

Statistical modelling for infectious diseases Part 1: Surveillance data and modelling foundation

Leo Bastos

PROCC/Fiocruz

Leonardo.bastos@fiocruz.br

@leosbastos

Summary

.......

.

- - - - -

.

.....

.

.....

.

......

........

.......

.

.

and a second second

.

.

.

.

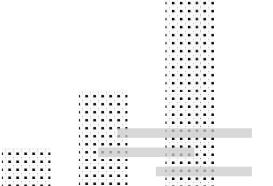
.

.

.

.

.


.

.

.

......

- Epidemiological Surveillance data
 - Descriptive analyses
- Foundation
 - Reporting uncertainty
 - Bayesian approach
- Predictive models
 - Usual model assumptions

.

Epidemiological Surveillance data

Time series

- Aggregated disease cases indexed by time (day, week, month)
- Sometimes extratified according to age groups and sex.

Spatial data

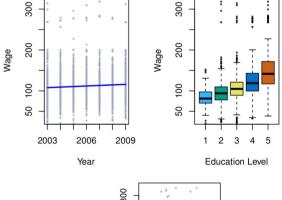
- Aggregated disease cases indexed by region (neighbourhoods, cities, states, countries)
- Spatio-temporal data is not unusal.

_	

Individual level

- Information for each notified case might be available
- Usually administrative data (limited information)
- Missing information

Individual level data

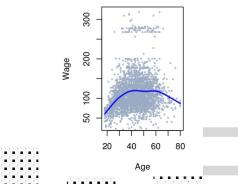

Exploratory data analysis (Stats 101)

.

.

James et al. (2022, ISLR)

Variable	Overall <i>,N</i> = 2501	B.1.1.44 <i>,N</i> = 884	Zeta,N = 518	Gamma, <i>N</i> = 644	Delta <i>,N</i> = 455
Median age in years (IQR)	21 (8-37)	19 (5-37)	25 (8-37)	22 (9-38)	17 (8-34)
Age categories	N (%)	N (%)	N (%)	N (%)	N (%)
0 to 4 years	408 (16%)	191 (22%)	79 (15%)	79 (12%)	59 (13%)
5 to 11 years	503 (20%)	167 (19%)	96 (19%)	126 (20%)	114 (25%)
12 to 17 years	250 (10.0%)	74 (8.4%)	37 (7.1%)	76 (12%)	63 (14%)
18 to 59 years	1192 (48%)	397 (45%)	268 (52%)	326 (51%)	201 (44%)
60 and older	148 (5.9%)	55 (6.2%)	38 (7.3%)	37 (5.7%)	18 (4.0%)
Female	1512 (60%)	544 (62%)	308 (59%)	379 (59%)	281 (62%)
SARS-COV-2 positive by RT-PCR	744 (12%)	139 (12%)	200 (17%)	287 (14%)	118 (7%)
SARS-CoV-2 seropositive	1479 (34%)	339 (33%)	199 (21%)	318 (21%)	623 (73%)


Table 1: Sociodemographic and virologic characteristics of the study participants (*N* = 2501). IQR = interquartile range.

Carvalho et al. (2022, The Lancet Regional Health)

* Rarely available.

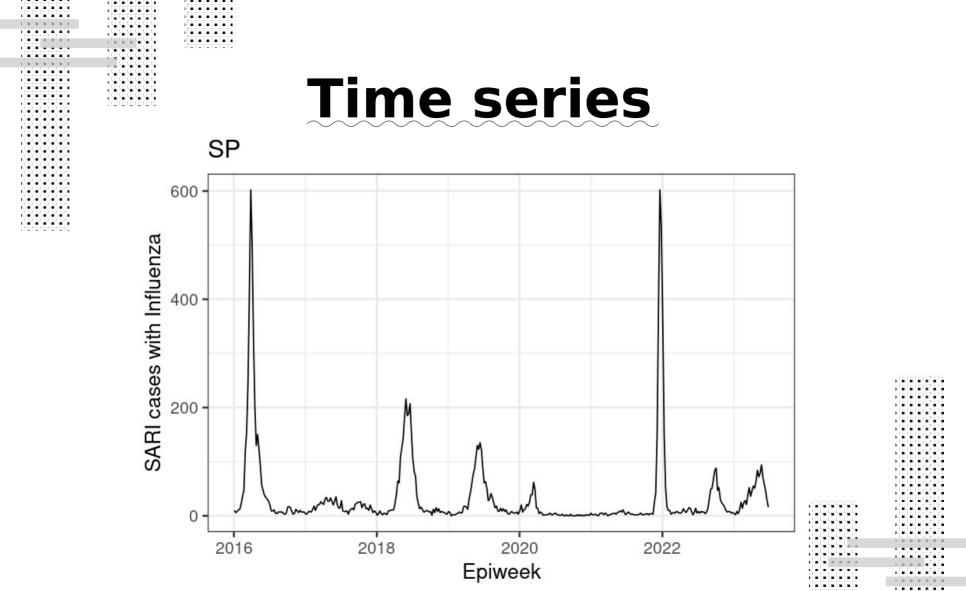
.

