Figura 3.1.

Para fornecer os dados como entrada aos modelos, as imagens finais foram convertidas

em valores de cor (na escala de cinza, com 0 correspondendo a um pixel completamente

branco, e 1 a um completamente preto) — isto é, cada imagem foi convertida em uma

matriz na qual cada elemento correspondia ao valor de cor de um pixel — utilizando a

função imread da biblioteca scikit-image (Pedregosa et al. 2011).

Cada imagem foi então associada ao seu respectivo rótulo: 0 para estrelas não Be e 1
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para candidatas a Be, de forma similar ao que foi feito para os modelos tradicionais. Os

dados foram separados aleatoriamente em 70% para treinamento, 20% para validação e

10% para teste.

3.2.2 Arquitetura da rede

A arquitetura da rede foi definida a partir de experimentação prática e inspirada em

trabalhos recentes que também aplicaram redes convolucionais a curvas de luz do OGLE,

como Monsalves et al. (2024).

A rede proposta consiste em duas camadas convolucionais6 (com respectivamente 8 e 16

filtros e tamanho de kernel igual a 3), alternadas por uma camada de max-pooling7 (com

janela 2x2 e passo 2), e seguida por uma camada totalmente conectada8 (linear). Cada

convolução foi seguida por uma função de ativação ReLU9, para introduzir não linearidade

na rede, e a sáıda final é obtida por uma função sigmoide10, para garantir que a previsão

final do modelo seja um valor entre 0 e 1. Os valores obtidos são então arredondados para

0 ou 1, correspondendo à classificação final da rede.

3.2.3 Treinamento do modelo, ajuste de hiperparâmetros e avaliação

O treinamento foi realizado com batch size11 igual a 50 e diferentes valores de taxa de

aprendizado (learning rate)12, explorados em uma grade de valores. Para cada combinação,

o modelo foi treinado até atingir um critério de parada por detecção de platô: o treinamento

era interrompido caso a função de perda não apresentasse melhora no conjunto de validação

após três épocas13 consecutivas. O número máximo de épocas foi fixado em 1000, mas todos

os modelos convergiram antes desse limite. Com isso, a taxa de aprendizado e o número

de épocas para o modelo foram ajustados empiricamente, de forma a buscar a combinação

6 Camada convolucional: usando operações matriciais, aplica filtros (kernels) sobre diferentes regiões

da imagem para extrair caracteŕısticas locais.
7 Camada de pooling : camada que reduz a dimensionalidade espacial da representação.
8 Camada totalmente conectada: camada que gera a classificação final.
9 Função de ativação ReLU: retorna o valor de entrada se for positivo, e zero caso contrário.

10 Função de ativação sigmoide: transforma qualquer valor em um número entre 0 e 1. Valores próximos

de 0 ou 1 indicam maior confiança na classificação.
11 Batch size: tamanho do subconjunto de dados usado em cada iteração de treinamento.
12 Taxa de aprendizado (learning rate): tamanho do passo a cada iteração de treinamento.
13 Época: corresponde a uma iteração do modelo pelo conjunto de treino.
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que gerasse melhor desempenho.

O desempenho da CNN foi avaliado utilizando as mesmas métricas descritas na Seção

3: acurácia, precisão, revocação e F1-score.

3.2.4 Extensão da CNN para classificação de orientação das estrelas

Com o desenvolvimento do trabalho, buscou-se também investigar se uma rede neural

convolucional seria capaz de estimar não apenas a classificação entre Be e não Be, mas

também a orientação das estrelas Be (Figueiredo et al. 2025) em dois regimes distintos:

pole-on (que cobre um grande intervalo de ângulos entre aproximadamente 0◦ e 60◦) e

edge-on (que cobre ângulos entre 80◦ e 90◦). Essa informação é bastante relevante, já que

a inclinação do sistema em relação à linha de visada altera consideravelmente a aparência

fotométrica das curvas. Esse tipo de análise também abre espaço para estudos posteriores,

como estimativas de outras caracteŕısticas das estrelas, juntamente à classificação binária.

Para testar essa possibilidade, foi desenvolvida uma segunda rede convolucional, utili-

zando as mesmas imagens de entrada descritas anteriormente, mas com uma nova confi-

guração de rótulos: 0 para estrela não Be, 1 para estrela Be com orientação pole-on, e 2

para estrela Be com orientação edge-on.

