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“There is no problem in science that can be

solved by a man that cannot be solved by a woman.”

Vera Rubin






Resumo

Estrelas Be sao objetos astrofisicos caracterizados pela presenca transitéria de um disco
circunstelar gasoso, que produz linhas de emissao no espectro e padroes complexos de va-
riabilidade fotométrica. Tradicionalmente, sua identificagao depende de espectroscopia,
o que limita sua detecgao em grandes surveys. Com o crescimento de levantamentos fo-
tométricos massivos, como o Legacy Survey of Space and Time (LSST), conduzido pelo
Vera C. Rubin Observatory, torna-se necessario desenvolver métodos automatizados para
classificar essas estrelas com base em curvas de luz.

Neste trabalho ¢ investigado o uso de aprendizado de maquina supervisionado para essa
tarefa, utilizando curvas de luz do Optical Gravitational Lensing Experiment (OGLE), ro-
tuladas manualmente por [Figueiredo et al.| (2025). Foram aplicados modelos tradicionais
(Random Forest, eXtreme Gradient Boosting, k-Nearest Neighbors, Support Vector Machine
e MultiLayer Perceptron) que usam valores numéricos, além de redes neurais convolucionais
(CNNs), que processam as imagens das curvas de luz. Os modelos tradicionais alcangaram
acuracias entre 81% e 86%, e os atributos com maior importancia foram os variogramas e
indice Stetson J. A CNN bindria obteve acuracia de 88%, superando ligeiramente os mode-
los tradicionais, enquanto uma versao multiclasse, que também classificava as orientacoes
das estrelas, atingiu 71% de acurécia.

Os resultados demonstram que ambas as abordagens sao vidveis para identificagao fo-
tométrica de estrelas Be, com a CNN mostrando potencial para classificacao direta a partir
de imagens, sem necessidade de extracao manual de atributos. O pipeline metodologico

desenvolvido constitui uma base sélida para aplicagao futura em projetos de larga escala

como o LSST.






Abstract

Be stars are astrophysical objects characterized by the transient presence of a gaseous
circumstellar disk, which produces emission lines in their spectra and complex patterns
of photometric variability. Traditionally, their identification relies on spectroscopy, which
limits detection in large surveys. With the growth of massive photometric projects, such as
the Legacy Survey of Space and Time (LSST) conducted by the Vera C. Rubin Observatory,
it becomes necessary to develop automated methods to classify these stars based on light
curves.

This work investigates the use of supervised machine learning for this task, using light
curves from the Optical Gravitational Lensing Experiment (OGLE), manually labeled by
Figueiredo et al. (2025)). Traditional models (Random Forest, eXtreme Gradient Boosting,
k-Nearest Neighbors, Support Vector Machine, and MultiLayer Perceptron), which operate
on numerical features, were applied alongside convolutional neural networks (CNNs) that
process images of the light curves. The traditional models achieved accuracies between 81%
and 86%, and the most relevant features were variograms and the Stetson .J index. The
binary CNN obtained an accuracy of 88%, slightly outperforming the traditional models,
while a multiclass version, which also classified stellar orientations, reached 71% accuracy.

The results show that both approaches are viable for the photometric identification of
Be stars, with CNNs demonstrating potential for direct classification from images without
the need for manual feature extraction. The methodological pipeline developed here pro-

vides a solid foundation for future applications in large-scale projects such as the LSST.
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Capitulo 1

Introducao

1.1 Estrelas Be e a era da fotometria massiva

A descoberta das estrelas Be remonta ao século XIX, quando o padre Angelo Secchi
observou uma “linha luminosa muito brilhante” no espectro da estrela v Cassiopeiae (B0.5
IV), hoje reconhecida como a primeira estrela Be identificada. Inicialmente, a classificagao
dessas estrelas era meramente taxonomica: qualquer estrela do tipo espectral B que apre-
sentasse linhas de emissao no espectro, especialmente nas linhas de Balmer do hidrogénio,
era agrupada sob a designacao “Be”. Com o tempo, no entanto, ficou evidente que esse
grupo abrigava objetos com naturezas muito distintas, o que levou a diferenciagao entre
subclasses, como as estrelas Ble], as estrelas Ae/Be de Herbig e outras classes peculiares.

Dentre essas, existem as chamadas estrelas Be classicas, que sao o foco deste trabalho.
Estas sao estrelas de tipo B na sequéncia principal ou proximas a ela, que exibem rotagao
elevada e, em algum momento de sua vida, formam um disco circunstelar gasoso, associado
as linhas de emissao observadas no espectro, a partir de material ejetado da prépria estrela.

A identificacao tradicional dessas estrelas é espectroscépica, pois detecta suas linhas de
emissao caracteristicas. No entanto, esse método apresenta limitacoes praticas e logisticas:
é caro, demanda tempo de telescopio em instrumentos especializados e, mais significativa-
mente, nao é viavel para aplicagao em larga escala. A fotometria, por outro lado, permite
obter dados de milhares de estrelas em uma observagao e acompanhar sua variabilidade ao
longo do tempo, de forma mais acessivel gragas ao menor custo e a maior abundancia dos
dados.

Nesse ambito, entram levantamentos fotométricos como o OGLE (“Optical Gravita-

tional Lensing Experiment”, Udalski et al.[1992), ASAS (“All Sky Automated Survey”,
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Pojmanski (1997) e KELT (“Kilodegree Extremely Little Telescope”, |Pepper et al.|2004),
que atualmente fornecem bases de dados para o estudo de variabilidade estelar. A proxima
fronteira na escala de volume de dados serd inaugurada com a chegada do LSST (“Legacy
Survey of Space and Time”, lvezic et al|2019) do Observatério Vera C. Rubin, que, so-
zinho, produzird milhdes de alertas de variabilidade por noite. Diante desse momento de
explosao de dados na Astronomia, torna-se cada vez mais necessario o desenvolvimento de
métodos alternativos e automatizados para identificar objetos de interesse cientifico, por
exemplo, estrelas Be, e usando dados mais acessiveis e abundantes, como curvas de luz.

No caso das estrelas Be, a presenga (ou auséncia) de um disco circunstelar, bem como
os eventos que levam a sua formagao ou dissipagao, formam assinaturas caracteristicas nas
suas curvas de luz, as quais refletem fases de atividade do disco, erupcoes de brilho, cons-
trucao e dissipagao de material, entre outros. Como diferentes padroes de variabilidade
sao reconhecidos como indicativos da natureza Be, isso permite que seja possivel identifi-
car manualmente (com certa precisdo) essas estrelas a partir de suas curvas de luz. Um
exemplo desse tipo de abordagem é o trabalho de [Figueiredo et al.| (2025), no qual cerca
de 3000 curvas de luz do levantamento OGLE foram analisadas visualmente, resultando
na identificagao de 1751 candidatas a estrelas Be.

A Figura , retirada de |Figueiredo et al.| (2025), apresenta algumas das assinaturas
tipicas das curvas de luz de estrelas Be. Nela, observa-se a separagao dos dados fotométricos
em diversos estagios de atividade, relacionados ao ciclo de vida do disco circunstelar, como
crescimento, dissipacao, plato, entre outros. As fases de variabilidade correspondentes sao
indicadas pela cor dos pontos, e linhas verticais e horizontais sinalizam as diferentes fases
de observacao ou as transicoes entre os estagios de variabilidade. Cada painel mostra um
exemplo distinto, apresentando padroes usuais de variabilidade observados nestas estrelas.

Amostras rotuladas manualmente, como a criada por [Figueiredo et al.| (2025), séo
valiosas para a criagcao de técnicas computacionais de classificacao automatica, pois forne-
cem um padrao de referéncia confiavel, fundamentado na experiéncia humana. O uso de
métodos de aprendizado de maquina (machine learning, ML) nesses dados permite avaliar
o quanto os algoritmos reproduzem esses critérios de forma automatizada e possibilita sua
aplicacao futura em levantamentos de larga escala, como o LSST.