.

Number of disease cases per unit of time

.

.


.

.

a stand and and and

 $Y_t, X_t, N_{t,1}, \dots, t = 1, 2, \dots, T.$

- Time could be days, weeks, months, years, ?
- There is some dependence among consecutive observations
- Most frequent (available) type of surveillance data

ere de la contra de

.

.

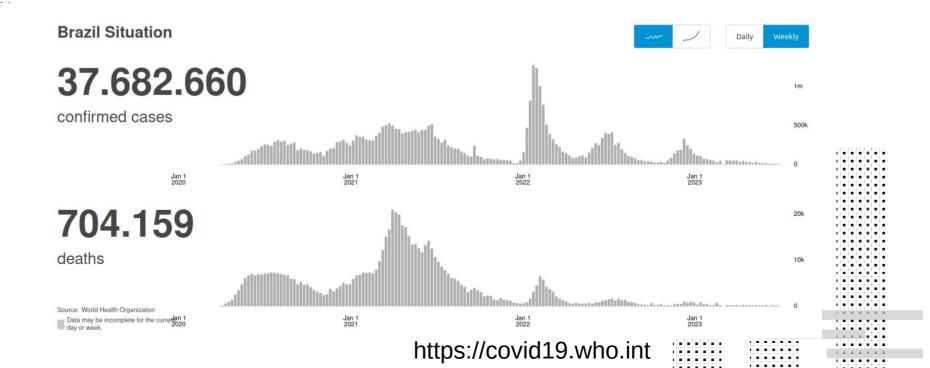
.

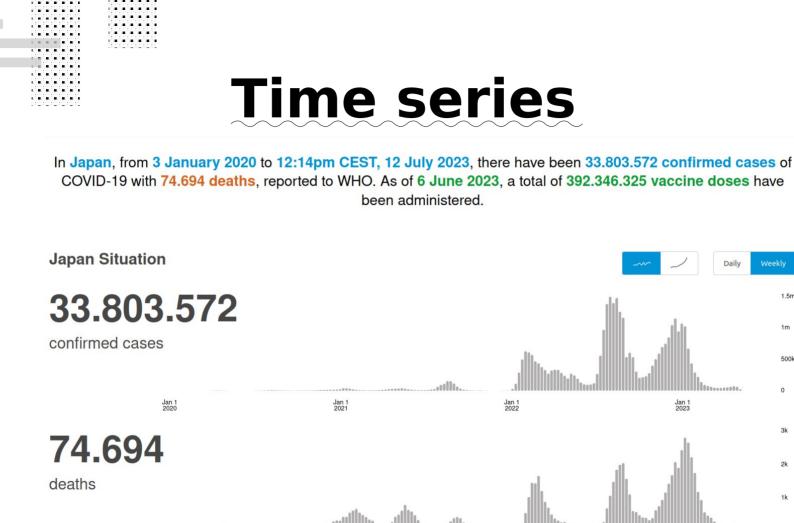
.

2.2

2.2.

had all all all all all


.


.

.....

10 M 10

In Brazil, from 3 January 2020 to 12:14pm CEST, 12 July 2023, there have been 37.682.660 confirmed cases of COVID-19 with 704.159 deaths, reported to WHO. As of 2 June 2023, a total of 513.329.718 vaccine doses have been administered.

Jan 1 2021

Jan 1 2022

https://covid19.who.int

1.5m

1m

500k

3k

2k

. . .

. . . A 8 8

.....

Jan 1 2023

. . . .

.

.

.

.

. .

.

.

.

• TS can be used to describe disease dynamics

- We may also help us to identify patterns
 - Seasonality

.

.

and and and and and a dis-

.

- Trends

.

.

.

- Disease natural history (e.g. TS by age groups)

.

1. U.		
	2007000000000000	
a na		2007-007-007-007-007-0
		2000 C 10 C 10 C 10 C 1
10808 Jacob		
Contracted at the second se second second secon		
	5.5.5.5.5.5.5	

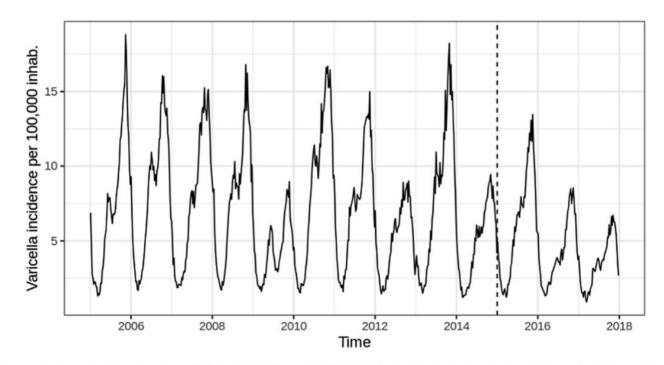


Fig. 1. Weekly varicella reported cases in Argentina from 2005 to 2017. The vertical dotted line indicates the beginning of the period when a single dose varicella vaccine become universally available to 15 month old children.

to Roll of Roll of Roll of	

Time series

TB in Brazil

.