Essa abordagem conjunta foi escolhida por dois motivos principais. Primeiro, as classi-

ficações de orientação não são independentes da classificação Be/não-Be: o procedimento

de Figueiredo et al. (2025), que permitiu a determinação visual da orientação, só pode

ser aplicado às estrelas já identificadas como Be. Segundo, a subrepresentação de estrelas

edge-on no conjunto original (correspondendo a apenas cerca de 10% dos dados) torna-

ria inviável treinar uma rede dedicada exclusivamente à estimativa de orientação, pois o

modelo não teria exemplos suficientes para aprender adequadamente essa caracteŕıstica.

O processo de treinamento, avaliação e a arquitetura base permaneceram os mesmos,

mas foram feitas modificações na camada de sáıda e na função de ativação final. A função

sigmoide, utilizada na versão binária, foi substitúıda por uma função softmax 14. Com essa

mudança, a camada de sáıda, que na rede anterior produzia um escalar (correspondente à

probabilidade de ser Be), passou a gerar um vetor no qual cada elemento corresponde à

probabilidade da curva de luz pertencer a uma das classes definidas anteriormente.

14 Função de ativação softmax : transforma a sáıda da camada linear em um vetor de probabilidades

normalizadas entre 0 e 1, cuja soma é igual a 1. Usada para problemas multiclasse.
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Caṕıtulo 4

Resultados e Discussão

O desenvolvimento da metodologia descrita no Caṕıtulo 3 foi, por si só, um dos prin-

cipais resultados do trabalho. O pipeline completo usado (desde a rotulagem, seleção de

atributos, otimização dos modelos e desenvolvimento de ambas as CNNs) é uma estrutura

metodológica que pode ser aprimorada e reutilizada em futuras aplicações, particularmente

em outros levantamentos (salvo ajustes necessários), como o LSST. No presente caṕıtulo,

são apresentados e discutidos os resultados obtidos a partir de sua aplicação.

4.1 Modelos tradicionais

Os modelos tradicionais de aprendizado supervisionado apresentaram desempenhos

consistentes na tarefa de classificação entre estrelas candidatas a Be e não Be com da-

dos do OGLE. As métricas médias obtidas para os diferentes algoritmos testados (RF,

XGBoost, KNN, SVM e MLP) estão resumidas na Tabela 4.1.

Tabela 4.1 - Desempenho dos modelos tradicionais de aprendizado supervisionado.

Algoritmo Acurácia Precisão Revocação F1-score

RF 0.86 0.85 0.93 0.89

XGBoost 0.85 0.86 0.92 0.89

KNN 0.84 0.85 0.90 0.87

SVM 0.81 0.84 0.85 0.85

MLP 0.85 0.85 0.92 0.88

Os resultados indicam um desempenho geral bom entre os modelos testados, com va-

lores de F1-score entre 0.85 e 0.89. Ademais, os classificadores baseados em conjuntos

de árvores, mais especificamente RF e XGBoost apresentaram os melhores resultados em
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Figura 4.1: Matriz de confusão do modelo Random Forest (RF) para a classificação binária. As classes

0 e 1 representam as categorias analisadas, com 0 sendo não Be e 1 sendo Be. Valores na diagonal

principal (149 e 236) correspondem às previsões corretas (verdadeiros negativos e verdadeiros positivos,

respectivamente); já os valores na diagonal secundária (47 e 17) representam os erros de classificação (falsos

positivos e falsos negativos, respectivamente).

média, com os maiores valores de revocação e F1-score.

Os valores elevados de revocação (≥ 0.85) mostram que os modelos são capazes de iden-

tificar eficientemente as estrelas Be presentes em nosso conjunto de dados. Em particular,

a matriz de confusão do modelo RF (que obteve o melhor desempenho geral), dispońıvel

na Figura 4.1, contém 236 verdadeiros positivos (TP) e apenas 17 falsos negativos (FN),

o que mostra que o modelo recupera a maior parte das estrelas candidatas a Be. Isso é

muito bom, pois, quando se lida com objetos raros como no caso deste trabalho, é im-

portante minimizar a quantidade de objetos descartados (FN), mesmo que seja necessário

fazer uma análise posterior para descartar objetos adicionais que foram classificados como

Be erroneamente. Neste sentido, foram obtidos 149 verdadeiros negativos (TN) e 47 falsos

positivos (FP), mostrando que o algoritmo tende a classificar algumas estrelas não Be como

candidatas a Be, mas mantém uma taxa de erro aceitável.

