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Abstract. In this paper it is introduced a new two-parameter discrete distribution derived from the continuous Sushila distribution
(Shanker et al., 2013). Its mathematical properties and estimation procedures for the parameters of the proposed model are
presented assuming complete and right-censored data. This new model, in the same way as the continuous Sushila distribution,
has the discrete Lindley distribution as a special case. An extensive simulation study is carried out to examine the bias and the
roots of the mean squared errors for the maximum likelihood estimators as well the moments and Bayesian estimators of the
proposed model parameters. Some examples using simulated data and real datasets are considered to show that the new proposed
model performs at least as good as its particular case and some other traditional discrete models as the Poisson and geometric
distributions.

Keywords: Bayesian analysis, discrete Lindley, discrete Sushila, Monte Carlo simulation, MCMC methods, right-censoring,
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1. Introduction

In the recent decades, the construction of new discrete distributions using discretization methods has been widely
used in the literature. Basically, the main purpose of the discretization is to generate distributions that can be used
for the analysis of strictly discrete data as alternatives to the traditional discrete distributions as the Poisson and
geometric distributions. A field of study where the discretization process is widely needed is in the analysis of
lifetime data where it is common the use of continuous distributions to model lifetime data, which could be discrete,
usually in presence of censored data. Several applications where continuous distributions are used to model discrete
data can be found in Klein and Moeschberger (1997), Meeker and Escobar (1998), Kalbfleisch and Prentice (2002),
Lee and Wang (2003), Lawless (2003), Collett (2003), Hamada et al. (2008), among many others. A complete survey
regarding all discretization methods introduced in the literature and some discretized distributions can be found in
Chakraborty (2015).

One of the first proposed discretization methods presented in the literature is based on the definition of a proba-
bility mass function based on a infinite series. The first foundations of this method were presented by Good (1953),
that proposed the discrete Good distribution to model population frequencies of species. Such approach was con-
sidered by other authors to define discrete analogues, for example: Haight (1957) proposed the discrete Pearson
III distribution to model queues with baking; Siromoney (1964) introduced the Dirichlet’s Series distribution as an
alternative to model the frequency of wet days (rain-spells); Kemp (1997) formally introduced the discrete normal
distribution and derived its main mathematical properties; the discrete exponential distribution was proposed by Sato
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et al. (1999) to describe the defect count frequencies on wafers or chips; Bi et al. (2001) introduced the discrete log-
normal distribution; Inusah and Kozubowski (2006) presented the discrete Laplace distribution also arguing that,
in comparison to the discrete normal distribution, the proposed model has closed forms for the probability mass
function, for the generating functions and for the central moments; the skewed version of the discrete Laplace dis-
tribution was proposed by Kozubowski and Inusah (2006); Doray and Luong (1997) presented efficient estimators
for the parameters of the Good distribution family; Kemp (2008) introduced the discrete half-normal distribution
also presenting its relation with other existing distributions and Nekoukhou et al. (2012, 2013) proposed the discrete
generalized exponential distribution as an attempt to model rank frequencies of graphemes in the Slovene language.
The method of discretization by infinite series is characterized by the following definition.

Definition 1. Let X be a continuous random variable. If X has probability density function fX(x;θ) with support
on R, then the corresponding discrete random variable Y has probability mass function given by

Pr(Y = y|θ) =
fX(y|θ)
∞∑

j=−∞
fX(j|θ)

, y ∈ Z, (1)

being θ the vector of parameters indexing the distribution of X . Observe that if the random variable X is defined on
R+, the probability mass function of Y becomes

Pr(Y = y|θ) =
fX(y|θ)
∞∑
j=0

fX(j|θ)
, y ∈ Z+. (2)

One of the most recent examples of the use of this method is provided by the discrete analogue of the generalized
exponential probability distribution introduced by Nekoukhou et al. (2012) having probability mass function given
by,

Pr(Y = y|α, λ) = λx−1(1− λx)α−1

[ ∞∑
i=1

(
α− 1

j

)
(−1)jλj

1− λ1+j

]−1

, y ∈ Z+, (3)

for α ∈ R+ and λ ∈ (0, 1).
The main goal of this paper is to use the infinite series method to propose a discrete analogue for the Sushila

distribution which is a two-parameter lifetime model proposed by Shanker et al. (2013). In this way, it is expected
that the proposed discrete Sushila distribution could be a suitable alternative for survival data, especially in the
presence of right-censored data. The Sushila distribution has the one-parameter Lindley distribution (Ghitany et al.,
2008) as a special particular case and can also be written as a mixture of probability distributions in the same way
as the Lindley distribution.

Le X be a continuous random variable with a Sushila probability distribution. The Sushila probability density
function (pdf) is given by,

fX(x|α, θ) =
θ2

α(θ + 1)

(
1 +

x

α

)
exp

{
− θ
α
x

}
, x ∈ R+, (4)

where θ ∈ R+ and α ∈ R+. Shanker et al. (2013) have shown that this model is a two component mixture of an
exponential distribution with scale parameter θ/α and a gamma distribution having shape parameter equal to 2 and a
scale parameter θ/αwith mixing proportion given by θ/(θ+1). A comprehensive discussion about the mathematical
properties of the Sushila distribution such as moments, hazard function, stochastic orderings, parameter estimation,
among others is also presented by Shanker et al. (2013). The corresponding survival function is given by

SX(x|α, θ) =
α(θ + 1) + θx

α(θ + 1)
exp

{
− θ
α
x

}
, x ∈ R+. (5)

This paper is organized as follows: In Section 2, it is introduced the discrete Sushila distribution and derived
the main mathematical properties. In Section 3, the estimation of the parameters and inference procedures under
Classical and Bayesian approaches are presented. In Section 4, a Monte Carlo simulation study is carried out to
evaluate the performance of the presented estimators. In Section 5, applications of the proposed model to real
datasets are considered to illustrate its usefulness. Some concluding remarks are presented in Section 6.
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2. The discrete Sushila distribution

A first approach of the discrete Sushila distribution was introduced in the literature by Borah and Saikia (2016).
These authors used the discretization idea based on the survival function proposed by Nakagawa and Osaki (1975)
in the discretization of the Weibull distribution to introduce a new discrete Sushila distribution. In this paper, it
is introduced another approach to construct a discrete Sushila distribution based on the discretization method by
infinite series previously described.