.

.

.

.

.

.

........

.

. . .

......

had all all all all all

.

.

.

.

a a a state of

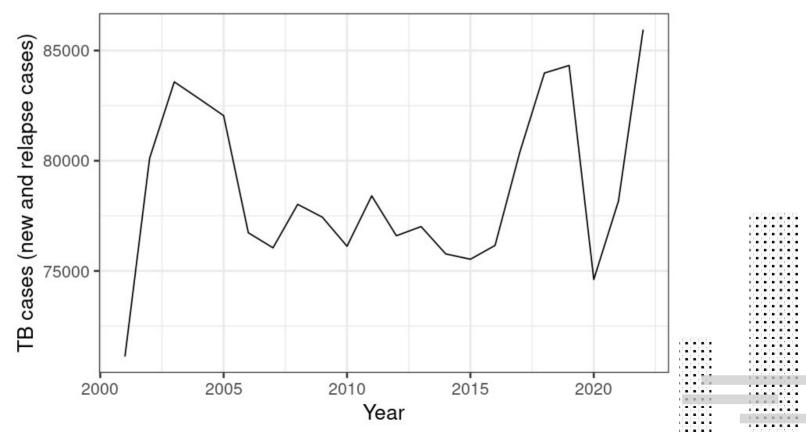
.

.

.

.

.....


.........

......

. .

1.0.0

.....

Time series

TB in Brazil

.

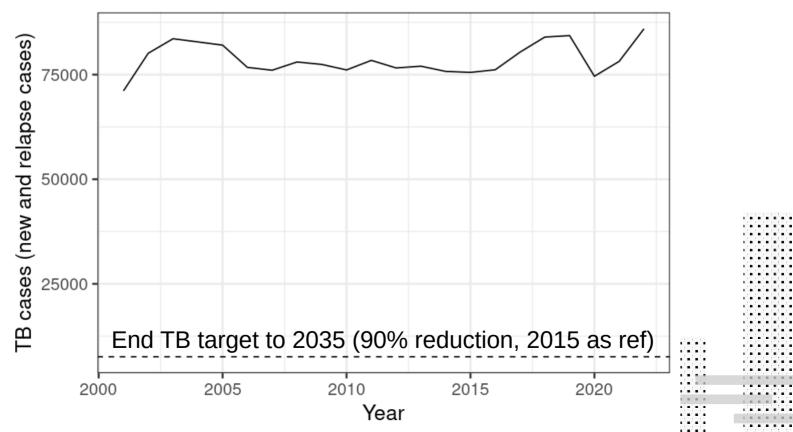
.

.

.

.

......


.

.

.

222

. .

Time series

Figure 2

.

.

.

........

........

.......

.

.

.

.

.

.

.

.

.

.

e a a statute e

.

.

.......

.

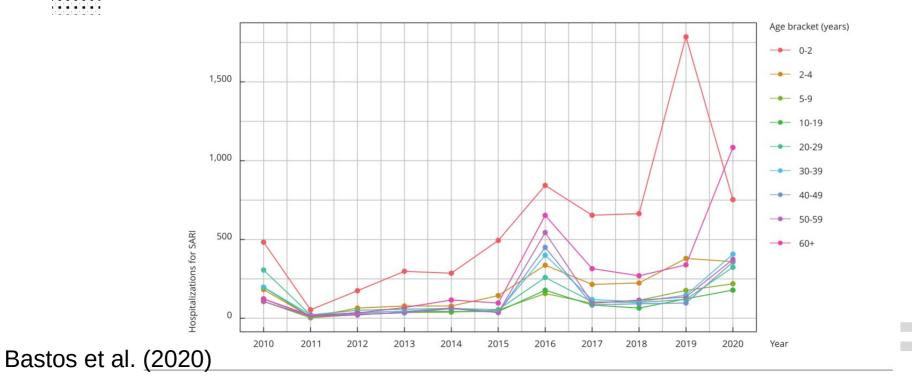
.

.

.

......

.......


.....

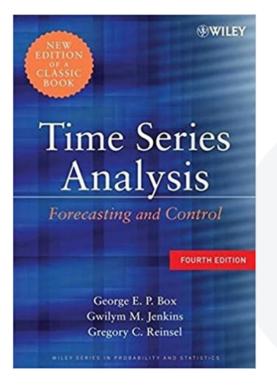
had all all all all all

.

.....

Absolute numbers of cases of hospitalizations for severe acute respiratory illness (SARI) in Brazil from the 9th to 12th epidemiological weeks in years 2010 through 2020, stratified by age brackets.

.


. . .

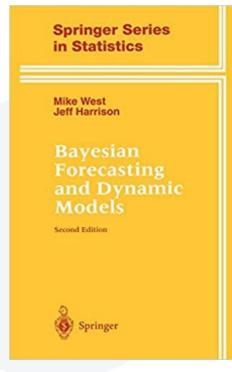
.....