Uma vez que o desempenho de todos os modelos foi muito similar, acredita-se que a

etapa de escolha de atributos seja mais importante do que a escolha dos algoritmos em

si para este problema espećıfico de classificação. A importância relativa das features foi
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Figura 4.2: Importância das features calculada por permutação para o modelo Random Forest (RF). O

eixo vertical representa a diminuição média na acurácia do modelo quando cada atributo é embaralhado,

e as barras pretas correspondem ao erro.

avaliada por meio do método de permutação no modelo Random Forest. Os resultados

(Figura 4.2) mostraram que as métricas com maior impacto na acurácia do modelo foram,

em ordem decrescente de importância, o variograma em y (na escala de magnitude), seguido

pelo ı́ndice de Stetson J e o variograma em x (na escala temporal). Além disso, também

foi realizada uma análise exploratória por PCA, utilizando as features normalizadas. Os

resultados indicaram que as três primeiras componentes principais concentraram cerca de

60% da variância total dos dados, com maior contribuição dos variogramas e do ı́ndice

Stetson J nas componentes, o que reforça suas importâncias já observadas na análise de

permutação.

Esses resultados evidenciam aspectos relevantes, ainda mais quando se considera o

procedimento de classificação feito por humanos. As métricas de variograma em y e x e o

ı́ndice de Stetson J são as únicas dentre as utilizadas que possuem informação temporal

expĺıcita sobre a curva de luz: o variograma em y e x medem, respectivamente, quantidades

relacionadas à maior variação em magnitude e sua escala de tempo, e o ı́ndice Stetson J

tem relação com a correlação entre observações sucessivas (no tempo). Como humanos

especializados na tarefa de identificar estrelas Be a partir de suas curvas de luz também

utilizam a dinâmica temporal das variações em suas análises, é natural que as features que
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incorporem essa informação sejam muito importantes para os classificadores automáticos.

Vale comentar que, enquanto o ı́ndice Stetson J capta a correlação temporal entre

medidas consecutivas, o StetsonK descreve apenas a forma da distribuição das magnitudes

(sem informação temporal). Sabendo disso, também é coerente que o Stetson J tenha se

mostrado muito mais relevante que o Stetson K para os modelos.

Surpreendentemente, os atributos derivados a partir do periodograma de Lomb-Scargle

não foram muito úteis para a classificação dos modelos. Isso pode, no entanto, simples-

mente significar que os atributos escolhidos não foram as melhores opções no espaço de

frequências, e não necessariamente que informações de frequência não são discriminantes.

Novos atributos, baseados em técnicas mais refinadas como a análise de wavelets15, podem

ser testados no futuro.

As demais métricas (mediana, MAD, OS, LOW e ROW) apresentaram contribuições

menores, o que também era esperado, por serem medidas puramente estat́ısticas e mais

genéricas. Vale destacar que a LOW apresentou uma importância relativamente maior que

as demais, e ela mede variações assimétricas nas regiões mais brilhantes das curvas. Isso

pode significar, por exemplo, que essa métrica consiga capturar indiretamente a presença

de eventos de ejeção de massa, que levam à formação dos discos em estrelas Be.

Em śıntese, os resultados obtidos indicam que a chave para uma classificação eficaz

de estrelas Be reside principalmente na definição de features fisicamente significativas.

Direções futuras promissoras incluem a introdução de ainda mais atributos que capturem a

dinâmica temporal, e de mais atributos no espaço de frequência, que foi pouco investigado.

4.2 Redes neurais convolucionais (CNNs)

4.2.1 CNN de classificação binária

Na tarefa binária, o objetivo era diferenciar estrelas candidatas a Be de não Be com base

nas imagens das curvas de luz. Para analisar o comportamento do treinamento, as curvas

da função de perda (loss) ao longo das épocas foram comparadas para diferentes taxas de

aprendizado. Com isso, notou-se que (como pode ser visto na Figura 4.3), quando a taxa de

aprendizado usada era muito alta, a curva de perda exibiu um comportamento irregular,

oscilando muito e sem convergir. Isso aconteceu pois os ajustes dos pesos no modelo