Let X be a continuous random variable following Sushila distribution with parameters α and θ and pdf given by
Eq. (4). Thus using the discretization approach given in Eq. (2), the probability mass function (pmf) of the discrete
Sushila (DS) distribution with parameters α and θ is given by,

Pr(X = x|α, θ) =
(α+ x)γθx(γ−θ − 1)2

γ−θ(γ−θα− α+ 1)
, (6)

where x ∈ Z+, α, θ ∈ R+ and 0 < γ = exp{−1/α} < 1. Observe that, when α = 1, the pmf given in Eq. (6) re-
duces to the discrete Lindley distribution introduced by Oliveira et al. (2017) which is expected since the continuous
Sushila distribution has the continuous Lindley distribution as a particular case.

The corresponding cumulative distribution function (cdf) and survival function (sf) of the DS distribution are
given, respectively, by,

Pr(X 6 x|α, θ) = 1− (α+ x)γθ(x−1) − (x+ α− 1)γθx

γ−θα− α+ 1
, (7)

and,

Pr(X > x|α, θ) =
(α+ x)γθ(x−1) − (x+ α− 1)γθx

γ−θα− α+ 1
. (8)

The pmf Eq. (6) does not involves complicated expressions and therefore, the probabilities can be straightfor-
wardly computed, as for example,

Pr(X = 0|α, θ) =
α(γ−θ − 1)2

γ−θ(γ−θα− α+ 1)
,

for α, θ ∈ R+. Figure 1 illustrates the behavior of the pmf Eq. (6) for selected values of α and θ.
On other hand, the pmf Eq. (6) satisfies the the log-concave inequality Pr2(X = x) > Pr(X = x − 1)Pr(X =

x+ 1) for x > 1 which implies unimodality (see Keilson & Gerber, 1971). The relationship between log-concavity,
unimodality and increasing hazard rate of discrete distributions has been discussed by Grandell (1997). In this way,
the mode of DS distribution is given by,

r(α, θ) =


⌈

1+α−αγ−θ

γ−θ−1

⌉
, if 1+α−αγ−θ

γ−θ−1
/∈ Z+ and 0 < θ < 1

1+α−αγ−θ

γ−θ−1
, if 1+α−αγ−θ

γ−θ−1
∈ Z+ and 0 < θ < 1,

(9)

where d·e is the ceiling function. For instance, if (α, θ) = (1.5, 0.7) then r(α, θ) ≈ 0.1816 and hence, the mode is
1, as can be seen in the left-panel of the Fig. 1. Moreover, the following relations between pmf and mode are easily
obtained from Eqs (6) and (9),

i) Pr(X = x+ 1; θ) < Pr(X = x; θ) if x > r(α, θ);
ii) Pr(X = x+ 1; θ) = Pr(X = x; θ) if x = r(α, θ);

iii) Pr(X = x+ 1; θ) > Pr(X = x; θ) if x < r(α, θ).
It follows from Eqs (6) and (8) that the hazard rate function (hf) of the DS distribution is concave and increasing

in x ∈ Z+ and is given by,

h(x|α, θ) =
Pr(X = x|α, θ)
Pr(X > x|α, θ)

=
(α+ x)γθx(γ−θ − 1)2

γ−θ[(α+ x)γθ(x−1)−(x+α−1)γθx ]
, (10)

where h(0|α, β) = Pr(X = 0|α, θ) and h(∞) = 1− γθ = 1− exp{−θ/α} < 1 for α, θ > 0. Therefore, the hf of
the DS distribution is limited to the interval (0,1). Figure 1 also illustrates the behavior of the hf Eq. (10) for selected
values of α and θ.
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Fig. 1. Behavior of the pmf (left-panel: (α, θ) = (1.5, 0.7)) and hf (right-panel: (α, θ) = (1.5, 1.7)) of the DS distribution.

The quantile function of the DS distribution, say Q(u), defined by F (Q(u)) = u depends on the Lambert W
function (Lambert, 1758; Jodrá, 2010) and is given by,

Q(u|α, θ) =

−α
θ
W−1

θ(1− u)(γ−θα− α+ 1) exp
{
− θ(γ

−θα−α+1)
α(γ−θ−1)

}
α(γ−θ − 1)

− γ−θα− α+ 1

γ−θ − 1

 , (11)

where 0 < u < 1, b·c is the floor function and W−1(·) is the Lambert W function with negative branch.
The last property that will be discussed in this paper is related to the moments of the DS distribution. Let X be a

discrete random variable such that X ∼ DS(α, θ), then the rth raw moment for the DS distribution depends on the
polylogarithm Ls(x) (for more details, see Miller, 2008) and it is given by,

E[Xr] =
(γ−θ + γθ − 2)[αLi−r(γ

θ) + Li−1−r(γ
θ)]

γ−θα− α+ 1
, (12)

from where, taking r = 1, 2, 3, 4, the first four moments around the origin (raw moments) of the DS distribution are
obtained, respectively, as,

E[X] =
γ−θ + γ−θα− α+ 1

(γ−θα− α+ 1)(γ−θ − 1)
,

E[X2] =
4γ−θ + (α+ 1)γ−2θ − α+ 1

(γ−θα− α+ 1)(γ−θ − 1)2
,

E[X3] =
(11− 3α)γ−θ + (3α+ 11)γ−2θ + (α+ 1)γ−3θ − α+ 1

(γ−θα− α+ 1)(γ−θ − 1)3
,

E[X4] =
(26− 10α)γ−θ + 66γ−2θ + (10α+ 26)γ−3θ + (α+ 1)γ−4θ − α+ 1

(γ−θα− α+ 1)(γ−θ − 1)2(γ−2θ − 2γ−θ + 1)
.