.

.

Time series books

.


.

.

.

.

Box, Jenkins, and Reinsel

West and Harrison

 $Y_t \sim F(\mu_t, \phi)$

 $\mu_t = s(t, x_t, \theta)$

 $t = 1, 2, \ldots, T$

....

	n a chaile Chaile Chaile	
		1.2.2.2.2.2.2.2
222222		
and an an an and an		

Number of disease cases per region

.

.

.

and and and and and

$$Y_r, X_r, N_r, \dots$$
 $r = 1, 2, \dots, R.$

• Regions are usually neighbourhoods, cities, countries

.....

 "Everything is related to everything else, but near things are more related than distant things" – Tobler

• There are three types of spatial data:

.

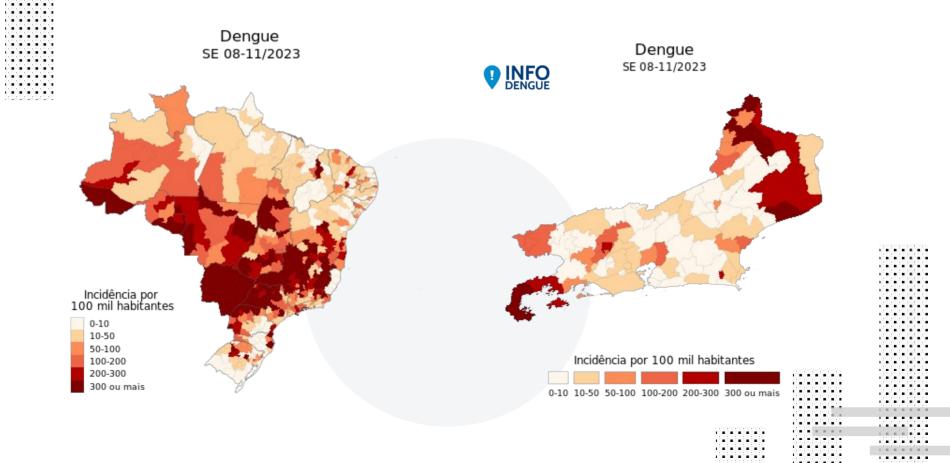
.

.

- **Discrete area data** (The variable of interest occur in a well-defined region)
- Continuous spatial data (The variable of interest can be measured anywhere over the region of interest.)
- Point process (We are interested in where the event occur)

.....

.


......

.

.....

.

. . .

.

......

.

......

........

.

. . .

 In area data, is common to use the neighbourhood matrix, usually a binary matrix in the form:

$$W_{i,j} = \begin{cases} 1, & \text{if } i \sim j, \\ 0, & \text{otherwise.} \end{cases}$$

.

.

a frank a frank a frank a frank

The W matrix could be used to smooth estimates or induce dependence in a model

.

.

.

.

and and and and and a dis-

 A different approach would be consider each region as a point in space, and analyse as point processes.

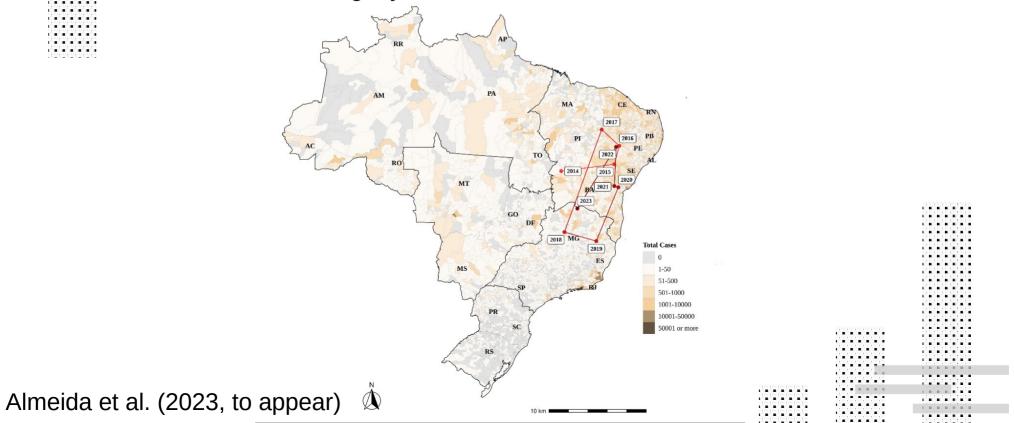
......