Assim, nesse cenario, o aprendizado de méquina surge como uma alternativa promissora

para a classificacdo de estrelas Be em levantamentos fotométricos. Ao treinar modelos
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Figura 1.1: Exemplos de curvas de luz de estrelas Be, classificadas segundo as fases de variabilidade
do disco circunstelar. Cada cor representa uma fase: cinza (linha de base, sem disco), azul (crescimento
do disco), laranja (dissipagao do disco), magenta (platd), verde (formagéo isolada de disco) e vermelho
(dissipagao isolada). Linhas verticais indicam transi¢bes entre estdgios com as coloridas representando

diferentes fases observacionais, enquanto linhas horizontais mostram o nivel médio de brilho no estado de

linha de base. Extraido, com permissao, de [Figueiredo et al.| (2025)

capazes de reconhecer padroes complexos em curvas de luz, é possivel automatizar parte

do trabalho que, tradicionalmente, dependeria de andlise visual por especialistas. A ideia

central é aproveitar exemplos rotulados (como os identificados por Figueiredo et al.[2025)

para ensinar algoritmos a distinguir entre curvas de luz de estrelas Be e nao Be.

A monografia esta organizada da seguinte forma. O Capitulo [2 retine os fundamentos
tedricos, abordando tanto as propriedades das estrelas Be e sua variabilidade fotométrica
quanto os conceitos de aprendizado de maquina essenciais para a compreensao deste traba-
lho. O Capitulo [3| descreve a metodologia empregada, incluindo a preparacao dos dados, a
defini¢ao de atributos e modelos utilizados. O Capitulo ] apresenta e discute os resultados
obtidos no problema de classificacao das estrelas Be, nos dados rotulados de
(2025)), incluindo uma discussao critica sobre a metodologia e o conjunto de da-
dos utilizados. Por fim, o Capitulo [5| apresenta as conclusoes gerais e perspectivas para

trabalhos futuros.
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Capitulo 2

Fundamentos tedricos

2.1 Variabilidade fotométrica de estrelas Be

As propriedades observacionais das estrelas Be estao ligadas a presenca e a evolucao de
um disco circunstelar gasoso, cuja formacao e dissipagao geram assinaturas caracteristicas
em suas curvas de luz. Essas variacoes fotométricas refletem uma gama de processos fisicos
e podem assumir diferentes morfologias conforme o angulo de observagao e o estagio de
atividade do sistema. Em sistemas vistos de cima (pole-on), a presenga do disco resulta
em um aumento no brilho e em um leve avermelhamento. Ja em sistemas observados de
forma equatorial (edge-on), o disco pode obscurecer parcialmente a estrela, levando ao
avermelhamento e a reducdo do brilho (Haubois et al[2012, Rimulo et al.|[2018)).

Trabalhos cldssicos, como Mennickent, R. E. et al| (2002) e Sabogal et al. (2005),
propuseram classificacoes empiricas para organizar os diferentes padroes de variabilidade
observados em estrelas Be nos dados dos levantamentos OGLE e ASAS. Nesses estudos, os
autores mostraram que as curvas de luz dessas estrelas podem exibir os seguintes comporta-
mentos: outburstsE] abruptos de brilho seguidos de declinio suave, aumentos prolongados de
brilho, variagoes quase periddicas ou flutuagoes irregulares em multiplas escalas de tempo.

Embora tteis para descrever a diversidade de comportamentos fotométricos, essas clas-
sificacoes dependem fortemente da interpretacao visual do avaliador, e nao traduzem ne-
cessariamente os processos fisicos subjacentes. Mais recentemente, trabalhos como o de
Figueiredo et al. (2025) buscaram introduzir dimensées adicionais de informacao, a partir

da analise de variacoes simultaneas de brilho e cor nas curvas de luz.

L Qutburst: episédio de aumento repentino de brilho, normalmente associado a eventos de ejecdo de

massa na estrela.
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Figura 2.1: Simulagoes de sistemas Be no plano A(V — I) por Al para diferentes angulos de inclinagéo e
propriedades do disco. Extraido, com permisséo, de |[Figueiredo et al.| (2025). No painel superior, tem-se
tempo de formacao e angulos de inclinagao selecionados. No inferior, variam-se as densidades mantendo
um tempo de formacao fixo em ¢, = 1800 dias, para os mesmos angulos selecionados. Os circulos indicam
a transicao entre as fases de formagao e dissipagao do disco. Esses modelos foram utilizados como base

para classificar as geometrias observacionais (dngulos de inclinagio) das curvas reais.

No caso deste trabalho especifico, o método adotado envolveu uma analise baseada
em diagramas de cor-magnitude (A(V — I) por AI), construidos a partir dos dados fo-
tométricos do OGLE. Esses diagramas observacionais foram comparados com diagramas
simulados (vide Figura que preveem o comportamento esperado para diferentes angulos
de inclinacao e estagios de atividade do disco. Com base nessa comparagao, os autores
estabeleceram a orientagao provavel (pole-on vs. edge-on) de cada sistema e identificaram
quais curvas de luz apresentavam variacoes compativeis com os diferentes estagios de ativi-

dade de estrelas Be. A partir desses resultados, foi entao criada uma amostra rotulada, na
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qual as curvas de luz foram classificadas manualmente como candidatas a estrelas Be ou
nao-Be, que abriu a possibilidade, explorada neste trabalho, de aplicar métodos de apren-
dizado de méquina para reproduzir e ampliar o processo de identificagao/classificacao de
estrelas Be.

Para realizar essa transicao da inspecao visual para a classificacao computacional auto-
matizada, é necessario compreender os principios que guiam o aprendizado dos algoritmos
a partir dos dados. Por isso, a Secao [2.2] apresenta, de forma sucinta, os fundamentos

tedricos do aprendizado de maquina necessarios para compreender o resto do texto.

2.2 Fundamentos de aprendizado de maquina

2.2.1 Definicao e tipos de aprendizado

Em termos gerais, o aprendizado de maquina é uma area da inteligéncia artificial vol-
tada para o desenvolvimento de modelos computacionais capazes de reconhecer padroes e
extrair informacoes relevantes diretamente a partir dos dados. Em vez de seguir instrucoes
pré-definidas (Samuel [1995)), esses modelos aprendem por meio de exemplos e ajustam seus
parametros internos para realizar tarefas como classificagao, regressao ou agrupamento.

Podemos distinguir dois paradigmas principais: o aprendizado supervisionado, em que
o modelo é treinado com exemplos rotulados para aprender a relacionar entradas a saidas
conhecidas; e o nao supervisionado, no qual nao héa rétulos e o algoritmo busca agrupa-
mentos naturais nos dados. Este trabalho concentra-se em modelos supervisionados, dada

a existéncia de um conjunto rotulado de curvas de luz.

2.2.2 Tratamento dos dados e escolha de atributos

Independentemente da abordagem de aprendizado utilizada, é fato que o desempenho
dos modelos é dependente da qualidade e da representacao dos dados (para uma andlise
detalhada sobre como diferentes dimensoes de qualidade afetam tarefas de aprendizado
supervisionado e nao supervisionado, ver [Mohammed et al.[2025)). Por isso, é importante
que sempre haja uma etapa de preparacao da amostra, que pode incluir desde o tratamento
de valores ausentes, até a remocao de ruido, normalizacao dos dados, entre outros.

Outro aspecto importante é a definigao das features (atributos), que sdo valores numéricos

extraidos dos dados e fornecidos aos modelos para que estes facam suas tarefas. No caso de
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curvas de luz, esses atributos podem representar propriedades como amplitude, periodici-
dade e brilho médio. A escolha desses valores é fundamental, ja que influencia diretamente

a performance dos modelos.