It is important to point out that the mean of the DS distribution is always greater than the mode, that is, the DS
distribution is positively skewed. The mean and the variance for the DS distribution are given, respectively, by,

µ = E[X] =
γ−θ + γ−θα− α+ 1

(γ−θα− α+ 1)(γ−θ − 1)
,

σ2 = E[X2]− E[X] =
(1 + α)(γ−θα− α+ 1)γ−2θ − (γ−θα+ (1− α)α+ 2)γ−θ

(γ−θα− α+ 1)2(γ−θ − 1)2
, (13)
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where σ2 > µ if θ < ε, σ2 < µ if θ > ε and σ2 = µ if θ = ε where ε is given by,

ε = ln

[
(α+ 1 +

√
2)(α− 1)

α2 + 2α− 1

]
α. (14)

Now, taking the ratio between the variance and the expected value, one can define the dispersion index and the
coefficient of variation of the DS distribution, respectively, as,

DI =
σ2

µ
=

(1 + α)(γ−θα− α+ 1)γ−2θ − (γ−θα+ (1− α)α+ 2)γ−θ

(γ−θα− α+ 1)(γ−θ − 1)(γ−θα+ γ−θ − α+ 1)
, (15)

CV =
σ

µ
=

√
(1+α)(γ−θα−α+1)γ−2θ−(γ−θα+(1−α)α+2)γ−θ

(γ−θα−α+1)2(γ−θ−1)2
(γ−θα− α+ 1)(γ−θ − 1)

γ−θ + γ−θα− α+ 1
. (16)

The asymmetry degree and the flatness of a distribution are usually measured by their coefficients of skewness
and kurtosis, respectively. The first one can be computed by the third central moment normalized by the variance
raised to the power 3/2 and the latter is given by the fourth central moment divided by the square of the variance.
These coefficients are quite important to characterize the shape of a distribution but, for the DS model, extensive and
very complicated expressions are obtained for such measures. For this reason, the expressions of these coefficients
will be omitted of this study.

3. Estimation methods

In this section, it is estimated the unknown parameters of the DS distribution using the methods of moments,
maximum likelihood method and the Bayesian method. For maximum likelihood and Bayesian methods, it is also
presented the estimation procedure in presence of right-censored data.

3.1. Method of moments

The method of moments is the simplest technique commonly used in parameter estimation when the raw moments
has a closed analytical form. For the DS distribution, first, let m1 = 1/n

∑n
i=1 xi and m2 = 1/n

∑n
i=1 x

2
i be the

first two sample moments, respectively. The method of moments estimates (MOM) α̂ and θ̂ for α and θ are obtained
by solving the equations,

E[X|α̂, θ̂] = m1 and E[X2|α̂, θ̂] = m2, (17)

where E[X] and E[X2] are the first two raw moments of DS distribution given in Eq. (13). Solving both equations
simultaneously, the MOM of θ has closed form and is given by,

θ̂MOM = ln

(
2x̄α̂− x̄+ α̂+ 1 +

√
x̄2 + 6x̄α̂+ α̂2 − 2x̄+ 2α̂+ 1

2x̄α̂

)
α̂. (18)

For the MOM estimator of α, there is no closed analytical form for the moment estimator. Thus, in this paper,
the MOM estimator of α was computed using the nleqslv package of the R software considering ‘Newton’ as
optimization method.

3.2. Maximum likelihood method

3.2.1. Complete data
Considering x1, . . . , xn a random sample of the DS distribution with parameters α and θ, and pmf given by

Eq. (6), the likelihood function could be written as,

L(α, θ|x) =

n∏
i=1

(α+ xi)γ
θxi(γ−θ − 1)2

γ−θ(γ−θα− α+ 1)
. (19)
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From Eq. (19), the log-likelihood can be written as,

`(α, β|x) =

n∑
i=1

ln(α+ xi)−
θnx̄

α
+ 2n ln(γ−θ − 1)− nθ

α
− n ln(γ−θα− α+ 1), (20)

which is maximized solving numerically, in α and θ, the non-linear system of the equations,

Un =


∂`
∂α =

n∑
i=1

1
α+xi

+ θnx̄
α2 − 2nθγ−θ

α2(γ−θ−1)
+ nθ

α2 −
n
(
− θγ

−θ
α +γ−θ−1

)
γ−θα−α+1

= 0

∂`
∂θ = −nx̄α + 2nγ−θ

α(γ−θ−1)
− n

α −
nγ−θ

γ−θα−α+1
= 0

. (21)

From Eq. (21), it is obtained that x̄ = µ, where µ is the mean of the DS distribution, which implies that θ̂MLE =
θ̂MOM, that is,

θ̂MLE = ln

(
2x̄α̂− x̄+ α̂+ 1 +

√
x̄2 + 6x̄α̂+ α̂2 − 2x̄+ 2α̂+ 1

2x̄α̂

)
α̂ = θ̂MOM. (22)

On other hand, there is no closed analytical form for the maximum likelihood estimator (MLE) for α. Thus,
it is needed in the estimation procedure the use of standard numerical optimization algorithms such the Newton-
Raphson, BFGS or Nelder-Mead methods. In this paper, the estimation was done by the fitdistplus package of the R
software and the BFGS optimization method.