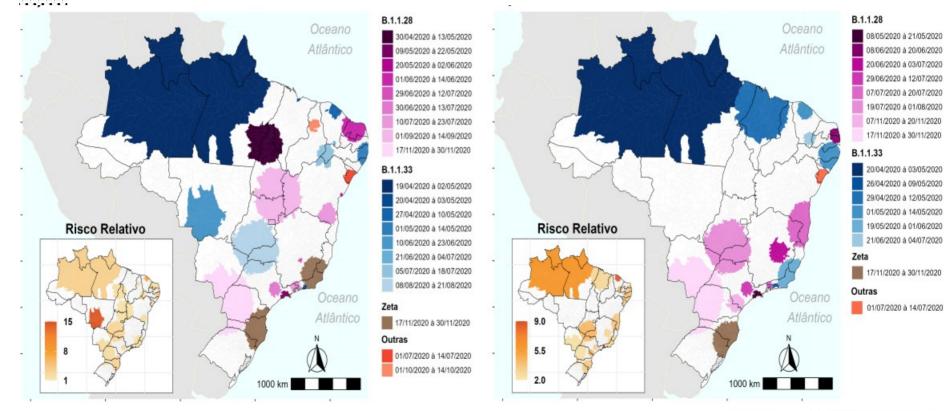
• E.g. calculating centroids or finding clusters

the share as a second **Spatial surveillance data**

Chikungunya cases in Brazil, 2014-2023

.


.


.

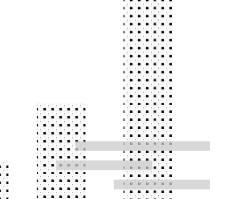
. a . . 10 M I

1 1 1

had an and a had a d

Bianchi (2023)

.


.

.

had an and a had a d

• Managing uncertainty

- Probabilistic approach
 - Likelihood, prior and posterior
 - Predictive distribution
- Inference methods

Managing uncertainty

In surveillance data, there is plenty of uncertainty sources

.

.

- What is/was/will be the number of cases of disease x at time t in region r?
- Are we facing an epidemic? How far we are from the expected?
- What was the impact of an intervention I? Did it reduce the number of deaths?

Managing uncertainty

• Those question are uncertain, and we can (try to) answer them with aid of probability methods.

• In a probabilistic perspective, everything that is unknown can be represented using a probability distribution.

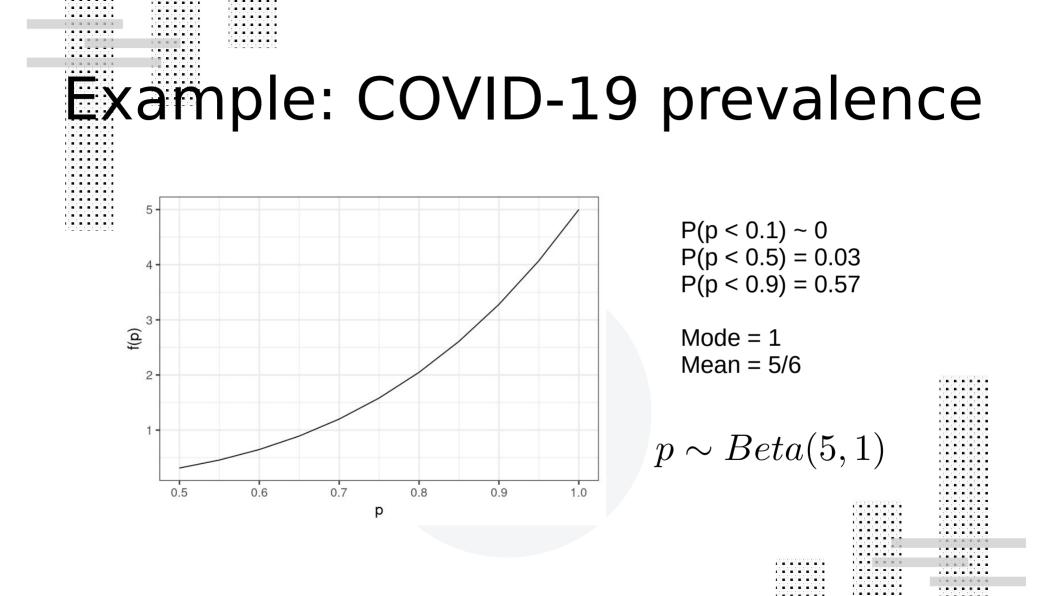
.

• This perspective is also called Bayesian perspective.

.

.

Example: COVID-19 prevalence


am going to elicit (built a probability distribution) of the COVID-19 prevalence of people in this room, p.

- How likely it is? Can I define some probabilities?
 - P(p < 0.1)

.

- P(p < 0.5)
- P(p < 0.9)

What about mode? Mean?

Prior

.

.

.

and and and and and

had an and a had a d

 We built a prior distribution for the COVID-19 prevalence for this audience

- We can build/elicit prior distributions for any numerical quantities that are unknown
- There are non-informative or weakly informative priors when we know little about a quantity

.....

Likelihood / the model

 We usually try to describe our main outcome as a parametric probability distribution

For number of cases (a counting process), we may use:

 $Y_t \sim Poisson(\theta_t) \qquad g(\theta_t) = x_t^T \beta$ $Y_t \sim NegBinom(\theta_t, \phi) \qquad g(\theta_t) = x_t^T \beta + \delta$

.

