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Statistical modelling for infectious diseases
Part 1: Surveillance data and modelling foundation



 Epidemiological Surveillance data
● Descriptive analyses

 Foundation
● Reporting uncertainty
● Bayesian approach

 Predictive models
● Usual model assumptions

Summary



Time series Spatial data Individual level
● Aggregated disease 

cases indexed by time 
(day, week, month)

● Sometimes extratified 
according to age groups 
and sex.

● Aggregated disease 
cases indexed by region 
(neighbourhoods, cities, 
states, countries)

● Spatio-temporal data is 
not unusal.

● Information for each 
notified case might be 
available

● Usually administrative 
data (limited information)

● Missing information

Epidemiological Surveillance data



Exploratory data analysis (Stats 101)

Carvalho et al. (2022, The Lancet Regional Health)

James et al. (2022, ISLR)

Individual level data

* Rarely available.



Time series

● Number of disease cases per unit of time

     Yt, Xt, Nt,,…                   t = 1, 2, … , T.

● Time could be days, weeks, months, years, ?
● There is some dependence among consecutive observations
● Most frequent (available) type of surveillance data



Time series



Time series

https://covid19.who.int



Time series

https://covid19.who.int



Time series

● TS can be used to describe disease dynamics
● We may also help us to identify patterns 

– Seasonality
– Trends
– Disease natural history (e.g. TS by age groups)



Time series



Time series



Time series

End TB target to 2035 (90% reduction, 2015 as ref)



Time series

Bastos et al. (2020)



Time series books

Box, Jenkins, and Reinsel West and Harrison



Spatial surveillance data

● Number of disease cases per region

     Yr, Xr, Nr,,…                   r = 1, 2, … , R.

● Regions are usually neighbourhoods, cities, countries
● “Everything is related to everything else, but near 

things are more related than distant things” – Tobler



Spatial surveillance data

● There are three types of spatial data:
– Discrete area data (The variable of interest occur in 

a well-defined region)
– Continuous spatial data (The variable of interest can 

be measured anywhere over the region of interest )
– Point process (We are interested in where the event 

occur)



Spatial surveillance data



Spatial surveillance data

● In area data, is common to use the 
neighbourhood matrix, usually a binary 
matrix in the form:

The W matrix could be used to smooth estimates or induce 
dependence in a model



Spatial surveillance data

● A different approach would be consider each 
region as a point in space, and analyse as point 
processes.

● E.g. calculating centroids or finding clusters 



Spatial surveillance data
Chikungunya cases in Brazil, 2014-2023

Almeida et al. (2023, to appear)



Spatial surveillance data

Bianchi (2023)



Foundation

● Managing uncertainty
● Probabilistic approach

– Likelihood, prior and posterior
– Predictive distribution

● Inference methods



Managing uncertainty

● In surveillance data, there is plenty of uncertainty 
sources
– What is/was/will be the number of cases of disease x at 

time t in region r?
– Are we facing an epidemic? How far we are from the 

expected?
– What was the impact of an intervention I? Did it reduce the 

number of deaths?



Managing uncertainty

● Those question are uncertain, and we can (try to) 
answer them with aid of probability methods.

● In a probabilistic perspective, everything that is 
unknown can be represented using a probability 
distribution.

● This perspective is also called Bayesian 
perspective.



Example: COVID-19 prevalence

● I am going to elicit (built a probability 
distribution) of the COVID-19 prevalence of 
people in this room, p.
– How likely it is? Can I define some probabilities? 

● P(p < 0.1)
● P(p < 0.5)
● P(p < 0.9)

What about mode? Mean?



Example: COVID-19 prevalence

P(p < 0.1) ~ 0
P(p < 0.5) = 0.03
P(p < 0.9) = 0.57

Mode = 1
Mean = 5/6



Prior

● We built a prior distribution for the COVID-19 
prevalence for this audience

● We can build/elicit prior distributions for any 
numerical quantities that are unknown

● There are non-informative or weakly informative 
priors when we know little about a quantity



Likelihood / the model

● We usually try to describe our main outcome as 
 a parametric probability distribution

● For number of cases (a counting process), we 
may use:



Likelihood / the model

● The most commonly used statistical models 
assume independence among observations

● Then in a Poisson model 



Likelihood / the model

● However, independence may be a very strong 
assumption (specially in the context of 
infectious disease)

● So we should try a different model that takes 
into account the dependence structure



The model

● We could use a property called conditional 
independence

● Given some parameter the Ys can be independent. 
● So, one possible model is



The model

● That model is a Random effects Poisson model
● A particular case of a Bayesian generalised linear 

mixed model, GLMM



Posterior

● Combining the prior distributions and the 
likelihood leads to a distribution called posterior 
distribution

● Bayes theorem, assume two events A and B, in 
stats 101 we learn that



Posterior

● Lets supose the sample space of B could be 
partioned in M+1 events Ci, and B is just one of 
them, for simplicity lets say B= C0.



Posterior

● If B is our unknown parameter, and A is our 
observed data. Then



Posterior

● Our unknown parameter is usually continuous, 
and we have a sample of observed data 



Example: COVID-19 prevalence

My guess: n = 120; y = 5

P(p < 0.1 | y) ~ 0
P(p < 0.5 | y) ~ 0
P(p < 0.9 | y) = 0.01

Mode = 0.960
Mean = 0.952



So what?

● How can we learn about the parameters?
● Can we solve that integral for complex models?
● Yes². Using Bayesian computation!



Bayesian comp: Monte Carlo
● Basic idea, solve integral by sampling from the 

target distribution



Bayesian comp: MCMC

● Basic idea: we don’t know how to sample 
directly so we sample from the full 
conditionals iteractively using Markov chain 
properties

● The samples eventually converge to samples 
from the full posterior.



Bayesian comp: MCMC

Initialize the chain

For k in 1:M (Monte Carlo step){
For j in 1:P (Parameter space){

Sample          from 

}

}

Set a BurnIn and a lag to get your final MCMC sample



Bayesian comp: MCMC

● Gibbs sampling
● Metropolis-Hasting algorithm
● Slice sampler
● Halmitonian Monte Carlo



Bayesian comp: MCMC

● But, there are some good news!
● Those methods are already implemented in a 

set of MCMC packages/softwares

https://mc-stan.org/ https://r-nimble.org/ https://mcmc-jags.sourceforge.io/

JAGS

Old ones:
  - WinBUGS
  - OpenBUGS



Bayesian comp: MCMC

● PROS
– Just need data, priors and likelihood (the model)
– Works for simple to very complex models
– Can answer using probabilities

● CONS
– Computational cost*



Bayesian comp: No MCMC
● There are other approximations

– Variational Bayesian methods
– Integrated Nested Laplace Approximation (INLA)

https://www.r-inla.org/



Predictions

● Can we make predictions?
● In this probabilistic approach, the values to be 

predicted are unknown, so they are treated as 
unknown parameters.

● Essentially we want



Predictions

● Mathematically



COVID-19 prevalence example

● A new participant has just arrived, what is the 
probability of he/she being a prevalent COVID-
19 case? 



Varicella in Argentina



Varicella in Argentina



Varicella in Argentina
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