Now, under suitable regularity conditions (see, Lehmann & Casella, 1998, pp. 461–463), the asymptotic dis-
tribution of the maximum likelihood estimator (α̂, θ̂) is a multivariate Normal distribution with mean (α, θ) and
covariance matrix Σ(Ω̂), Ω̂ = (α̂, θ̂), which can be consistently estimated by the inverse of the observed Fisher’s
information matrix I0 given by,

I0(α̂, θ̂) =

(
− ∂2`
∂2α2 − ∂2`

∂2αθ

− ∂2`
∂2θα −

∂2`
∂2θ2

)
α̂,θ̂

, (23)

where,
∂2`

∂2θ2
=

2nγ−θ

α2(γ−θ − 1)

(
1− γ−θ

γ−θ − 1

)
− nγ−θ

γ−θα− α+ 1

(
1

α
− γ−θ

γ−θα− α+ 1

)
,

∂2`

∂2α2
= −

n∑
i=1

1

(α+ xi)2
− 2θnx̄

α3
+

4nθγ−θ

α3(γ−θ − 1)
+

2nθγ−θ

α4(γ−θ − 1)

(
1− γ−θ

γ−θ − 1

)

−2nθ

α3
− nθ2γ−θ

α3(γ−θα− α+ 1)
+
n
(
− θγ

−θ

α + γ−θ − 1
)2

(γ−θα− α+ 1)2
,

∂2`

∂2αθ
=

∂2`

∂2θα
=
nx̄

α2
+

2nγ−θ

α2(γ−θ − 1)

(
θγ−θ

α(γ−θ − 1)
− θ

α
− 1

)
+

n

α2
+

nθγ−θ

α2(γ−θα− α+ 1)

+
n
(
− θγ

−θ

α + γ−θ − 1
)
γ−θ

(γ−θα− α+ 1)2
.

On other hand, for the expected Fisher’s information matrix IE , observe that the IE differs from I0 only for the
term

∑n
i=1 1/(α+ xi)

2 since E[x̄] = nµ where µ is the mean of the DS distribution. In this case, observe that,

E
[

1

(α+X)2

]
=

(γ−θ − 1)2Φ(1/γ−θ, 1, α)

(γ−θα− α+ 1)γ−θ
, (24)

where Φ(·) is the Lerch transcendent function (Hassani, 2007; Ferreira et al., 2017). Thus, the expected Fisher’s
information matrix IE is the same as the observed Fisher’s information matrix IE replacing the terms

∑n
i=1 1/(α+

xi)
2 by E[1/(α + X)2] given above and E[x̄] = nµ. For the interval estimates, it could be used large sample

approximations for the 100× (1− η)% two sided confidence interval (CI), that is, α̂± z η
2

ŝe(α̂) and θ̂ ± z η
2

ŝe(θ̂),
where zη is the upper ηth percentile of the standard Normal distribution and the standard error (SE) is estimated as
the squared root of the variance of α̂ and θ̂ obtained from the expected Fisher’s information matrix IE(α̂, θ̂).
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3.2.2. Right-censored data
Let us consider the situation when the lifetime, Xi, is not completely observed and may be subject to right

censoring. Let Ci be the censoring time for the ith individual. From a sample of size n, it is observed Xi =
min{Xi, Ci} and δi = I(Xi < Ci), where δi = 1 if Xi is a complete observed lifetime and δi = 0 if it is a
right censored lifetime. In this case, the log-likelihood function considering the DS distribution with pmf defined in
Eq. (6), can be written as,

`(α, β|x) =

n∑
i=1

δi ln(α+ xi)−
θrnx̄

α
+ 2rn ln(γ−θ − 1)− rnθ

α
− nr ln(γ−θα− α+ 1) +

(25)n∑
i=1

(1− δi) ln

[
(α+ xi)γ

θ(xi−1) − (xi + α− 1)γθxi

γ−θα− α+ 1

]
,

where r =
∑n
i=1 δi is the number of uncensored observations and nx̄ =

∑n
i=1 xi is the sample mean. In this

case, the MLEs α̂ and θ̂ for the unknown parameters α and θ obtained by maximizing the log-likelihood function
defined in Eq. (25), have no closed analytical form which differs from the complete data case where the MLE for θ
was easily obtained. In addition, under suitable regularity conditions, the observed Fisher’s information matrix I0 is
given by,

I0(α̂, θ̂) =

(
− ∂2`
∂2α2 − ∂2`

∂2αθ

− ∂2`
∂2θα −

∂2`
∂2θ2

)
α̂,θ̂

, (26)

where,

∂2`

∂2θ2
=

2rnγ−θ

α2(γ−θ−1)

(
1− γ−θ

γ−θ−1

)
− rnγ−θ

γ−θα−α+1

(
1

α
− γ−θ

γ−θα−α+1

)
+

n∑
i=1

(1−δi)γ−θ

γ−θα−α+1

[
γ−θ

γ−θα−α+1
− 1

α

]
+

n∑
i=1

(1−δi)
α2[(α+xi)γθ(xi−1)−(xi+α−1)γθxi ]{[

(α+xi)(xi−1)2γθ(xi−1)−(xi+α−1)x2
i γ
θxi
]
− [(α+xi)(xi−1)γθ(xi−1)−(xi+α−1)xiγ

θxi ]2

α2[(α+xi)γθ(xi−1)−(xi+α−1)γθxi ]