15 Análise de wavelets: fornece uma representação tempo-frequência dos sinais.
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Figura 4.3: Curvas de perda por época para diferentes taxas de aprendizado para a CNN binária. À

esquerda, o modelo com taxa de aprendizado = 0.001 apresentou comportamento muito errático e dificul-

dade de convergência na função de perda, especialmente na etapa de validação. À direita, com taxa de

aprendizado = 0.00001, a curva é notavelmente mais suave e converge melhor. A diferença de épocas se

deve pelo critério de convergência usado.

estavam sendo realizados em passos muito grandes, de forma que, a cada nova iteração de

treinamento, o modelo sobrecorrigia os erros da iteração anterior, e isso impedia a rede de

se estabilizar em um mı́nimo da função de custo. Em contrapartida, taxas de aprendizado

mais baixas levaram a curvas de perda mais suaves e convergentes, que se estabilizaram

em valores baixos de função de perda após algumas dezenas de épocas.

As métricas obtidas para o modelo binário final estão dispońıveis na Tabela 4.2.

Tabela 4.2 - Desempenho da rede neural convolucional binária.

Algoritmo Acurácia Precisão Revocação F1-score

CNN binária 0.88 0.87 0.94 0.90

Os valores obtidos para a CNN binária são comparáveis, e até superiores, aos resultados

obtidos com os modelos tradicionais, indicando que a CNN consegue bom desempenho

mesmo sem a necessidade de criar features numéricas que descrevam as curvas de luz. Por

outro lado, esse modelo demanda maior tempo de treinamento e recursos computacionais

mais intensivos, o que deve ser levado em conta na escolha do algoritmo.
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Figura 4.4: Acurácia por classe do modelo CNN multiclasse (classe 0: não-Be, classe 1: Be pole-on, classe

2: Be edge-on). À esquerda, o modelo sem pesos na função de perda gerou acurácia zero para classe 2 (Be

edge-on) devido ao desbalanceamento do conjunto de dados. Já à direita, o modelo com pesos fez com que

a acurácia da classe 2 aumentasse para aproximadamente 60%, com perda parcial de acurácia na classe 1.

4.2.2 CNN de classificação multiclasse

Após o bom desempenho no problema binário, a CNN foi adaptada para uma tarefa

mais complexa: distinguir entre três classes — não Be (0), Be pole-on (1) e Be edge-on

(2). Este foi um estudo exploratório para checar se o modelo seria capaz de inferir, além

da classificação em Be ou não Be, a orientação das estrelas, já que esta muda a morfologia

das curvas de luz.

Inicialmente, o modelo utilizava a função de perda Cross Entropy16 padrão, como foi

feito na outra rede, para avaliar sua predição. No entanto, devido ao forte desbalancea-

mento entre as classes (no conjunto de dados dispońıvel, 1639 objetos eram classificados

como pole-on, e apenas 112 como edge-on), a rede aprendeu a favorecer a classe mais

numerosa, classificando todas as curvas Be, sem exceção, como pole-on. Nesse estágio, a

acurácia da classe pole-on chegava a cerca de 90%, mas a classe edge-on obtinha acurácia

nula (0%), como pode ser visto no painel esquerdo da Figura 4.4.

Para contornar esse problema, foram introduzidos pesos na função de perda, penali-

zando mais fortemente erros na classe com menos membros, a de estrelas Be com orientação

edge-on. Essa modificação reduziu o desempenho do modelo na classe pole-on, mas au-

mentou consideravelmente o reconhecimento da classe edge-on, cuja acurácia passou de

16 Cross Entropy: Função de perda que mede a dissimilaridade entre distribuições de probabilidade.

Pode ser usada tanto em casos binários quanto multiclasse.
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0% para acima de 60%. Como resultado, a acurácia média global ficou em torno de 71%,

como pode ser visto no painel direito da Figura 4.4, e na Tabela 4.3 relativa às métricas

de avaliação deste modelo.

Tabela 4.3 - Desempenho da rede neural convolucional multiclasse (que também estima a orientação).

Algoritmo Acurácia Precisão Revocação F1-score

CNN multiclasse 0.71 0.63 0.71 0.63

Embora os valores para este modelo seja inferiores aos obtidos nos demais modelos,

esse resultado ainda mostra, de certa forma, que há informação suficiente nas curvas para

distinguir diferentes orientações, mesmo que de forma limitada pelo tamanho pequeno e

falta de equiĺıbrio do conjunto de dados. Para se obter melhores resultados, provavelmente

será necessário utilizar um conjunto de dados maior e mais balanceado.