2.2.3 Modelos utilizados neste trabalho

Neste trabalho, foram empregados diferentes algoritmos de aprendizado de maquina

supervisionado, sendo eles:

e Random Forest (RF,|Breiman |2001): algoritmo baseado em um conjunto de arvores
de decisao, construidas de forma aleatéria. Cada arvore contribui com um “voto”, e

a resposta final é dada pela maioria.

e k-Nearest Neighbors (KNN, |Cover e Hart|1967): classifica um novo dado com base
nos rétulos dos k£ dados mais préximos (em termos de distancia) no espago de atri-

butos.

o Support Vector Machine (SVM, Cortes e Vapnik||1995): encontra uma superficie que
melhor separa as classes no espaco de atributos. Pode usar fungoes kemelﬂ para fazer

separacoes mais complexas.

e Multi-Layer Perceptron (MLP,|David . Rumelhart|1986): uma rede neural artificial

com varias camadas.

e cXtreme Gradient Boosting (XGBoost, |Chen e Guestrin/|2016): algoritmo também
baseado em arvores, construindo-as de forma sequencial, com cada nova arvore cor-

rigindo os erros da anterior (método de boosting).

e Convolutional Neural Network (CNN,|O’Shea e Nash|2015): classe de rede neural que
processa diretamente imagens (ou dados em grade), em vez de medidas numéricas
isoladas (como no caso dos outros modelos acima, chamados daqui em diante de
modelos classicos ou tradicionais). Pode ser construida com diferentes tipos e ordens

de camadas, com cada uma aplicando operacoes diferentes nos dados.

2 Kernel: funcio que transforma os dados para um espaco de dimensio maior onde a separacdo entre

classes torna-se linear.
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2.2.4 Meétricas de avaliacao

Uma vez treinado, o modelo precisa ser avaliado de forma objetiva. Para tarefas su-
pervisionadas de classificagao, podemos utilizar as seguintes métricas bem estabelecidas de

classificagdo multiclasse (Powers|2020):

e Acurdcia: mede a proporc¢ao de previsoes corretas em relacao ao total de exemplos.

e Precisao: indica a fragao de exemplos classificados como positivos que realmente
pertencem a classe. No contexto deste trabalho, entre todas as vezes que o modelo

disse que uma estrela é Be, esta métrica mede quantas realmente sao.

e Revocacdo: em ingleés recall, mede a fragao de exemplos positivos corretamente iden-
tificados. Isto é, entre todas as estrelas Be da base, quantas foram reconhecidas como
tais pelo modelo. Essa métrica é relevante quando o objetivo é nao deixar escapar

objetos de interesse, como é o caso neste trabalho.

e Fl-score: corresponde a uma média equilibrada entre precisao e revocacao.

2.2.5 Reducao de dimensionalidade

Em muitos casos, técnicas de reducao de dimensionalidade, como a analise de com-
ponentes principais (PCA, do inglés Principal Component Analysis), sdo aplicadas para
visualizar e interpretar o comportamento dos dados em espagos de menor dimensao, faci-
litando o entendimento dos resultados obtidos.

Nesse método, as novas “componentes principais” sao combinacoes lineares das features
originais, construidas para tentar capturar as direcoes onde ha a maior variancia possivel
dos dados. Como cada componente explica uma fragao especifica da variancia total, isso
permite identificar quais dire¢oes no espaco de atributos concentram mais informagao re-

levante para o problema.
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Capitulo 3

Metodologia

Neste capitulo, sao detalhadas as etapas metodoldgicas empregadas para aplicar as
técnicas de ML ao problema de classificacao fotométrica de estrelas Be. Devido a natu-
reza distinta dos dados de entrada utilizados pela CNN em comparacao com os demais
algoritmos, as segoes subsequentes sao organizadas de forma separada: uma dedicada aos

modelos tradicionais, e outra a CNN.

3.1 Modelos tradicionais

3.1.1 Organizacao e tratamento dos dados

O ponto de partida deste trabalho foi um conjunto de cerca de 3000 curvas de luz
provenientes do levantamento fotométrico OGLE, previamente tratadas e analisadas visu-
almente por [Figueiredo et al. (2025). Diferentemente de um banco ja classificado, essas
curvas nao possuiam rétulos diretos de classificagao como estrelas Be ou nao, mas possuiam

as seguintes informagoes, identificadas visualmente por [Figueiredo et al.| (2025):

e “Metadados” correspondentes a comportamentos fotométricos especificos: com base
nas caracteristicas visuais da curva, [Figueiredo et al.| (2025) atribuiu multiplas letras

a cada curva, com cada letra correspondendo a um comportamento observado:

i. “a” = presenca de atividade identificada;
ii. “r” = atividade recorrente identificada (periodicidade);
iii. “m” = evento isolado identificado;

iv. “b” = linha de base identificada;

v. “n” = estrela descartada (ndao-Be) por anélise de cor.
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e Orientacao do sistema: as curvas ja estavam classificadas com orientacao pole-on,

edge-on ou indeterminado (unclear).

Com base nessas informagoes, foi possivel separar o conjunto em estrelas rotuladas como
candidatas a Be ou nao candidatas, o que era necessario para tornar o problema tratavel
como uma tarefa de aprendizado supervisionado. As estrelas candidatas a Be foram defi-
nidas como aquelas que, concomitantemente: nao foram descartadas por cor (isto é, nao
possuiam o metadado “n”), apresentavam orientagdo bem definida (pole-on ou edge-on,
pois parte da andlise de Figueiredo et al.| (2025) dependia desta informagcao), e exibiam ao
menos um metadado indicativo de atividade (“a”, “r”, “m” ou “b”). As demais curvas,
incluindo aquelas com orientagao indeterminada ou sem indicios de atividade classica de
estrelas Be, foram agrupadas na classe nao Be.

Apos esta etapa, foram obtidos entao dois subconjuntos a partir da amostra original:
um contendo as estrelas candidatas a Be (com rétulo igual a 1) e outro representando a

classe nao Be (com rétulo igual a 0), composta por objetos de variabilidade diversa.

3.1.2  Selecao e normalizagao de atributos (features)

Com os rotulos estabelecidos, o préximo passo consistiu em escolher, para representar
cada curva de luz, um conjunto de atributos numéricos que fossem capazes de descrever sua
variabilidade. Essa selecao foi baseada em intuigoes fisicas relacionadas a variabilidade de
estrelas Be, e também buscando maximizar o desempenho dos modelos de forma empirica.

Inicialmente, buscou-se empregar métricas ja consolidadas na literatura de variabilidade
estelar, seguindo outros trabalhos que ja lidaram com o problema de classificagao super-
visionada em estrelas Be e variaveis no geral, como Pérez-Ortiz et al.| (2017) e Debosscher

et al.| (2007)). Destes trabalhos, foram aproveitadas as métricas:

e Estatisticas descritivas basicas: mediana e desvio absoluto mediano (MAD), para

medidas da amplitude e dispersao da magnitude;

e Correlagido fotométrica: ndices Stetson JP| e K[Y para medidas de similaridade

entre observagoes sucessivas.

3 Indice de Stetson J: mede a correlacdo temporal entre variacdes simultaneas em duas bandas fo-

tométricas.

4 Indice de Stetson K: descreve a distribuicao (curtose) das variagoes de magnitude normalizadas.
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e Forma da distribuicao: Octile Skewness (OS) e Left/Right Octile Weight (LOW

e ROW), para medidas de assimetria da curva de luz;

Além dessas features aproveitadas da literatura, foi desejado incorporar outros valores
que trouxessem informagoes sobre a variabilidade em funcao do tempo. Por isso, primeiro,
foi adaptado o conceito de variograma, bastante utilizado em geofisica e geoestatistica,
substituindo o dominio espacial para o dominio temporal das curvas de luz. Essa adaptacao
ja foi feita em trabalhos como Eyer e Genton| (1999)), seguindo a estimativa de variograma
feita no livro de geoestatistica Matheron, (1962]).