}
∂2`

∂2α2
=−

n∑
i=1

δi
(α+xi)2

− 2θrnx̄

α3
+

4rnθγ−θ

α3(γ−θ−1)
+

2rnθγ−θ

α4(γ−θ−1)

(
1− γ−θ

γ−θ−1

)
− 2nθ

α3
− nθ2γ−θ

α3(γ−θα−α+1)
+

n
(
− θγ

−θ

α +γ−θ−1
)2

(γ−θα−α+1)2
+

n∑
i=1

(1−δi)
γ−θα−α+1

[(
γ−θ− θ

αγ
−θ−1

)2
γ−θα−α+1

− θ
2γ−θ

α3

]
+

n∑
i=1

(1−δi)θ[(x2
i θ+((θ−2)α−θ)xi−2α)xiγ

θxi−(x2
i θ+((θ−2)α−θ)xi−αθ)(xi−1)γθ(xi−1)]

α4[(α+xi)γθ(xi−1)−(xi+α−1)γθxi ]
−

n∑
i=1

(1−δi){γθ(xi−1)+α−2[θ(α+xi)(xi−1)γθ(xi−1)]−γθxi−α−2[θ(α+xi−1)xiγ
θxi ]}2

[(α+xi)γθ(xi−1)−(xi+α−1)γθxi ]2
,

∂2`

∂2αθ
=

∂2`

∂2θα
=
rnx̄

α2
+

2rnγ−θ

α2(γ−θ−1)

(
θγ−θ

α(γ−θ−1)
− θ
α
−1

)
+
rn

α2
+

rnθγ−θ

α2 (γ−θα−α+1)
+

rn
(
− θγ

−θ

α +γ−θ−1
)
γ−θ

(γ−θα−α+1)
2 +

n∑
i=1

(1−δi)γ−θ

γ−θα−α+1

[(
γ−θ− θ

αγ
−θ−1

)
γ−θα−α+1

+
θ

α2

]
+

n∑
i=1

(1−δi)θ
[
(x2
i θ+((θ−1)α−θ)xi+α)xiγ

θxi−(x2
i θ+((θ−1)α−θ)xi−αθ)(xi−1)γθ(xi−1)

]
α3
[
(α+xi)γθ(xi−1)−(xi+α−1)γθxi

] −
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n∑
i=1

(1−δi)
{[

(x2
i θ+(α−1)θxi+α

2
]
γθxi−

[
x2
i θ+(α−1)θxi+α(α−θ)

]
γθ(xi−1)

}
α3
[
(α+xi)γθ(xi−1)−(xi+α−1)γθxi

]2 {
(xi+α−1)xiγθxi−(xi−1)(α+xi)γθ(xi−1)

}−1 .

Different from complete data, for censored data, the expected Fisher’s information matrix IE cannot be obtained
in an analytical way. Then, in this case, the asymptotic distribution of the maximum likelihood estimator (α̂, θ̂)
is a multivariate Normal distribution with mean (α, θ) and covariance matrix Σ(Ω̂), Ω̂ = (α̂, θ̂), which can be
consistently estimated by the inverse of the observed Fisher’s information matrix I0.

3.3. Bayesian method

The Bayesian paradigm is based on specifying a probability distribution for the observed data D given a vector of
unknown parameters η and it provides a method for updating the new information using the Bayes’ rule given the
prior distribution specifying the uncertainty about the parameter (see Ibrahim et al., 2005).

In order to determine the Bayes estimators for the unknown parameters of the DS model based on the squared
error loss function, L(η, a) = (η − a)2, suppose that the parameters α and θ have non-informative independent
Uniform(0, k) prior distributions where k is a positive integer such that π(α), π(θ) ∝ 1. The Bayes estimate of any
function of (α, θ), say ω(α, θ), assuming the squared error loss function is given by,

µ̂B =

∫ k
0

∫ k
0
ω(α, θ)L(α, θ)π(α)π(θ)dαdθ∫ k

0

∫ k
0
L(α, θ)π(α)π(θ)dαdθ

(27)

Since the kernel of the likelihood function is proportional to a gamma distribution, the Bayes estimate of ω(α, θ)
could also be obtained assuming independent gamma prior distributions given respectively, by,

π1(α) =
βλ

Γ(λ)
α(λ−1) exp{−βα},

(28)
π2(θ) =

βλ

Γ(λ)
θ(λ−1) exp{−βθ}.

Observe that since it is not possible to compute Eq. (27) analytically, it is used MCMC methods to get the posterior
summaries of interest. In this way, without loss of generality, it is used the Gibbs sampling algorithm to generate
samples from the posterior distribution of interest from which it is computed the Monte Carlo Bayes estimators
under the squared error loss function. The Gibbs sampling algorithm steps are given by,

– Step 1: Choose initial values, α(0) and θ(0) for α and θ. Denote the values of α and θ at the ith step by α(i), θ(i).
– Step 2: Generate α(i), θ(i+1) from the conditional posterior distributions needed for the Gibbs sampling algo-

rithm obtained directly from the joint posterior distribution.
– Step 3: Repeat step 2, N times.
– Step 4: Calculate the Monte Carlo Bayes estimate of ω(α, θ) using the expression given by (1/(N − B))∑N

i=B+1 ω(α(i), θ(i)) where B = 5,000 is the burn-in period.
The posterior summaries of interest are computed using the package R2jags (Su & Yajima, 2015) from R software

(R Core Team, 2018) considering a “burn-in sample” of size 5,000 to eliminate the effect of the initial values and a
final Gibbs sample of size 2,000 taking every 100th sample from 200,000 simulated Gibbs samples. Furthermore,
the convergence of the Gibbs Sampling algorithm was monitored using standard graphical methods, as the trace
plots of the simulated samples.

