

NOME		
ESCOLA		
EQUIPE	SÉRIE	
PERÍODO	DATA	

QUESTÃO PRÉVIA

Todos os processos metabólicos dos organismos envolvem, direta ou indiretamente, a produção de proteínas. Inúmeras proteínas diferentes participam das reações bioquímicas inerentes à formação, crescimento, manutenção e reprodução dos organismos.

Se as proteínas são tão importantes assim para a organização da vida, as células devem coordenar a fabricação destas de algum modo peculiar, o que nos leva à seguinte questão: como as proteínas são sintetizadas?

JOGO: SINTETIZANDO PROTEÍNAS

O professor distribuirá o material e passará as instruções. Depois de jogar, responda às questões a seguir:

1. Completar os espaços abaixo com a seqüência de DNA (gene) presente no tabuleiro referente à cor da sua dupla.

Seqüência superior de DNA:

Т	Α	С																
---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

2. Transcrever no espaço abaixo a seqüência do RNA mensageiro (RNAm) correspondente ao seu gene:

DNA	Α	Т	С	G
RNA	\Box	Α	G	O

Seqüência de inicialização de RNAm:

3. Separar as trincas da sua seqüência, anotando-as na primeira coluna indicada. Traduzir cada trinca de RNAm (códon) utilizando o disco de aminoácidos. Colocar a abreviatura na segunda coluna e o nome do aminoácido na terceira de acordo com a tabela a seguir:

Abreviatura	Nome do Aminoácido
Ala	Alanina
Arg	Arginina
Asn	Asparagina
Asp	Aspartato
Cys	Cisteína
Gln	Glutamina
Glu	Glutamato
Gly	Glicina
His	Histidina
lle	Isoleucina
Leu	Leucina
Lys	Lisina
Met	Metionina
Phe	Fenilalanina
Pro	Prolina
Ser	Serina
Thr	Treonina
Trp	Triptofano
Tyr	Tirosina
Val	Valina

Observações

A trinca TAC, que corresponde a seqüência AUG do RNAm codifica o aminoácido Metionina (MET) e representa o aminoácido de inicialização da tradução.

As trincas UGA, UAA, UAG são denominadas de seqüências FIM por não codificarem nenhum aminoácido, representando assim o término da tradução.

Trincas		s	Abreviatura do aminoácido	Nome do aminoácido				
Α	U	G	Met	Metionina				

4. Qual a seqüência de aminoácidos da proteína produzida?

MET

- 5. Todas as situações propostas nas cartas-objetivo poderiam acontecer na vida real. Então, qual seria o efeito nas células se a síntese da proteína que você está produzindo parasse no exato ponto em que você terminou o jogo? Qual seria o efeito no seu organismo?
- 6. Responda novamente a questão prévia e compare com a resposta dada antes de realizar esta atividade.