Likelihood / the model

 The most commonly used statistical models assume independence among observations

• Then in a Poisson model

.

had an and a had a d

.

.

.

.

 $Y_t \sim Poisson(\theta_t) \qquad \qquad g(\theta_t) = x_t^T \beta$

$$L(\beta) = \prod_{t} p(y_t | x_t, \beta)$$

Likelihood / the model

.

.

.

.

a stand and and and

had an and a had a d

 However, independence may be a very strong assumption (specially in the context of infectious disease)

 So we should try a different model that takes into account the dependence structure

The model

 We could use a property called conditional independence

- Given some parameter the Ys can be independent.
- So, one possible model is

 $V_{\rm L} \sim Poisson(\theta_{\rm L})$

.....

had an and a had a d

.

.

.

.

.

$$L(\beta, \delta) = \prod_{t} p(y_t | x_t, \beta, \delta_t) \qquad \delta_t$$

$$g(\theta_t) = x_t^T \beta + \delta_t$$

$$\sim N(\delta_{t-1}, \tau_{\delta}^2) \\ p(\delta_0, \tau_{\delta}^2)$$

A 4 4 4

The model

• That model is a Random effects Poisson model

.

.

.

.

.....

.

• A particular case of a Bayesian generalised linear mixed model, GLMM

$$Y_t \sim Poisson(\theta_t) \qquad g(\theta_t) = x_t^T \beta + \delta_t$$
$$\delta_t \sim N(\delta_{t-1}, \tau_{\delta}^2)$$
$$L(\beta, \delta) = \prod_t p(y_t | x_t, \beta, \delta_t) \qquad p(\delta_0, \tau_{\delta}^2)$$

.

.

.

.

had all all all all all

and and and and and a

the share as a second

 Combining the prior distributions and the likelihood leads to a distribution called posterior distribution

 Bayes theorem, assume two events A and B, in stats 101 we learn that

$$P(B \mid A) = \frac{P(A|B)P(B)}{P(A)} = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^c)P(B^c)}$$

a she had a she had a

.

......

.

......

.

a a a balantaria

.

.

.

.

.

.

.......

.

.

.

.

.

.

.

.

.

.

.

 Lets suppose the sample space of B could be partioned in M+1 events C_i, and B is just one of them, for simplicity lets say B= C₀.

.

.

.

and a standard and a standard

$$P(B \mid A) = \frac{P(A|B)P(B)}{P(A)} = \frac{P(A|B)P(B)}{\sum_{i=0}^{M} P(A|C_i)P(C_i)}$$

If B is our unknown parameter, and A is our observed data. Then

.

.

.

.

.

.

.

.

.

. . .

. . . .

. . .

.......

.

.

.

.

......

.

Color and a second second

.

.

.

.

......

......

......

$$P(\theta \mid y) = \frac{P(y|\theta)P(\theta)}{P(y)} = \frac{P(y|\theta)P(\theta)}{\sum_{\theta} P(y|\theta)P(\theta)}$$

.....

......

.

.

and a standard and a standard

Our unknown parameter is usually continuous, and we have a sample of observed data

$$p(\theta \mid y) = \frac{p(\theta) \prod_{i} p(y_i \mid \theta)}{\int_{\theta} p(\theta) \prod_{i} p(y_i \mid \theta) d\theta}$$
$$\propto p(\theta) \prod_{i} p(y_i \mid \theta)$$

.

.

.

.

.

.

.

.

.

.

.

.

.

......

.

.

die in termination

.

.

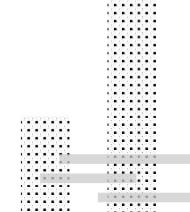
.

.

......

.

......