4. Monte Carlo simulation study

This section reports the results of a simulation study carried out to assess the performance of the MLEs, MOM
and Bayesian estimators for the DS distribution assuming complete and censored data. The simulation study was
performed in R software using the packages fitdistrplus for MLEs, nleqslv for MOM estimators and R2jags for
Bayesian estimators. For the Bayesian estimators, independent approximately non-informative gamma prior distri-
butions, Gamma(0.001, 0.001), were assumed for both parameters. The BFGS optimization method was considered
as the optim.method. To simulate observations from DS model, the inverse transformation method for discrete case
was used following the steps (Devroye, 1987):
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Fig. 2. The biases and RMSEs for both parameters assuming the DS distribution for each considered scenario considering the MLE (upper-panels),
MOM (middle-panels) and Bayesian (lower-panels) estimators assuming complete data.

– Step 1: Generate U ∼ Uniform(0, 1).
– Step 2: Define X by F (X − 1) =

∑
i<X pi < U 6

∑
i6X pi = F (X) where P (X = i) = pi. Set X = 0 and

S = p0.
– Step 3: While U > S, do X = X + 1 and S = S + pX .
– Step 4: Return X .
The simulation study was performed under six scenarios considering the assumed parameter values as the combi-

nation of (α = 0.5, 1.0, 1.2, θ = 0.3, 0.8) for better computational stability. It was also considered the sample sizes
n = 100, . . . , 1000, each one involving 10,000 Monte Carlo replications. For each scenario, the biases and the RMSE
for the estimated parameter component of the vector of parameters (α, θ) were computed using the expressions:

BIAS(Ψ̂) =
1

N

N∑
i=1

(Ψ̂i −Ψ), RMSE(Ψ̂) =

√√√√ 1

N

N∑
i=1

(Ψ̂i −Ψ)2

where N = 10,000 is the number of simulations and Ψ denotes each parameter α or θ.

4.1. Simulation results

4.2. Complete data

The obtained simulation results for each scenario assuming complete data are illustrated in Fig. 2 for MLE, MOM
and Bayesian, respectively. From the simulation results illustrated in Fig. 2, it is possible to conclude that,
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i.) Assuming the MLE estimators, both parameters are asymptotically non-biased sinceE(θ) ≈ θ andE(α) ≈ α
when n→∞. Moreover, the RMSE values also tend to zero when n→∞. In addition, the biases values do
not exceed the value 0.55 for both parameters and the RMSEs values do not exceed the value 0.90 for both
parameters, except for the fourth and the sixth scenarios assuming sample size equals to n = 100.

ii.) Assuming the MOM estimators, both parameters are asymptotically non-biased since E(θ) ≈ θ and E(α) ≈
αwhen n→∞. Moreover, the RMSE values also tend to zero when n→∞. In addition, the biases values do
not exceed the value 0.65 for the parameter α and the value 0.25 for the parameter θ; and the RMSEs values
do not exceed the value 1.10 for α and the value 0.35 for θ, for the third and the sixth scenarios assuming
sample size equals to n = 100. In general, MOM estimators are quite similar to the MLE estimators, however,
the MLE estimators are more computational stable than the MOM estimators.

iii.) Assuming the Bayesian estimators, both parameters are asymptotically non-biased since E(θ) ≈ θ and
E(α) ≈ α when n → ∞. Moreover, the RMSE values also tend to zero when n → ∞. In addition, the
biases values do not exceed the value 0.50 for the parameter α and the value 0.20 for the parameter θ; and the
RMSEs values do not exceed the value 1.60 for α and the value 0.50 for θ, except for the sample size equals
to n = 100. The results could be improved using another prior distributions (as Uniform, for example), but,
in general, the Bayesian estimators are more suitable than the MLE and MOM in medical applications, for
example.

iv.) The convergence of each estimation method was quite good even thought, for all considered samples, the
parameters had been overestimated (that is, the parameters are positively biased). This result is expected
since the Lindley distribution has the same property. In addition, based on these simulation results, it could
be concluded that the DS distribution could be used as an alternative to other existing discrete univariate
distributions to describe univariate lifetimes with good accuracy and computational aspects.

4.3. Right-censored data

In this section, it is presented the simulation results assuming censored data. To perform the simulation study, it
was considered the same data generated assuming complete data case and considering that the censored observations
are determined by assuming a cut point equals to 10 to obtain simple right-censored observations. The simulation
study was performed under four scenarios considering the assumed parameter values as the combination of (α =
0.2, 0.7, θ = 0.2, 0.5) for better computational stability. Only the Bayesian estimators were considered in this case
for the simulation study since they are more suitable than the MLE and MOM as stated previously. Independent
approximately non-informative uniform prior distributions, Uniform(0, 1), were assumed for both parameters.

The obtained simulation results for each scenario assuming simple right-censored data are illustrated in Fig. 3.
From the results presented in Fig. 3, it is possible to conclude that both parameters are asymptotically non-biased
since E(θ) ≈ θ and E(α) ≈ α when n → ∞. Moreover, the RMSE values also tend to zero when n → ∞. In
addition, the biases values do not exceed the value 0.15 for both parameters α and θ; and the RMSEs values do not
exceed the value 0.25 for both parameters α and θ.

4.4. Numerical experiments

4.4.1. Complete simulated dataset
For illustration purposes, let us consider n = 100 univariate lifetimes generated from the DS distribution (dataset

in Table 1) with arbitrary parameters values α = 0.7 and θ = 0.3 not considering the presence of right-censoring.
For the statistical analysis, it is considered only MLE and Bayesian estimators. For the Bayesian approach, it is
assumed approximately non-informative uniform prior distributions with hyperparameter values equal to (0, 1). The
inference summaries of interest are presented in Table 2.