Adicionalmente, foi incorporada uma analise no espago de frequéncias por meio do peri-
odograma de Lomb-Scargle (Lomb|/1976, Scargle||1982)), que é comumente empregado para
detectar periodicidades em séries temporais irregulares. Entre os parametros derivados,
foram considerados, como atributos para os modelos, a frequéncia correspondente ao maior
pico de amplitude e o valor da amplitude nesse pico.

Para normalizar os atributos, foi utilizada a funcao StandardScalar () da biblioteca
em Python scikit-learn (Pedregosa et al.|2011)). Todos os atributos foram normalizados
de forma a seguir uma distribuicao normal padrao, com média igual a zero e desvio padrao
igual a um. Isto foi feito pois garante um melhor funcionamento para os algoritmos basea-
dos em escala/distancia (como o KNN e SVM), além de otimizar e melhorar a convergéncia
de algoritmos baseados em gradiente (como o XGBoost e MLP).

Uma PCA dos dados no espaco das features escolhidas foi feita para avaliar a capacidade
de separagao entre as classes (candidatas a Be e nao-Be) neste espago — isto é, para verificar

se os atributos selecionados sao eficazes para discriminar entre os dois grupos.

3.1.3 Treinamento dos modelos

Com as features extraidas e normalizadas, é possivel aplicar, entao, os modelos de
aprendizado de maquina ao problema de classificacao de estrelas Be. Nesta etapa, foram
testados os cinco algoritmos classicos de aprendizado supervisionado apresentados na Secao
2.2.3t RF, XGBoost, KNN, SVM e MLP, cada um representando um paradigma diferente
de aprendizado supervisionado.

Os modelos foram treinados utilizando o conjunto rotulado descrito anteriormente, com
uma divisao de 80% dos dados para treinamento e 20% para teste, de forma aleatorizada.

Ademais, a otimizacao dos hiperparametros de cada modelo foi realizada utilizando o
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método GridSearchCV novamente da biblioteca scikit-learn, que testa diferentes com-

binagoes de parametros e avalia o desempenho com validagao cruzada.

3.1.4 Meétricas e estratégias de avaliacao

A avaliacao do desempenho de cada modelo supervisionado foi conduzida com base em
métricas de classificacio bindria, obtidas a partir da matriz de confusad’] dos modelos. As
métricas utilizadas foram acuracia, precisao, revocacao e FI-score, descritas na Subsecao
224

Além da avaliacao de desempenho para cada modelo, também foi analisada a im-
portancia relativa das features empregadas, estimada pelo método de importancia por
permutacao. Nesse método, o valor de uma tunica feature é aleatoriamente embaralhado,
sem alterar o restante dos dados. A reducao consequente na acuracia do modelo é usada
como medida da relevancia do atributo em questao para a classificagao dos modelos.

A metodologia descrita até aqui diz respeito aos modelos tradicionais, que operam sobre
os atributos numéricos definidos. Além disso, também foi desenvolvida uma abordagem
paralela baseada em redes neurais convolucionais (CNNs), que atuam diretamente nos
graficos (imagens) de magnitude por tempo das curvas de luz. As especificidades dessa

segunda estratégia sao abordadas na Secao [3.2]

3.2 Rede neural convolucional (CNN)

3.2.1 Preparacgao do conjunto de imagens

A primeira etapa correspondeu a geracao de imagens, para servir de entrada ao modelo.
Para isso, foram gerados graficos de magnitude por tempo na banda I do OGLE, devido a
sua maior cadéncia observacional. Todas as curvas foram representadas na mesma escala
temporal, correspondente as fases observacionais do levantamento OGLE. A grande maioria
das curvas incluidas no conjunto possui observacoes em todas essas fases, e por isso essa
uniformizagao no eixo das abscissas nao resultou em perda significativa de informagao.

As imagens foram geradas em preto e branco, e sem eixos e rotulos, mas foram incluidas

5 Matriz de confusdo: visualizacdo em tabela que avalia o desempenho de um modelo de classificacdo,
mostrando a contagem de Verdadeiros Positivos (TP), Falsos Positivos (FP), Verdadeiros Negativos (TN)
e Falsos Negativos (FN).
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il

Figura 3.1: Exemplo de curva de luz processada para os modelos de CNN. A imagem foi gerada com
resolucao reduzida, em preto e branco, sem eixos ou rétulos, e com marcacoes horizontais a cada 0,1 mag

no eixo y como referéncia visual da escala de variagao.

pequenas marcacgoes horizontais a cada 0.1 mag no eixo das ordenadas, para que o modelo
tivesse uma referéncia visual da escala de variacao de brilho. A escala de magnitude
foi distinta para cada curva, correspondendo aos valores entre o maximo e minimo de
magnitude para cada estrela. Neste caso, o modelo foi guiado pelas variagoes de magnitude,
e nao pelos valores absolutos.

Foram testadas diferentes resolugoes de imagem, variando o tamanho fisico e a den-
sidade de pizels (parametros “figsize” e “dpi” da biblioteca matplotlib, Hunter|2007).
Observou-se empiricamente que o aumento da resolucao elevava consideravelmente o tempo
de treinamento, o que faz sentido, pois implica em um ntmero maior de parametros a se-
rem ajustados na camada linear/densa da rede neural. Por exemplo, imagens trés vezes
maiores resultam em aproximadamente nove vezes mais pesos a serem otimizados, o que
acarreta em um tempo de execucao e custo computacional proporcionalmente maiores. Por
isso, optou-se pela menor resolugao possivel das imagens, mas que ainda proporcionasse
um bom desempenho dos modelos. Um exemplo de imagem utilizada esta disponivel na
Figura (3.1}

Para fornecer os dados como entrada aos modelos, as imagens finais foram convertidas
em valores de cor (na escala de cinza, com 0 correspondendo a um pizel completamente
branco, e 1 a um completamente preto) — isto é, cada imagem foi convertida em uma
matriz na qual cada elemento correspondia ao valor de cor de um pizel — utilizando a
fungao imread da biblioteca scikit-image (Pedregosa et al./2011)).

Cada imagem foi entao associada ao seu respectivo réotulo: 0 para estrelas nao Be e 1
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para candidatas a Be, de forma similar ao que foi feito para os modelos tradicionais. Os
dados foram separados aleatoriamente em 70% para treinamento, 20% para validacao e

10% para teste.

3.2.2 Arquitetura da rede

A arquitetura da rede foi definida a partir de experimentacao pratica e inspirada em
trabalhos recentes que também aplicaram redes convolucionais a curvas de luz do OGLE,
como [Monsalves et al.| (2024)).

A rede proposta consiste em duas camadas Convolucionaisﬁ (com respectivamente 8 e 16
filtros e tamanho de kernel igual a 3), alternadas por uma camada de max-poolingm (com
janela 2x2 e passo 2), e seguida por uma camada totalmente conectadaﬁ (linear). Cada
convolucao foi seguida por uma funcao de ativacao ReLUﬂ7 para introduzir nao linearidade
na rede, e a saida final é obtida por uma func¢ao sigmoidelﬂ, para garantir que a previsao
final do modelo seja um valor entre 0 e 1. Os valores obtidos sao entao arredondados para

0 ou 1, correspondendo a classificacao final da rede.

3.2.3 'Treinamento do modelo, ajuste de hiperparametros e avaliacao

O treinamento foi realizado com batch sizeﬂ igual a 50 e diferentes valores de taxa de
aprendizado (learning mte)EL explorados em uma grade de valores. Para cada combinacao,
o modelo foi treinado até atingir um critério de parada por deteccao de plato: o treinamento
era interrompido caso a fungao de perda nao apresentasse melhora no conjunto de validagao
apos tres épocaﬂ consecutivas. O nimero maximo de épocas foi fixado em 1000, mas todos
os modelos convergiram antes desse limite. Com isso, a taxa de aprendizado e o niimero

de épocas para o modelo foram ajustados empiricamente, de forma a buscar a combinacao

6 Camada convolucional: usando operacoes matriciais, aplica filtros (kernels) sobre diferentes regioes

da imagem para extrair caracteristicas locais.
7 Camada de pooling: camada que reduz a dimensionalidade espacial da representacio.
8 Camada totalmente conectada: camada que gera a classificacdo final.
9 Funcdo de ativacio ReLU: retorna o valor de entrada se for positivo, e zero caso contrario.