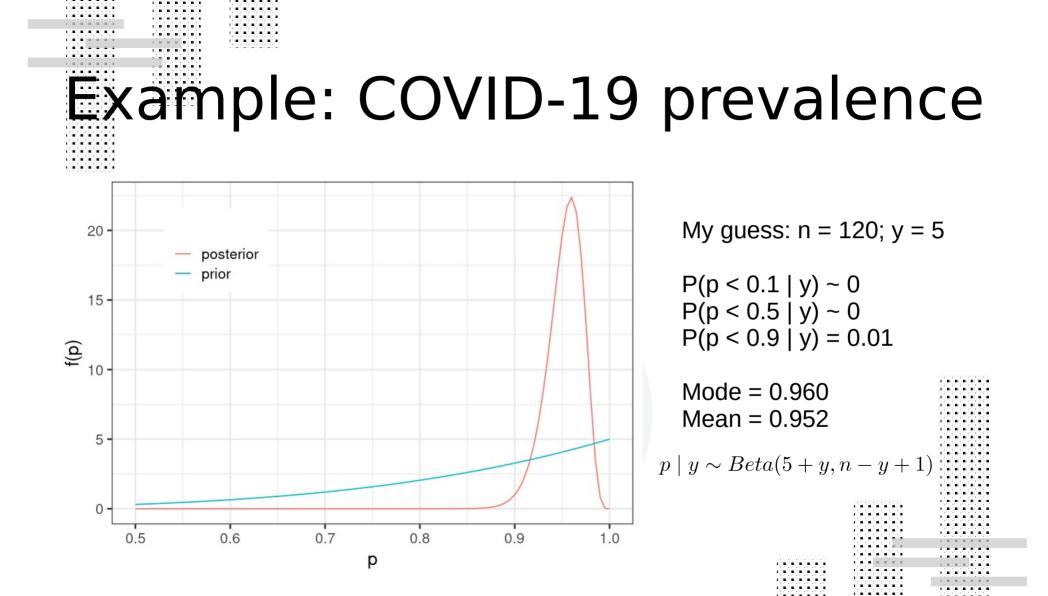

.

........

- - - - -

.

......



a frank a frank a frank a frank

.

a she had a she had a

. . . .

So what?

• How can we learn about the parameters?

• Can we solve that integral for complex models?

.

. . .

......

.

and a standard and a standard

Yes². Using Bayesian computation!

.

......

.

.

.

the share as a second

the share as a second

.

.

.

......

.

.

.

.

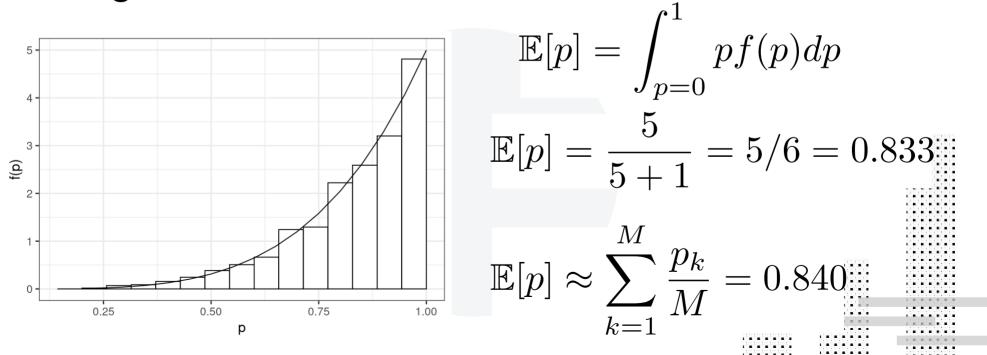
.

.

.

_ _ _ _ _ _

.......


.

.

.

$$p(\theta \mid y) = \frac{p(\theta) \prod_{i} p(y_i \mid \theta)}{\int_{\theta} p(\theta) \prod_{i} p(y_i \mid \theta) d\theta}$$

Bayesian comp: Monte Carlo Basic idea, solve integral by sampling from the target distribution

Bayesian comp: MCMC

.

.

.

 Basic idea: we don't know how to sample directly so we sample from the full conditionals iteractively using Markov chain properties

 The samples eventually converge to samples from the full posterior.

.....

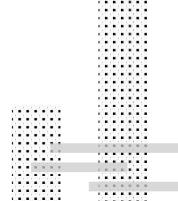
Bayesian comp: MCMC Initialize the chain $(\theta_1^{(0)}, \theta_2^{(0)}, \dots, \theta_P^{(0)})$ For k in 1:M (Monte Carlo step){ For j in 1:P (Parameter space){ Sample $\theta_p^{(k)}$ from $p(\theta_p \mid \theta_1^{(k)}, \dots, \theta_{p-1}^{(k)}, \theta_{p+1}^{(k-1)}, \dots, \theta_P^{(k-1)})$ Set a **Burnin** and a **lag** to get your final MCMC sample

.

Bayesian comp: MCMC

• Gibbs sampling

......


.

.

.

.

- Metropolis-Hasting algorithm
- Slice sampler
- Halmitonian Monte Carlo

.

Bayesian comp: MCMC

But, there are some good news!

.

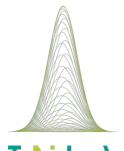
• Those methods are already implemented in a set of MCMC packages/softwares

- Just need data, priors and likelihood (the model)

.....

- Works for simple to very complex models
- Can answer using probabilities
- CONS

.


.

- Computational cost*

.

Bayesian comp: No MCMC

- There are other approximations
 - Variational Bayesian methods
 - Integrated Nested Laplace Approximation (INLA)

.

had an and a had a d

and and and and and a

.

.

.

 $p(\theta \mid y) \approx \tilde{p}(\theta \mid y)$

.

INLA https://www.r-inla.org/

Predictions

• Can we make predictions?

- In this probabilistic approach, the values to be predicted are unknown, so they are treated as unknown parameters.
- Essentially we want

.

.

.

.

.

$$p(y^{(new)} \mid y^{(obs)})$$

......

Predictions

Mathematically

.

.......

.

......

.......

.

.

.......

......

.

.....

.

.

.

.

.

_ _ _ _ _ _ _

.

.

the state of the

.

......

.

.

