

Statistical modelling for infectious diseases Part 2: Epidemic thresholds and delay correction

Leo Bastos

PROCC/Fiocruz

Leonardo.bastos@fiocruz.br

@leosbastos

.

Summary

.

.......

.....

- - - - -

.....

.......

.

.

.

........

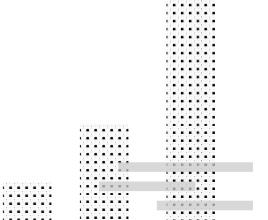
........

.

......

.

.


.

.

.

.

- Defining epidemic thresholds
 - MEM
 - Predictive distribution based
- Delay correction
 - Background
 - Nowcasting
 - Extensions

Moving Epidemic Method (MEM)

.

.

.

and and and and and

 Vega et al (2012) proposed an algorithm that based on historical data of ILI

- 1) Estimates start, duration and end of an epidemic
- 2) Calculates thresholds pre- and post-epidemic
- 3) Provide different intensity levels for an epidemic period

.....

MEM

.

.

.

in a state of

.

.

.

. .

. .

a (a (

1.0.0

1.0.0

1.0.0.0.0.0

.

.

121212121

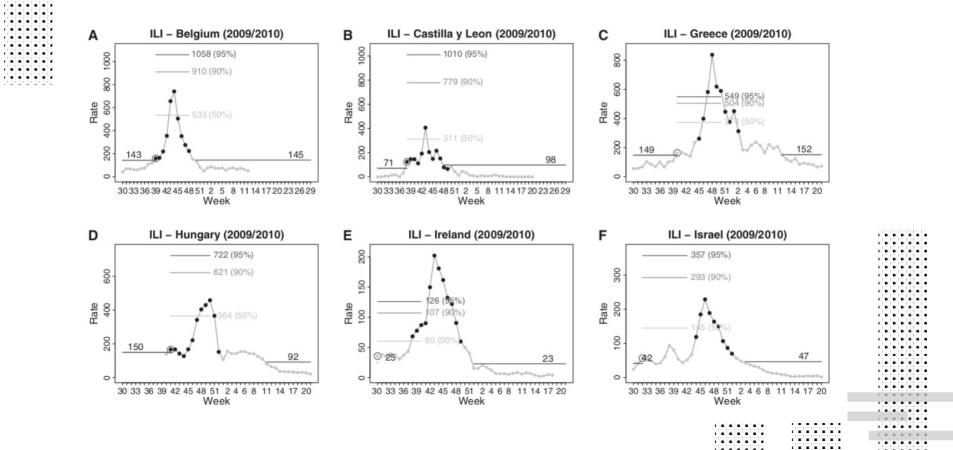
and and and and and

.

.

.

.


.

.

.

......

. . . .

MEM: R package

The Moving Epidemic Method

Documentation for package 'mem' version 2.16

DESCRIPTION file.

Help Pages

.

.

.

.

......

die in termination

.

.

.

.

.

.

.

010101010101010

.

.

.

........

.......

.

.......

.

.

.......

.

.

01212121212121

.

.....

.

......

........

epimem	Deprecated function(s) in the mem package		
epitiming	Deprecated function(s) in the mem package		
flucyl	Castilla y Leon influenza crude rates		
	Castilla y Leon influenza standarised rates		cracter terration and
flucylraw			
<u>full.series.graph</u>	Creates the historical series graph of the datasets		
memevolution	Evolution of estimators		
memgoodness	Goodness of fit of the mem		
memintensity	Thresholds for influenza intensity		
memmodel	Methods for influenza modelization		
memstability	Stability of indicators		
memsurveillance	Creates the surveillance graph of the current season		
memsurveillance.animated	Creates the animated graph of the surveillance of the current season		
memtiming	Influenza Epidemic Timing		
memtrend	Methods for influenza trend calculation		
optimum.by.inspection	Inspection calcultation of the optimum		
processPlots	Full process plots for mem		
<u>roc.analysis</u>	Analysis of different indicators to find the optimum value of the window parameter		
summary.epidemic,plot.epidemic,print.epidemi			
summary.flu,plot.flu,print.flu	Methods for influenza modelization	0.000.000	
transformdata	Data transformation		
transformdata.back	Data transformation		
transformseries	Transformation of series of data		
<u>cransformseries</u>			
	1414 ACC	<u></u>	

MEM: Dengue in Brazilian states

.

.

.

......

.

.

.........

.

.

.

.

.

.

.

.

.

.

.

.

......

.

.

sin inde inde in Sin inde inde					
	Roraima	••	•		
Roraima -	Amapá -	•	•		
Amapá	Acre-	•	•		
Acre -	Amazonas -	•	•		
Amazonas -	Pará	• •			
Pará	Rondônia -	••	•		
Rondônia -	Tocantins -	•	•		
Tocantins -	Maranhão -				
Maranhão -	Piauí		•		
Piauí -	Ceará -			•	
Ceará -	Rio Grande do Norte -				
Grande do Norte -	Paraíba				
Paraiba -					
Pernambuco -	Pernambuco				
Alagoas -	Alagoas -	•	•		
Sergipe -	Sergipe -	•	•		
Bahia -	Bahia -	•	•		
Goiás -	Goiás -	•	•		•
Distrito Federal	Distrito Federal -	•	•		
Mato Grosso -	Mato Grosso	••	•		
to Grosso do Sul -	Mato Grosso do Sul -	• •		•	
Minas Gerais -	Minas Gerais -	•••			
Espírito Santo -	Espírito Santo-		•		
Rio de Janeiro -	Rio de Janeiro				
São Paulo	São Paulo -	•••		•	
Paraná	Paraná -				
Santa Catarina -	Santa Catarina -				
o Grande do Sul	Rio Grande do Sul	••			
0 10	20 30	0	20	40	60
Epiweek				semanal (por 10	
•					

Predicting infectious diseases

.