Assim, é observado que, mesmo com uma arquitetura simples e um conjunto de da-

dos “não ideal”, ambas redes neurais conseguiram identificar padrões morfológicos nas

curvas de luz de estrelas Be, além de resultados medianos no problema de determinação

da orientação do sistema. O desempenho obtido pode ser interpretado como um estudo

exploratório promissor, e estudos futuros em conjuntos maiores, com distribuição mais

equilibrada de classes e que eventualmente usem arquiteturas mais profundas ou otimiza-

das para o problema certamente trarão resultados ainda mais positivos.

4.3 Discussão sobre o conjunto de dados e limitações metodológicas

Os resultados obtidos devem ser interpretados levando em conta as caracteŕısticas do

conjunto de dados utilizado. A amostra original, derivada de Figueiredo et al. (2025),

contém aproximadamente 3000 curvas de luz, das quais uma grande fração foi rotulada

como candidata a estrela Be. Essa composição significa que o conjunto é fortemente super-

representado em estrelas Be, quando comparado à frequência real desse tipo de estrela na

natureza. Isso ocorre, em partes, por um viés de seleção: boa parte das estrelas seleciona-

das por Figueiredo et al. (2025) apresentava comportamento fotométrico compat́ıvel com

estrelas desse tipo, justamente porque os autores estavam buscando candidatas a Be.

Esse viés de seleção é importante de se considerar, porque faz com que o conjunto

de “não-Be” provavelmente não represente toda a diversidade de variáveis presentes em
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catálogos reais. Em outras palavras, o modelo pode estar aprendendo a diferenciar estrelas

Be de estrelas “não-Be, mas parecidas com Be” (ou talvez outra diferenciação mais simples

do que o problema real), e não de um conjunto de fato heterogêneo de estrelas variáveis.

Neste caso, o modelo atual provavelmente teria um desempenho inferior se aplicado a outro

conjunto independente, com expressões de variabilidade mais diversas e complexas.

Por isso, para estudos futuros, seria importante analisar com mais cuidado as curvas não

Be do conjunto atual: como é posśıvel que elas incluam apenas alguns tipos de variáveis, ou

muitas não variáveis, o ideal seria ampliar essa parte da amostra, incorporando mais tipos

de variabilidade, tornando a classificação mais realista e os modelos mais generalizáveis.

Outra limitação está relacionada à natureza dos rótulos, que são definidos por inspeção

visual e por isso sujeitos a vieses. Como algumas curvas podem ter interpretações amb́ıguas

mesmo entre especialistas, é posśıvel que o desempenho dos modelos esteja parcialmente

limitado pela qualidade e subjetividade dos rótulos, e por isso nenhum modelo alcance

acurácia na casa dos 90%. Para aplicações futuras, seria interessante aprimorar o modelo

com classificações visuais feitas por diferentes avaliadores, para minimizar posśıveis erros.

Alternativamente, uma abordagem independente seria partir de uma amostra bem conhe-

cida de estrelas Be (por exemplo, identificadas por espectroscopia), combinada de forma

balanceada a outras classes de variáveis da literatura, minimizando os vieses menciona-

dos. Uma fonte potencial é o catálogo de Be de Tan et al. (2025), que aplicaram redes

neurais profundas a espectros do Data Release 11 do Large Sky Area Multi-Object Fiber

Spectroscopic Telescope (LAMOST) para identificar milhares de candidatas a Be.

Outro ponto importante a se considerar é que, conforme mostrado na análise de im-

portância por permutação, as features mais relevantes para a classificação foram justamente

aquelas que carregam informação temporal. Isso reforça a importância da variabilidade no

tempo para o desempenho dos modelos, mas também sugere que eles podem estar senśıveis

à forma como o levantamento OGLE amostra o tempo — à sua cadência e distribuição

de observações. Se o modelo estiver muito senśıvel a essas caracteŕısticas, ele pode ter

dificuldade para generalizar para outros levantamentos, como o LSST. Isso deve testado

futuramente, aplicando o modelo a conjuntos independentes e de levantamentos distintos.