10 Funcao de ativacdo sigmoide: transforma qualquer valor em um niimero entre 0 e 1. Valores préximos

de 0 ou 1 indicam maior confianca na classificagao.
1 Batch size: tamanho do subconjunto de dados usado em cada iteracdo de treinamento.
12 Taxa de aprendizado (learning rate): tamanho do passo a cada iteracdo de treinamento.

13 Epoca: corresponde a uma iteracdo do modelo pelo conjunto de treino.
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que gerasse melhor desempenho.
O desempenho da CNN foi avaliado utilizando as mesmas métricas descritas na Secao

acuracia, precisao, revocagao e F'1-score.

3.2.4 Extensao da CNN para classificagao de orientacao das estrelas

Com o desenvolvimento do trabalho, buscou-se também investigar se uma rede neural
convolucional seria capaz de estimar nao apenas a classificacao entre Be e nao Be, mas
também a orientagdo das estrelas Be (Figueiredo et al.2025) em dois regimes distintos:
pole-on (que cobre um grande intervalo de angulos entre aproximadamente 0° e 60°) e
edge-on (que cobre angulos entre 80° e 90°). Essa informagao é bastante relevante, ja que
a inclinacao do sistema em relacao a linha de visada altera consideravelmente a aparéncia
fotométrica das curvas. Esse tipo de analise também abre espago para estudos posteriores,
como estimativas de outras caracteristicas das estrelas, juntamente a classificacao binaria.

Para testar essa possibilidade, foi desenvolvida uma segunda rede convolucional, utili-
zando as mesmas imagens de entrada descritas anteriormente, mas com uma nova confi-
guracao de rotulos: 0 para estrela nao Be, 1 para estrela Be com orientagao pole-on, e 2
para estrela Be com orientacao edge-on.

Essa abordagem conjunta foi escolhida por dois motivos principais. Primeiro, as classi-
ficagoes de orientacao nao sao independentes da classificagdo Be/nao-Be: o procedimento
de Figueiredo et al. (2025), que permitiu a determinagao visual da orientagao, s6 pode
ser aplicado as estrelas ja identificadas como Be. Segundo, a subrepresentacao de estrelas
edge-on no conjunto original (correspondendo a apenas cerca de 10% dos dados) torna-
ria inviavel treinar uma rede dedicada exclusivamente a estimativa de orientagao, pois o
modelo nao teria exemplos suficientes para aprender adequadamente essa caracteristica.

O processo de treinamento, avaliacao e a arquitetura base permaneceram os mesmos,
mas foram feitas modificagoes na camada de saida e na funcao de ativacao final. A funcao
sigmoide, utilizada na versdo bindria, foi substituida por uma funcao softmaal’] Com essa
mudanca, a camada de saida, que na rede anterior produzia um escalar (correspondente a
probabilidade de ser Be), passou a gerar um vetor no qual cada elemento corresponde a

probabilidade da curva de luz pertencer a uma das classes definidas anteriormente.

1 Funcao de ativagao softmar: transforma a saida da camada linear em um vetor de probabilidades

normalizadas entre 0 e 1, cuja soma ¢ igual a 1. Usada para problemas multiclasse.
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Capitulo 4

Resultados e Discussao

O desenvolvimento da metodologia descrita no Capitulo |3| foi, por si s6, um dos prin-
cipais resultados do trabalho. O pipeline completo usado (desde a rotulagem, selecao de
atributos, otimizagao dos modelos e desenvolvimento de ambas as CNNs) é uma estrutura
metodoldgica que pode ser aprimorada e reutilizada em futuras aplicacoes, particularmente
em outros levantamentos (salvo ajustes necessarios), como o LSST. No presente capitulo,

sao apresentados e discutidos os resultados obtidos a partir de sua aplicacao.

4.1 Modelos tradicionais

Os modelos tradicionais de aprendizado supervisionado apresentaram desempenhos
consistentes na tarefa de classificacao entre estrelas candidatas a Be e nao Be com da-
dos do OGLE. As métricas médias obtidas para os diferentes algoritmos testados (RF,

XGBoost, KNN, SVM e MLP) estao resumidas na Tabela .

Tabela 4.1 - Desempenho dos modelos tradicionais de aprendizado supervisionado.

Algoritmo Acuracia Precisao Revocagao F1-score

RF 0.86 0.85 0.93 0.89
XGBoost 0.85 0.86 0.92 0.89
KNN 0.84 0.85 0.90 0.87
SVM 0.81 0.84 0.85 0.85
MLP 0.85 0.85 0.92 0.88

Os resultados indicam um desempenho geral bom entre os modelos testados, com va-
lores de F1-score entre 0.85 e 0.89. Ademais, os classificadores baseados em conjuntos

de arvores, mais especificamente RF e XGBoost apresentaram os melhores resultados em
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Confusion Matrix RF

True Labels

Predicted Labels

Figura 4.1: Matriz de confusdo do modelo Random Forest (RF) para a classificacao binédria. As classes
0 e 1 representam as categorias analisadas, com 0 sendo nao Be e 1 sendo Be. Valores na diagonal
principal (149 e 236) correspondem as previsoes corretas (verdadeiros negativos e verdadeiros positivos,
respectivamente); ja os valores na diagonal secunddria (47 e 17) representam os erros de classificacao (falsos

positivos e falsos negativos, respectivamente).

média, com os maiores valores de revocacao e F'I-score.

Os valores elevados de revocagao (> 0.85) mostram que os modelos sao capazes de iden-
tificar eficientemente as estrelas Be presentes em nosso conjunto de dados. Em particular,
a matriz de confusao do modelo RF (que obteve o melhor desempenho geral), disponivel
na Figura contém 236 verdadeiros positivos (TP) e apenas 17 falsos negativos (FN),
o que mostra que o modelo recupera a maior parte das estrelas candidatas a Be. Isso é
muito bom, pois, quando se lida com objetos raros como no caso deste trabalho, é im-
portante minimizar a quantidade de objetos descartados (FN), mesmo que seja necessério
fazer uma andlise posterior para descartar objetos adicionais que foram classificados como
Be erroneamente. Neste sentido, foram obtidos 149 verdadeiros negativos (TN) e 47 falsos
positivos (FP), mostrando que o algoritmo tende a classificar algumas estrelas nao Be como
candidatas a Be, mas mantém uma taxa de erro aceitavel.

Uma vez que o desempenho de todos os modelos foi muito similar, acredita-se que a
etapa de escolha de atributos seja mais importante do que a escolha dos algoritmos em

si para este problema especifico de classificacao. A importancia relativa das features foi
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Feature importance using permutation on Random Forest
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Figura 4.2: Tmportéancia das features calculada por permutagio para o modelo Random Forest (RF). O
eixo vertical representa a diminuicao média na acurdcia do modelo quando cada atributo é embaralhado,

e as barras pretas correspondem ao erro.

avaliada por meio do método de permutagao no modelo Random Forest. Os resultados
(Figura mostraram que as métricas com maior impacto na acuracia do modelo foram,
em ordem decrescente de importéancia, o variograma em y (na escala de magnitude), seguido
pelo indice de Stetson J e o variograma em z (na escala temporal). Além disso, também
foi realizada uma anélise exploratéria por PCA, utilizando as features normalizadas. Os
resultados indicaram que as trés primeiras componentes principais concentraram cerca de
60% da variancia total dos dados, com maior contribuigdo dos variogramas e do indice
Stetson J nas componentes, o que refor¢a suas importancias ja observadas na analise de
permutacao.