.

$$p(y^{(new)} \mid y^{(obs)}) = \int_{\theta} p(y^{(new)}, \theta \mid y^{(obs)}) d\theta$$
$$= \int_{\theta} p(y^{(new)} \mid \theta, y^{(obs)}) p(\theta \mid y^{(obs)}) d\theta$$
$$= \int_{\theta} p(y^{(new)} \mid \theta) p(\theta \mid y^{(obs)}) d\theta$$

COVID-19 prevalence example

.

.

a state of a state of

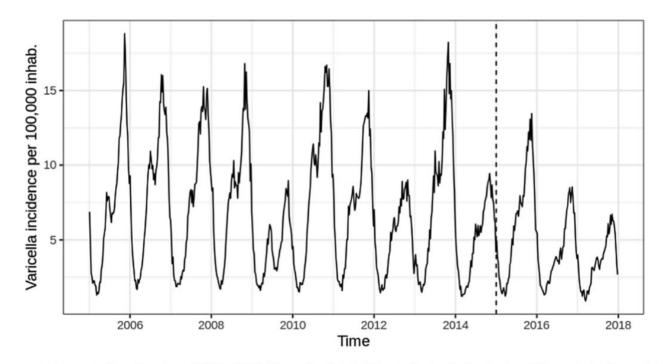
A new participant has just arrived, what is the probability of he/she being a prevalent COVID-19 case?

$$p(y^{(new)} = 1 \mid y^{(obs)}) = \int_0^1 p(y^{(new)} = 1 \mid 1, p) p(p \mid 120, 6) dp$$

= 0.952

Varicella in Argentina

.


and we have been and we have

. . .

. . .

11

.

Fig. 1. Weekly varicella reported cases in Argentina from 2005 to 2017. The vertical dotted line indicates the beginning of the period when a single dose varicella vaccine become universally available to 15 month old children.

LORONO RORONO R	

Varicella in Argentina

 $Y_t \mid \lambda_t, \phi \sim NegBin(\lambda_t, \phi)$

.

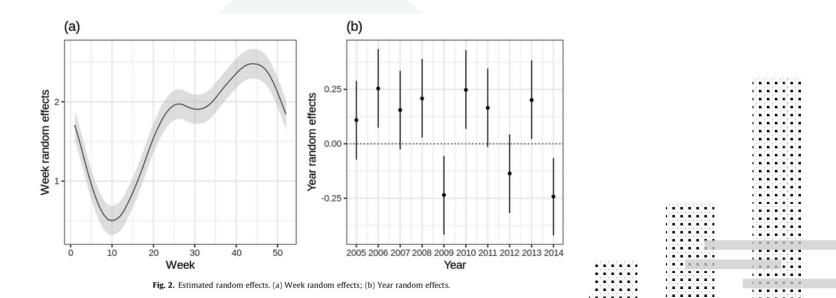
.

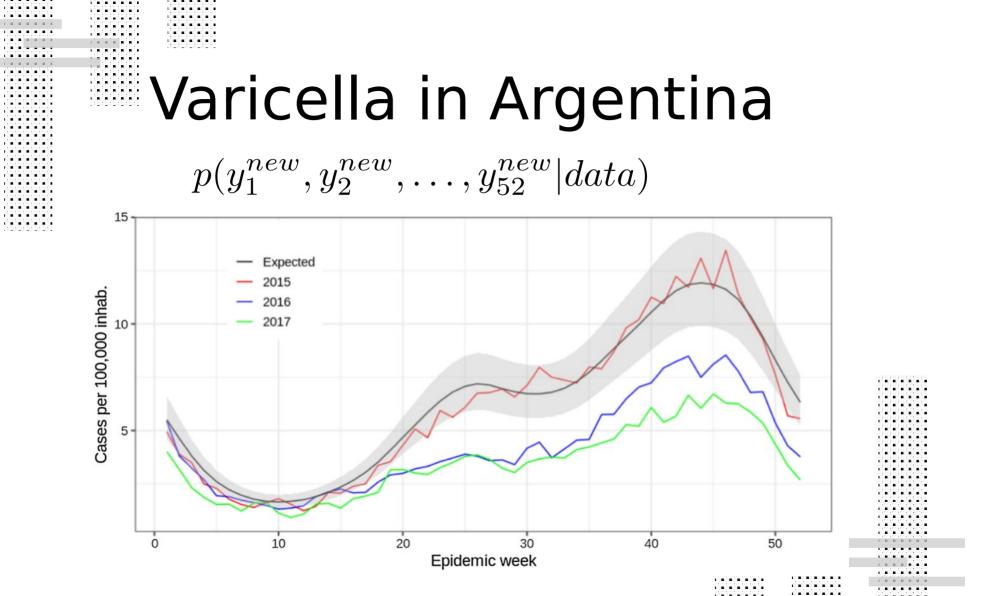
.

.

.

.....


.


.....

.

in the second

 $\log(\lambda_t) = \alpha_{week[t]} + \beta_{year[t]}$