From the results of Table 2 and comparing to the true parameter values adopted in this simulated dataset, it is pos-
sible to conclude that the Monte Carlo Bayesian estimates are more accurate when compared to the MLE estimates
by observing the standard errors and deviations as well the length of the confidence and credibility intervals. Despite
the differences between both estimators, in general, the Bayesian estimators are more suitable in applications for the
DS distribution.
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Table 1
Simulated lifetimes from a DS distribution with true arbitrary parameters values α = 0.7 and θ = 0.3

X 1 9 3 4 1 4 0 1 5 1 2 2 2 2 3 3 2 0 3 2
4 4 7 5 6 8 8 4 3 1 3 1 1 3 7 2 15 7 8 4
0 2 11 8 4 5 5 3 7 0 0 3 2 3 11 4 2 4 9 9
2 4 1 1 2 2 0 8 12 5 5 7 9 1 2 3 2 0 5 3
1 3 2 3 4 3 2 3 5 0 0 1 10 8 1 8 1 2 0 3

Table 2
Inference summaries for DS distribution with true arbitrary parameters values α = 0.7 and θ = 0.3

Maximum likelihood Bayesian Approach
Param. Estimate Std. error 95% Conf. Int. Param. Post. Mean Std. Dev. 95% Cred. Int.
α 0.6497 0.3265 (0.0098, 1.2896) α 0.7091 0.1844 (0.3343, 0.9872)
θ 0.2927 0.1308 (0.0363, 0.5491) θ 0.3158 0.0765 (0.1601, 0.4439)

Fig. 3. The biases and RMSEs for both parameters assuming the DS distribution for each considered scenario considering the Bayesian estimators
assuming simple right-censored data with cut point equals to 10.

4.4.2. Right-censored simulated data
As a second illustration, it was considered the same data generated for the numerical experiment assuming com-

plete data from a DS distribution where the censored observations are determined by considering a cut point equals
to 10 to obtain simple right-censored observations. Since the Bayesian estimators are more suitable for the DS
distribution, in this illustration, they are only considered as the estimation approach assuming approximately non-
informative uniform prior distributions for the parameters of the model with hyperparameter values equal to (0, 1).
In Table 3, it is presented the posterior summaries of interest for the parameters of the DS distribution.

From the results of Table 3, it is observed that the lengths of the 95% credible intervals are relatively narrow and
the standard deviations are estimated by small values, an indication that the DS distribution has a good performance
for this right-censored simulated dataset under a Bayesian approach and could be used as an alternative to lifetime
models.

5. Real data applications

5.1. Lung cancer data

To illustrate the usefulness of the proposed distribution, it is presented in this subsection, the analysis of a real
medical dataset related to lung cancer assuming the DS distribution. The dataset is given by Ding et al. (2017) and
corresponds to the lifetimes of Chinese patients pathologically confirmed lung cancer who received EGFR, KRAS,
and BARF mutation tests at the Thoracic Cancer Institute, Tongji University from January 2012 to April 2016.
The dataset consists of n = 28 patients with 0 censored observations for the overall survival times and 4 censored
observations for the progression-free survival times.

For the statistical analysis, it is assumed two lifetimes: the overall survival times (calculated from the date of lung
cancer diagnosis to death from any reason or censored at the last follow-up date), and the progression-free survival
times (the times from the treatment start time until the date of systemic progression or death). It is important to point
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Table 3
Posterior summaries for DS distribution with true arbitrary parameters values α = 0.7 and θ = 0.3 in presence of right-censoring

Param. Post. Mean Std. Dev. 95% Cred. Int.
α 0.7406 0.1742 (0.3657, 0.9892)
θ 0.3203 0.0706 (0.1706, 0.4355)

Table 4
Posterior summaries for the parameters and the mean (µ) of DS, Geo, DL1 and DL2 distributions for both lifetimes considered for the lung
cancer data

Overall survival Progression-free survival
Model Par. Mean (S.D.) 95% Cred. Int. DIC Par. Mean (S.D.) 95% Cred. Int. DIC

DS α 0.6164 (0.2462) (0.1257, 0.9838) 176.9 α 0.4588 (0.2494) (0.0669, 0.9476) 146.3
θ 0.0696 (0.0290) (0.0141, 0.1228) θ 0.1475 (0.0766) (0.0228, 0.3006)
µ 17.3620 (2.5596) (13.0547, 23.0751) µ 5.7026 (0.8380) (4.2966, 7.5695)

Geo α 0.9466 (0.0102) (0.9248, 0.9646) 191.1 α 0.8475 (0.2060) (0.7933, 0.8927) 160.2
µ 19.7387 (3.9175) (13.6960, 28.5863) µ 6.7250 (1.1573) (4.8965, 9.4240)

DL1 θ 0.1073 (0.0149) (0.0814, 0.1384) 178.8 θ 0.3053 (0.0417) (0.2256, 0.3912) 148.4
µ 17.5071 (2.7369) (13.1816, 23.8878) µ 5.6960 (0.8999) (4.1704, 7.6417)

DL2 θ 0.1108 (0.0146) (0.0839, 0.1396) 177.6 θ 0.2933 (0.0395) (0.2230, 0.3810) 150.1
µ 17.6525 (2.6285) (13.1717, 23.0719) µ 5.6895 (0.9303) (4.1579, 7.7762)

out that both times are measured in complete months (discrete data) and the possible dependence structure between
both times is not considered here.