Esses resultados evidenciam aspectos relevantes, ainda mais quando se considera o
procedimento de classificagao feito por humanos. As métricas de variograma em y e x € 0
indice de Stetson J sao as unicas dentre as utilizadas que possuem informacgao temporal
explicita sobre a curva de luz: o variograma em y e x medem, respectivamente, quantidades
relacionadas a maior variagdo em magnitude e sua escala de tempo, e o indice Stetson J
tem relagdo com a correlacdo entre observagdes sucessivas (no tempo). Como humanos
especializados na tarefa de identificar estrelas Be a partir de suas curvas de luz também

utilizam a dinamica temporal das variagoes em suas andlises, é natural que as features que



40 Capitulo 4. Resultados e Discussao

incorporem essa informacao sejam muito importantes para os classificadores automaticos.

Vale comentar que, enquanto o indice Stetson J capta a correlacao temporal entre
medidas consecutivas, o Stetson K descreve apenas a forma da distribui¢ao das magnitudes
(sem informacao temporal). Sabendo disso, também é coerente que o Stetson J tenha se
mostrado muito mais relevante que o Stetson K para os modelos.

Surpreendentemente, os atributos derivados a partir do periodograma de Lomb-Scargle
nao foram muito tteis para a classificagao dos modelos. Isso pode, no entanto, simples-
mente significar que os atributos escolhidos nao foram as melhores opg¢oes no espaco de
frequéncias, e nao necessariamente que informacoes de frequéncia nao sao discriminantes.
Novos atributos, baseados em técnicas mais refinadas como a analise de waveletsﬂ podem
ser testados no futuro.

As demais métricas (mediana, MAD, OS, LOW e ROW) apresentaram contribuigoes
menores, o que também era esperado, por serem medidas puramente estatisticas e mais
genéricas. Vale destacar que a LOW apresentou uma importancia relativamente maior que
as demais, e ela mede variagoes assimétricas nas regioes mais brilhantes das curvas. Isso
pode significar, por exemplo, que essa métrica consiga capturar indiretamente a presenca
de eventos de ejecao de massa, que levam a formacao dos discos em estrelas Be.

Em sintese, os resultados obtidos indicam que a chave para uma classificacao eficaz
de estrelas Be reside principalmente na definicao de features fisicamente significativas.
Direcoes futuras promissoras incluem a introducao de ainda mais atributos que capturem a

dinamica temporal, e de mais atributos no espaco de frequéncia, que foi pouco investigado.

4.2 Redes neurais convolucionais (CNNs)

4.2.1 CNN de classificacao binaria

Na tarefa binaria, o objetivo era diferenciar estrelas candidatas a Be de nao Be com base
nas imagens das curvas de luz. Para analisar o comportamento do treinamento, as curvas
da fungao de perda (loss) ao longo das épocas foram comparadas para diferentes taxas de
aprendizado. Com isso, notou-se que (como pode ser visto na Figura, quando a taxa de
aprendizado usada era muito alta, a curva de perda exibiu um comportamento irregular,

oscilando muito e sem convergir. Isso aconteceu pois os ajustes dos pesos no modelo

15 Anglise de wavelets: fornece uma representacdo tempo-frequéncia dos sinais.
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Figura 4.3: Curvas de perda por época para diferentes taxas de aprendizado para a CNN bindria. A
esquerda, o modelo com taxa de aprendizado = 0.001 apresentou comportamento muito erratico e dificul-
dade de convergéncia na funcao de perda, especialmente na etapa de validagao. A direita, com taxa de
aprendizado = 0.00001, a curva é notavelmente mais suave e converge melhor. A diferenca de épocas se

deve pelo critério de convergéncia usado.

estavam sendo realizados em passos muito grandes, de forma que, a cada nova iteragao de
treinamento, o modelo sobrecorrigia os erros da iteragao anterior, e isso impedia a rede de
se estabilizar em um minimo da funcao de custo. Em contrapartida, taxas de aprendizado
mais baixas levaram a curvas de perda mais suaves e convergentes, que se estabilizaram
em valores baixos de funcao de perda apds algumas dezenas de épocas.

As métricas obtidas para o modelo binério final estao disponiveis na Tabela [4.2]

Tabela 4.2 - Desempenho da rede neural convolucional bindria.

Algoritmo Acuracia Precisao Revocacao F1-score
CNN binaria 0.88 0.87 0.94 0.90

Os valores obtidos para a CNN binaria sao comparaveis, e até superiores, aos resultados
obtidos com os modelos tradicionais, indicando que a CNN consegue bom desempenho
mesmo sem a necessidade de criar features numéricas que descrevam as curvas de luz. Por
outro lado, esse modelo demanda maior tempo de treinamento e recursos computacionais

mais intensivos, o que deve ser levado em conta na escolha do algoritmo.
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Figura 4.4: Acurécia por classe do modelo CNN multiclasse (classe 0: nao-Be, classe 1: Be pole-on, classe
2: Be edge-on). A esquerda, o modelo sem pesos na func¢ao de perda gerou acurdcia zero para classe 2 (Be
edge-on) devido ao desbalanceamento do conjunto de dados. J4 a direita, o modelo com pesos fez com que

a acurdcia da classe 2 aumentasse para aproximadamente 60%, com perda parcial de acurdcia na classe 1.

4.2.2 CNN de classificacao multiclasse

Apds o bom desempenho no problema binario, a CNN foi adaptada para uma tarefa
mais complexa: distinguir entre trés classes — nao Be (0), Be pole-on (1) e Be edge-on
(2). Este foi um estudo exploratério para checar se o modelo seria capaz de inferir, além
da classificacao em Be ou nao Be, a orientacao das estrelas, ja que esta muda a morfologia
das curvas de luz.

Inicialmente, o modelo utilizava a funcao de perda Cross Entropym padrao, como foi
feito na outra rede, para avaliar sua predi¢ao. No entanto, devido ao forte desbalancea-
mento entre as classes (no conjunto de dados disponivel, 1639 objetos eram classificados
como pole-on, e apenas 112 como edge-on), a rede aprendeu a favorecer a classe mais
numerosa, classificando todas as curvas Be, sem exce¢ao, como pole-on. Nesse estégio, a
acuracia da classe pole-on chegava a cerca de 90%, mas a classe edge-on obtinha acurécia
nula (0%), como pode ser visto no painel esquerdo da Figura

Para contornar esse problema, foram introduzidos pesos na fungao de perda, penali-
zando mais fortemente erros na classe com menos membros, a de estrelas Be com orientacao
edge-on. Essa modificagao reduziu o desempenho do modelo na classe pole-on, mas au-

mentou consideravelmente o reconhecimento da classe edge-on, cuja acuracia passou de

16 Cross Entropy: Funcdo de perda que mede a dissimilaridade entre distribuicdes de probabilidade.

Pode ser usada tanto em casos bindrios quanto multiclasse.
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0% para acima de 60%. Como resultado, a acurdcia média global ficou em torno de 71%,
como pode ser visto no painel direito da Figura 4.4} e na Tabela relativa as métricas

de avaliacao deste modelo.

Tabela 4.3 - Desempenho da rede neural convolucional multiclasse (que também estima a orientagao).

Algoritmo Acuracia Precisao Revocacao F1-score
CNN multiclasse 0.71 0.63 0.71 0.63

Embora os valores para este modelo seja inferiores aos obtidos nos demais modelos,
esse resultado ainda mostra, de certa forma, que hé informacao suficiente nas curvas para
distinguir diferentes orientacoes, mesmo que de forma limitada pelo tamanho pequeno e
falta de equilibrio do conjunto de dados. Para se obter melhores resultados, provavelmente
sera necessario utilizar um conjunto de dados maior e mais balanceado.

