

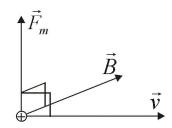
MAGNETISMO E ELETROMAGNETISMO 4. Força Magnética em Condutores

NOME		
ESCOLA		
EQUIPE	SÉRIE	
PERÍODO	DATA	

QUESTÃO PRÉVIA

O que ocorrerá se um fio conduzindo corrente elétrica estiver bem próximo de um imã?

Resposta:			


OBJETIVOS

Identificar a força de um campo magnético sobre um fio conduzindo corrente elétrica.

INTRODUÇÃO

No experimento anterior (O Campo Magnético de uma Corrente Elétrica) vimos que uma corrente elétrica gera um campo magnético em torno de si, e que uma bússola colocada nas proximidades do fio condutor re-alinha com o sentido do campo. Se uma corrente elétrica gera um campo magnético que exerce uma força sobre a agulha de uma bússola, que é um pequeno ímã, é de se esperar que um ímã também exerça uma força sobre as cargas em movimento ("lei da ação e reação"), e conseqüentemente, sobre o fio condutor. De fato, uma carga positiva ${\bf q}$ com velocidade ${\bf v}$ através de um campo magnético ${\bf B}$ sofrerá a ação de uma força magnética ${\bf F}_{\rm m}$, cuja direção e cujo sentido estão representados na figura 4.1. Existem várias regras para memorizar as direções e sentidos dos vetores. A regra que apresentaremos aqui se chama "regra do tapa", e está ilustrada na figura 4.2. O dedão aponta no sentido da corrente, os outros dedos apontam no sentido do campo magnético, e a força é perpendicular à palma da mão (direita), para cima. Essa regra nos dá a força sobre uma carga positiva; se a carga for negativa, o sentido da força será para baixo.

Sabe-se que o sentido convencional da corrente elétrica é o das cargas positivas em movimento. A direção da velocidade (v) das cargas é a mesma da corrente (i) e que em uma pilha vai do positivo (+) para o negativo (-).

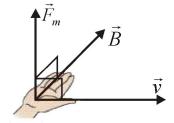
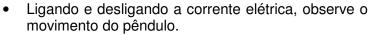


Figura 4.2 - Regra do "tapa", para determinar o sentido da força magnética sobre uma carga positiva.

HIPÓTESES

- **I Pêndulo:** De posse dos conhecimentos obtidos na introdução (regra do tapa) e tendo identificado os pólos de um imã no experimento 1, faça um esboço (desenho) do pêndulo magnético conforme a figura 4.3 indicando a polaridade do imã (norte/sul) e da pilha (+/-), o sentido da corrente (i) e a força magnética (F_m) . Preveja o que ocorrerá com o pêndulo quando ligarmos o sistema. (Ele se movimenta? Para que lado?).
- **II Bobina:** Faça a mesma hipótese proposta para o pêndulo, trocando no seu esboço, o pêndulo pela bobina.


MATERIAL

- Ímã grande de ferrite
- Pilha
- Suporte para pilha
- Dois cabos elétricos com garras "jacaré"
- Um pedaço de fio elétrico fino em forma de bobina
- Pêndulo eletromagnético ("U" de alumínio)

PROCEDIMENTO:

I – Pêndulo eletromagnético

- Encaixe a pilha no seu próprio suporte.
- Encaixe o pêndulo eletromagnético ("U" de alumínio) sobre as duas hastes de metal que estão ao lado do suporte de pilha (Figura 4.3).
- Coloque o ímã grande embaixo do pêndulo.
- Conecte os cabos elétricos, ligando as extremidades do suporte de pilha às hastes de metal (deixe apenas uma das extremidades do fio solta).

 Inverta o sentido da corrente elétrica e observe novamente o movimento do pêndulo.

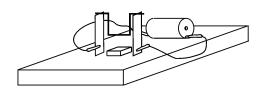


Figura 4.3 - Esquema de montagem do pêndulo eletromagnético.

II - Bobina

Troque o pêndulo pela bobina, para observar o princípio de funcionamento do motor elétrico. Antes de ligar a corrente elétrica verifique se a bobina está bem balanceada, ou seja, verifique se ela gira facilmente sobre o suporte.

- Ligue a corrente elétrica e dê um pequeno toque na bobina para ajudar no início do movimento. A bobina deverá girar sem parar. Obs: caso o experimento não dê certo, peça ao professor para verificar se as extremidades da bobina estão descascadas corretamente.
- Inverta o sentido da corrente elétrica e observe o movimento da bobina.
- Inverta também a polaridade do ímã e observe novamente.

QUESTÕES

- 1) A sua hipótese foi confirmada: o pêndulo se movimentou? Para que lado?
- 2) Invertendo a corrente elétrica como foi o movimento do pêndulo?
- 3) E invertendo a polaridade do ímã?
- 4) Responda as questões anteriores quando é utilizada a bobina.
- 5) As extremidades da bobina não podem ser totalmente desencapadas, ou seja, elas precisam ter uma parte coberta com o verniz isolante, como indica a Figura 4.4. *Explique* o que aconteceria com o movimento da bobina se as suas extremidades fossem completamente desencapadas.
- 6) E agora consegue responder a questão prévia?

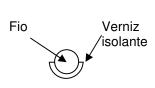
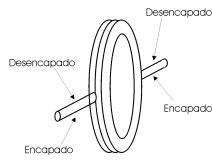



Figura 4.4 - (a) Perfil da extremidade do fio da bobina;

(b) bobina.