Por fim, como todas as avaliações foram feitas por validação cruzada dentro do próprio

conjunto de dados original, um passo importante, em trabalhos futuros, é realizar va-

lidações externas, em bases de outros levantamentos ou em conjuntos independentes deste.
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Conclusões

O presente trabalho apresentou o desenvolvimento e a aplicação de diferentes aborda-

gens de aprendizado supervisionado para a identificação fotométrica de estrelas Be, utili-

zando curvas de luz do levantamento OGLE, classificadas manualmente entre candidatas a

Be ou não por Figueiredo et al. (2025). Para além da comparação de modelos, o principal

foco do trabalho foi na construção e validação de uma metodologia robusta, que pudesse

ser aplicada futuramente em levantamentos fotométricos massivos, como o LSST.

Os modelos tradicionais (RF, XGBoost, KNN, SVM e MLP) apresentaram desempe-

nhos semelhantes, com valores de F1-score entre 0.85 e 0.89. O melhor modelo tradicional

obteve acurácia de 86%. Ademais, a pequena variação entre algoritmos indicou que o

sucesso dos modelos no problema de classificação depende mais da qualidade e represen-

tatividade dos atributos numéricos usados, do que da escolha espećıfica do classificador.

As features mais relevantes, segundo análise de importância por permutação, foram os

variogramas (que trazem informação sobre a maior variação em magnitude e sua escala

de tempo) e o ı́ndice de Stetson J, que também traz informações sobre a dinâmica tempo-

ral das curvas. Esse resultado reforça que a variabilidade ao longo do tempo é um fator

discriminante muito importante entre estrelas Be e não Be.

A rede neural convolucional (CNN), por sua vez, demonstrou que é posśıvel que um

modelo aprenda a diferenciar as estrelas diretamente das curvas de luz transformadas em

imagens, ainda alcançando métricas comparáveis, e neste caso até levemente superiores,

às dos modelos baseados em atributos. O modelo binário final, com hiperparâmetros

ajustados por análise da curva de perda, obteve acurácia de 88%. Já na classificação

multiclasse (que tinha objetivo de distinguir não só se uma curva de luz era Be ou não Be,

mas também trazer informações sobre a orientação das estrelas Be), a inclusão de pesos na
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função de perda permitiu à CNN distinguir parcialmente as orientações pole-on e edge-on,

atingindo acurácia média de 71%. Esse desempenho, embora inferior ao da tarefa binária,

já era esperado pelo desbalanceamento do conjunto de dados e pela maior complexidade

do problema. Apesar disso, já representa um passo inicial em direção a modelos capazes

de não só classificar as estrelas, mas possivelmente também estimar propriedades f́ısicas.

De forma geral, o trabalho mostrou que, para modelos baseados em valores numéricos,

a incorporação de informações temporais é crucial para a identificação de estrelas Be. Já

para modelos baseados em imagens, a abordagem usando CNN confirmou que a morfologia

visual das curvas de luz por si só contém padrões discriminativos suficientes para uma boa

classificação, sem necessitar de uma etapa de seleção de features.

Como perspectivas futuras, pretende-se aplicar a metodologia desenvolvida a conjuntos

de dados maiores e mais balanceados, incluindo possivelmente levantamentos como ASAS

e KELT, mais dados do levantamento OGLE, e especialmente o Legacy Survey of Space

and Time (LSST), do Observatório Vera C. Rubin. O grupo de pesquisa ao qual este

trabalho está vinculado possui direitos de acesso aos dados do Rubin Observatory, o que

possibilitará a utilização dos conjuntos de dados do LSST em fases futuras do projeto,

quando houver cobertura temporal suficiente.

No âmbito da pós-graduação, pretende-se dar continuidade a essa linha de pesquisa,

desenvolvendo novos projetos que apliquem técnicas de aprendizado de máquina e inte-

ligência artificial a diferentes aspectos do estudo das estrelas Be, tanto em modelos de

classificação (como este), quanto possivelmente em modelos de ML de regressão, para esti-

mativa de parâmetros f́ısicos dessas estrelas. Entre os objetivos principais futuros, tem-se

a criação de um modelo automatizado de identificação de estrelas Be em dados do LSST,

capaz de operar sobre o grande volume de dados produzidos por esse levantamento, como

extensão do trabalho feito aqui.

Assim, este estudo marca o ińıcio de um programa de pesquisa de longo prazo, a ser

desenvolvido ao longo dos próximos anos na pós-graduação. A metodologia estabelecida

oferece uma base para o desenvolvimento de novas aplicações, especialmente para trabalhos

de identificação de novas estrelas Be em levantamentos de larga escala.

“Embora a máquina aprenda, quem ensina

e interpreta continua sendo o humano.”
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