Assim, é observado que, mesmo com uma arquitetura simples e um conjunto de da-
dos “nao ideal”, ambas redes neurais conseguiram identificar padroes morfologicos nas
curvas de luz de estrelas Be, além de resultados medianos no problema de determinacao
da orientacao do sistema. O desempenho obtido pode ser interpretado como um estudo
exploratério promissor, e estudos futuros em conjuntos maiores, com distribuicao mais
equilibrada de classes e que eventualmente usem arquiteturas mais profundas ou otimiza-

das para o problema certamente trarao resultados ainda mais positivos.

4.3 Discussao sobre o conjunto de dados e limitagoes metodoldgicas

Os resultados obtidos devem ser interpretados levando em conta as caracteristicas do
conjunto de dados utilizado. A amostra original, derivada de [Figueiredo et al. (2025),
contém aproximadamente 3000 curvas de luz, das quais uma grande fragao foi rotulada
como candidata a estrela Be. Essa composicao significa que o conjunto é fortemente super-
representado em estrelas Be, quando comparado a frequéncia real desse tipo de estrela na
natureza. Isso ocorre, em partes, por um viés de selecao: boa parte das estrelas seleciona-
das por [Figueiredo et al.| (2025)) apresentava comportamento fotométrico compativel com
estrelas desse tipo, justamente porque os autores estavam buscando candidatas a Be.

Esse viés de selecao é importante de se considerar, porque faz com que o conjunto

de “nao-Be” provavelmente nao represente toda a diversidade de varidveis presentes em
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catalogos reais. Em outras palavras, o modelo pode estar aprendendo a diferenciar estrelas
Be de estrelas “nao-Be, mas parecidas com Be” (ou talvez outra diferenciagdo mais simples
do que o problema real), e nao de um conjunto de fato heterogéneo de estrelas varidveis.
Neste caso, o modelo atual provavelmente teria um desempenho inferior se aplicado a outro
conjunto independente, com expressoes de variabilidade mais diversas e complexas.

Por isso, para estudos futuros, seria importante analisar com mais cuidado as curvas nao
Be do conjunto atual: como ¢ possivel que elas incluam apenas alguns tipos de variaveis, ou
muitas nao variaveis, o ideal seria ampliar essa parte da amostra, incorporando mais tipos
de variabilidade, tornando a classificacao mais realista e os modelos mais generalizaveis.

Outra limitacao esta relacionada a natureza dos rétulos, que sao definidos por inspegao
visual e por isso sujeitos a vieses. Como algumas curvas podem ter interpretagoes ambiguas
mesmo entre especialistas, é possivel que o desempenho dos modelos esteja parcialmente
limitado pela qualidade e subjetividade dos rétulos, e por isso nenhum modelo alcance
acurdcia na casa dos 90%. Para aplicacoes futuras, seria interessante aprimorar o modelo
com classificacoes visuais feitas por diferentes avaliadores, para minimizar possiveis erros.
Alternativamente, uma abordagem independente seria partir de uma amostra bem conhe-
cida de estrelas Be (por exemplo, identificadas por espectroscopia), combinada de forma
balanceada a outras classes de variaveis da literatura, minimizando os vieses menciona-
dos. Uma fonte potencial é o catdlogo de Be de [Tan et al. (2025), que aplicaram redes
neurais profundas a espectros do Data Release 11 do Large Sky Area Multi-Object Fiber
Spectroscopic Telescope (LAMOST) para identificar milhares de candidatas a Be.

Outro ponto importante a se considerar é que, conforme mostrado na anélise de im-
portancia por permutacao, as features mais relevantes para a classificacao foram justamente
aquelas que carregam informacao temporal. Isso reforca a importancia da variabilidade no
tempo para o desempenho dos modelos, mas também sugere que eles podem estar sensiveis
a forma como o levantamento OGLE amostra o tempo — a sua cadéncia e distribuicao
de observacoes. Se o modelo estiver muito sensivel a essas caracteristicas, ele pode ter
dificuldade para generalizar para outros levantamentos, como o LSST. Isso deve testado
futuramente, aplicando o modelo a conjuntos independentes e de levantamentos distintos.

Por fim, como todas as avaliacoes foram feitas por validacao cruzada dentro do préprio
conjunto de dados original, um passo importante, em trabalhos futuros, é realizar va-

lidacoes externas, em bases de outros levantamentos ou em conjuntos independentes deste.
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Conclusoes

O presente trabalho apresentou o desenvolvimento e a aplicagao de diferentes aborda-
gens de aprendizado supervisionado para a identificacao fotométrica de estrelas Be, utili-
zando curvas de luz do levantamento OGLE, classificadas manualmente entre candidatas a
Be ou nao por [Figueiredo et al.| (2025)). Para além da comparagao de modelos, o principal
foco do trabalho foi na construcao e validacao de uma metodologia robusta, que pudesse
ser aplicada futuramente em levantamentos fotométricos massivos, como o LSST.

Os modelos tradicionais (RF, XGBoost, KNN, SVM e MLP) apresentaram desempe-
nhos semelhantes, com valores de F'I-score entre 0.85 e 0.89. O melhor modelo tradicional
obteve acurdcia de 86%. Ademais, a pequena variacdo entre algoritmos indicou que o
sucesso dos modelos no problema de classificacao depende mais da qualidade e represen-
tatividade dos atributos numéricos usados, do que da escolha especifica do classificador.
As features mais relevantes, segundo analise de importancia por permutacao, foram os
variogramas (que trazem informagao sobre a maior variagdo em magnitude e sua escala
de tempo) e o indice de Stetson J, que também traz informagoes sobre a dindmica tempo-
ral das curvas. Esse resultado reforca que a variabilidade ao longo do tempo é um fator
discriminante muito importante entre estrelas Be e nao Be.

A rede neural convolucional (CNN), por sua vez, demonstrou que é possivel que um
modelo aprenda a diferenciar as estrelas diretamente das curvas de luz transformadas em
imagens, ainda alcancando métricas comparaveis, e neste caso até levemente superiores,
as dos modelos baseados em atributos. O modelo binario final, com hiperparametros
ajustados por andlise da curva de perda, obteve acurdcia de 88%. Ja na classificacao
multiclasse (que tinha objetivo de distinguir nao s6 se uma curva de luz era Be ou nao Be,

mas também trazer informacoes sobre a orientacao das estrelas Be), a inclusao de pesos na
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funcao de perda permitiu a CNN distinguir parcialmente as orientagoes pole-on e edge-on,
atingindo acurdcia média de 71%. Esse desempenho, embora inferior ao da tarefa bindria,
ja era esperado pelo desbalanceamento do conjunto de dados e pela maior complexidade
do problema. Apesar disso, ja representa um passo inicial em direcao a modelos capazes
de nao s6 classificar as estrelas, mas possivelmente também estimar propriedades fisicas.

De forma geral, o trabalho mostrou que, para modelos baseados em valores numéricos,
a incorporagao de informagoes temporais é crucial para a identificacao de estrelas Be. Ja
para modelos baseados em imagens, a abordagem usando CNN confirmou que a morfologia
visual das curvas de luz por si s6 contém padroes discriminativos suficientes para uma boa
classificagao, sem necessitar de uma etapa de selecao de features.

Como perspectivas futuras, pretende-se aplicar a metodologia desenvolvida a conjuntos
de dados maiores e mais balanceados, incluindo possivelmente levantamentos como ASAS
e KELT, mais dados do levantamento OGLE, e especialmente o Legacy Survey of Space
and Time (LSST), do Observatério Vera C. Rubin. O grupo de pesquisa ao qual este
trabalho estd vinculado possui direitos de acesso aos dados do Rubin Observatory, o que
possibilitard a utilizacao dos conjuntos de dados do LSST em fases futuras do projeto,
quando houver cobertura temporal suficiente.