The parameters of the DS distribution were estimated under a Bayesian approach assuming approximately non-
informative independent Uniform(0, 1) prior distributions for both parameters. The corresponding results are pre-
sented in Table 4 and the fit of DS distribution was compared to the fit of the Geometric (Geo) distribution and
two discrete Lindley (DL1 introduced by Bakouch et al., 2014; and DL2 introduced by Oliveira et al., 2017) dis-
tributions (for those distributions, uniform prior distributions for the parameters were also considered). Using the
Deviance Information Criteria (DIC) (Spiegelhalter et al., 2014) to discriminate the considered distribution, it could
be concluded that the DS is the best model fitted for the dataset.

A measure that plays an important role in survival analysis is the comparison of the estimated lifetime mean
assuming a parametric distribution with a nonparametric estimator for the mean. In this case, the non-parametric
estimators for the means obtained from the Kaplan and Meier (1958) non-parametric estimators for the survival
functions are given, respectively, by 16.57 months for the overall survival time and 5.71 months for the progression-
free survival time. The estimated mean and the 95% credible intervals for each assumed model are presented in
Table 4 from which it could be concluded that the estimated mean for DS distribution is very close to the empirical
Kaplan-Meier estimator which is a great indication of a good fit and adequacy of the DS distribution to describe
both survival times associated to the lung cancer data.

5.2. Alberta fires data

Now, considering count data, in this subsection, it is presented the analysis of a real dataset related to number
of fires in Alberta assuming the DS distribution. The dataset is given by Tremblay et al. (2018) and corresponds
of the number of fires recorded over a seven year period (1996–2002) within a 67,000 km2 study region of bo-
real forest in northeastern of Alberta, Canada. Fire records were selected from the Alberta government’s Histori-
cal Wildfire Database available in the website http://wildfire.alberta.ca/resources/historical-data/historical-wildfire-
database.aspx.

Forest fires are important events in many terrestrial ecosystems, including the boreal forests of North America. In
many areas where they occur, fire management agencies attempt to control the growth and limit the size of these fires,
to protect human lives, infrastructure, and natural resources (Tremblay et al., 2018). Thus, knowing the probability
distribution of the number of fire is important for forecasting the number of fires that affects one area to draw a way
to extinguish the fires.

For the statistical analysis considered here, it is assumed the response variable number of fires and the DS dis-
tribution do describe the response distribution. A Bayesian approach was assumed considering approximately non-
informative independent Uniform(0, 10) prior distributions for both parameters of the DS distribution. The corre-
sponding results are presented in Table 5 and the fit of the DS distribution was compared to the fit of the Geometric
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Table 5
Posterior summaries for the parameters and the mean (µ) of DS, Geo, DL1, DL2,
and P distributions for number of fires in northeastern of Alberta, Canada

Model Param. Post. Mean Std. Dev. 95% Cred. Int. DIC
DS α 6.0791 1.2213 (3.9385, 8.3157) 6298.7

θ 0.1416 0.0082 (0.1183, 0.1526)
µ 12.4620 0.3770 (11.7278, 13.2178)

Geo α 0.9255 0.0024 (0.9211, 0.9303) 6332.3
µ 13.4457 0.4198 (12.6292, 14.2928)

DL1 θ 0.1449 0.0034 (0.1382, 0.1516) 6319.8
µ 12.4392 0.3246 (11.7917, 13.0720)

DL2 θ 0.1489 0.0036 (0.1419, 0.1559) 6332.4
µ 12.4666 0.3208 (11.8529, 13.1133)

P θ 12.4411 0.1213 (12.2142, 12.6881) 11222.7
µ 12.4411 0.1213 (12.2142, 12.6881)

(Geo) distribution, the two discrete Lindley (DL1 and DL2, see the cited authors in Application 1 for more details)
and Poisson (P) (for those models, uniform prior distributions for the parameters were also considered). Using DIC
criteria to discriminate the considered distribution, it could be concluded that the DS is the best model fitted by the
dataset. In addition, the empirical mean of the data is 12.44 fires and the estimated mean as well the 95% credible
intervals for each assumed model are presented in Table 5 from which it could be concluded that the estimated mean
for DS distribution is very close to the empirical mean which is a great indication of a good fit and adequacy of the
DS distribution to describe the distribution of number of fires in northeastern of Alberta, Canada.

6. Concluding remarks

In this study, it was introduced a new univariate discrete distribution, named discrete Sushila (DS) distribution,
obtained using the Good (1953) discretization method to generate a discrete analogue from the Sushila distribution
proposed by Shanker et al. (2013) as an alternative to existing univariate discrete distributions like the popular
Poisson, the geometric and the discrete Lindley distribution to analyze univariate discrete lifetime data in presence
of right-censored data. The main mathematical properties of this new distribution were also discussed in this study
from where it could be stated that the DS distribution can be used to model data with over/under/equi-dispersion.
Moreover, an extensive simulation study was performed to verify the effectiveness of the maximum likelihood
method, moments estimator and Bayesian method assuming different fixed values for the parameters of the model
and different sample sizes. The results obtained from Monte Carlo studies showed that the parameters of the DS
distribution are asymptotically non-biased and the biases as well the RMSEs tends to zero when the sample size
increases for complete and simple right-censored data.

In the application with real data presented in this study, it was observed that, with the use of the DS distribution,
it is possible to obtain in a simple way the inferences of interest for the dataset in presence or not of right-censored
data with small computational costs and a good accuracy even using non-informative priors for the parameters of the
DS model, under a Bayesian approach. As pointed out in the applications, the estimated mean using DS distribution
is basically equal to the empirical mean of the data considered which is a great indication that the DS distribution
is adequate and describes well the distribution of the data. In general, most of the existing models could be fitted to
the dataset, however, only few of these models could describe the mean in a adequate way which, in some cases, is
the main interest of the researcher. These results could be of great interest for the search of appropriate univariate
lifetime distributions for the analysis of right-censored especially in medical and engineering studies.
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