No ambito da pds-graduacao, pretende-se dar continuidade a essa linha de pesquisa,
desenvolvendo novos projetos que apliquem técnicas de aprendizado de maquina e inte-
ligéncia artificial a diferentes aspectos do estudo das estrelas Be, tanto em modelos de
classificagao (como este), quanto possivelmente em modelos de ML de regressao, para esti-
mativa de parametros fisicos dessas estrelas. Entre os objetivos principais futuros, tem-se
a criacao de um modelo automatizado de identificacao de estrelas Be em dados do LSST,
capaz de operar sobre o grande volume de dados produzidos por esse levantamento, como
extensao do trabalho feito aqui.

Assim, este estudo marca o inicio de um programa de pesquisa de longo prazo, a ser
desenvolvido ao longo dos proximos anos na pos-graduagao. A metodologia estabelecida
oferece uma base para o desenvolvimento de novas aplicagoes, especialmente para trabalhos

de identificacao de novas estrelas Be em levantamentos de larga escala.

“Embora a maquina aprenda, quem ensina

e interpreta continua sendo o humano.”



Referéncias Bibliograficas

Breiman L., Random Forests, Machine Learning, 2001, vol. 45, p. 5

Chen T., Guestrin C., XGBoost: A Scalable Tree Boosting System. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining , KDD 16, Association for Computing Machinery, New York, NY, USA, 2016,
p. 785-794

Cortes C., Vapnik V., Support-Vector Networks, Mach. Learn., 1995, vol. 20, p. 273-297

Cover T., Hart P., Nearest neighbor pattern classification, IEEE Transactions on Informa-

tion Theory, 1967, vol. 13, p. 21

David E. Rumelhart Geoffrey E. Hinton R. J. W., Learning representations by back-
propagating errors, EBSCOhost Academic Search Premier, 1986, vol. 323, p. 533

Debosscher J., Sarro L. M., Aerts C., Cuypers J., Vandenbussche B., Garrido R., Solano
E., Automated supervised classification of variable stars: I. Methodology, Astronomy

amp; Astrophysics, 2007, vol. 475, p. 1159-1183

Eyer L., Genton M. G., Characterization of variable stars by robust wave variograms: an
application to HIPPARCOS mission, Astronomy and Astrophysics Supplement Series,
1999, vol. 136, p. 421

Figueiredo A. L., Carciofi A. C., Labadie-Bartz J., Pinho M. L., de Amorim T. H., dos
Santos P. T., Soszynski 1., Udalski A., , 2025 Be star demographics: a comprehensive
study of thousands of lightcurves in the Magellanic Clouds



48 Referéncias Bibliograficas

Haubois X., Carciofi A. C., Rivinius T., Okazaki A. T., Bjorkman J. E., Dynamical Evo-
lution of Viscous Disks around Be Stars. I. Photometry, ApJ, 2012, vol. 756, p. 156

Hunter J. D., Matplotlib: A 2D graphics environment, Computing in Science & Enginee-
ring, 2007, vol. 9, p. 90

Ivezic Z., Kahn S. M., Tyson J. A., Abel B., Acosta E., et al. LSST: From Science Drivers
to Reference Design and Anticipated Data Products, The Astrophysical Journal, 2019,
vol. 873, p. 111

Lomb N. R., Least-Squares Frequency Analysis of Unequally Spaced Data, Ap&SS, 1976,
vol. 39, p. 447

Matheron G., Traité de Géostatistique Appliquée. Tome I. No. 14 in Mémoires du BRGM,
Technip Paris, 1962

Mennickent, R. E. Pietrzynski, G. Gieren, W. Szewczyk, O. On Be star candidates and
possible blue pre-main sequence objects in the Small Magellanic Cloud***, A&A, 2002,
vol. 393, p. 887

Mohammed S., Budach L., Feuerpfeil M., Ihde N., Nathansen A., Noack N., Patzlaff H.,
Naumann F., Harmouch H., The effects of data quality on machine learning performance

on tabular data, Information Systems, 2025, vol. 132, p. 102549

Monsalves Jaque Arancibia, M. Bayo, A. Sanchez-Saez, P. Angeloni, R. Damke, G. Se-
gura Van de Perre, J. Application of Convolutional Neural Networks to time domain

astrophysics. 2D image analysis of OGLE light curves, AA, 2024, vol. 691, p. A106
O’Shea K., Nash R., , 2015 An Introduction to Convolutional Neural Networks

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M.,
Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Bru-
cher M., Perrot M., Duchesnay E., Scikit-learn: Machine Learning in Python, Journal
of Machine Learning Research, 2011, vol. 12, p. 2825

Pepper J., Gould A., Depoy D. L., KELT: The Kilodegree Extremely Little Telescope.
In The Search for Other Worlds: Fourteenth Astrophysics Conference , vol. 713, 2004,
p- 185



Referéncias Bibliograficas 49

Pojmanski G., The All Sky Automated Survey, Acta Astronomica, 1997, vol. 47, p. 467

Powers D. M. W., Evaluation: from precision, recall and F-measure to ROC, informedness,

markedness and correlation, CoRR, 2020, vol. abs/2010.16061

Pérez-Ortiz M. F., Garcia-Varela A., Quiroz A. J., Sabogal B. E., Hernandez J., Machine le-
arning techniques to select Be star candidates: An application in the OGLE-IVGaiasouth
ecliptic pole field, Astronomy amp; Astrophysics, 2017, vol. 605, p. A123

Rimulo L. R., Carciofi A. C., Vieira R. G., Rivinius T., Faes D. M., Figueiredo A. L.,
Bjorkman J. E., Georgy C., Ghoreyshi M. R., Soszynski 1., The life cycles of Be vis-
cous decretion discs: fundamental disc parameters of 54 SMC Be stars, MNRAS, 2018,
vol. 476, p. 3555

Sabogal B. E., Mennickent R. E., Pietrzynski G., Gieren W., Be star candidates in the
Large Magellanic Cloud: the catalogue and comparison with the Small Magellanic Cloud
sample, Monthly Notices of the Royal Astronomical Society, 2005, vol. 361, p. 1055

Samuel A. L., Some Studies in Machine Learning Using the Game of Checkers, IBM J.
Res. Dev., 1995, vol. 44, p. 206

Scargle J. D., Studies in astronomical time series analysis. II. Statistical aspects of spectral

analysis of unevenly spaced data., ApJ, 1982, vol. 263, p. 835

Tan L., Deng H., Mei Y., chi H., Chen Y., Liu T., Wang F., , 2025 A robust method for
identifying Be stars in the LAMOST Data Release 11 based on Deep-learning approach

Udalski A., Szymanski M., Kaluzny J., Kubiak M., Mateo M., The Optical Gravitational

Lensing Experiment, Acta Astronomica, 1992, vol. 42, p. 253



	Introdução
	Estrelas Be e a era da fotometria massiva

	Fundamentos teóricos
	Variabilidade fotométrica de estrelas Be
	Fundamentos de aprendizado de máquina
	Definição e tipos de aprendizado
	Tratamento dos dados e escolha de atributos
	Modelos utilizados neste trabalho
	Métricas de avaliação
	Redução de dimensionalidade


	Metodologia
	Modelos tradicionais
	Organização e tratamento dos dados
	Seleção e normalização de atributos (features)
	Treinamento dos modelos
	Métricas e estratégias de avaliação

	Rede neural convolucional (CNN)
	Preparação do conjunto de imagens
	Arquitetura da rede
	Treinamento do modelo, ajuste de hiperparâmetros e avaliação
	Extensão da CNN para classificação de orientação das estrelas


	Resultados e Discussão
	Modelos tradicionais
	Redes neurais convolucionais (CNNs)
	CNN de classificação binária
	CNN de classificação multiclasse

	Discussão sobre o conjunto de dados e limitações metodológicas

	Conclusões
	Referências