.

.

.

.......

.

.....

.

.

.

.

.

.

.

.

.

.......

......

......

........

$$Y_{t} \sim NegBin(Pop_{Ano[t]}\lambda_{t}, \phi)$$
$$log(\lambda_{t}) = \alpha + \beta_{Ano[t]} + \gamma_{Semana[t]}$$
$$\beta_{Ano} \sim \text{``iid''}$$
$$\gamma_{Semana} \sim \text{``cyclic rw2''}$$
$$p(y_{Sem:1:52,Ano:2023}|y_{Sem:1:52*,Ano:2010:2022}) = ?$$

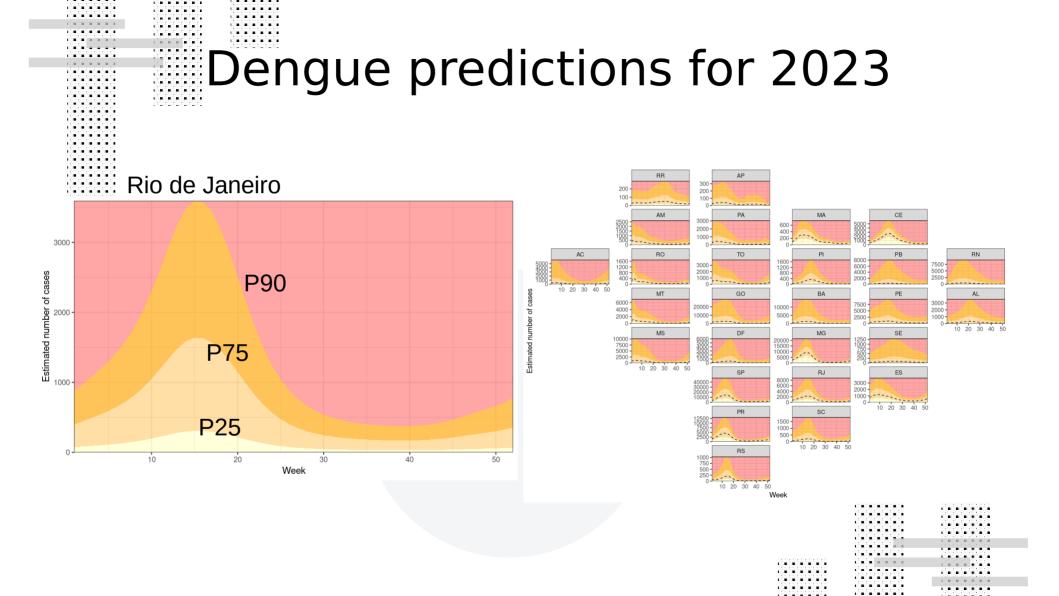
...... .

......

......

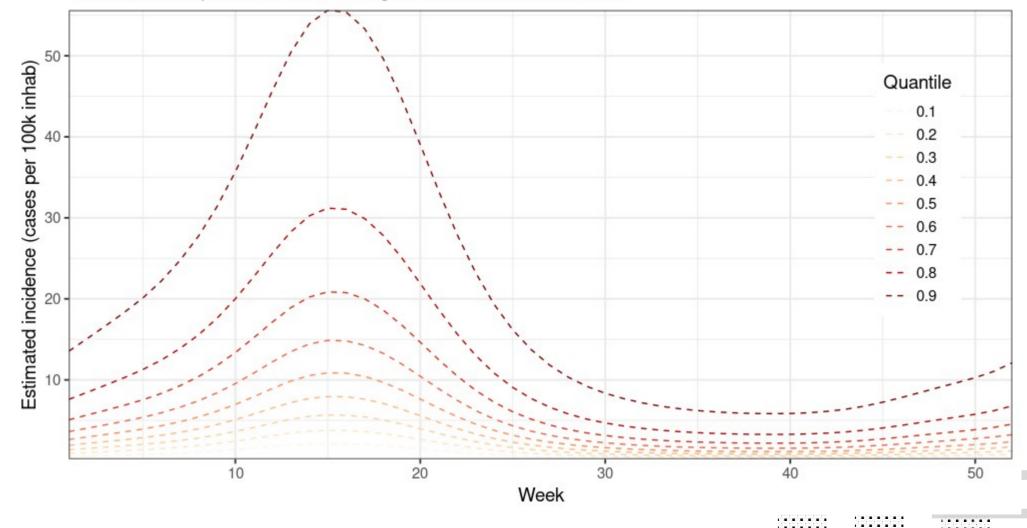
.....

......

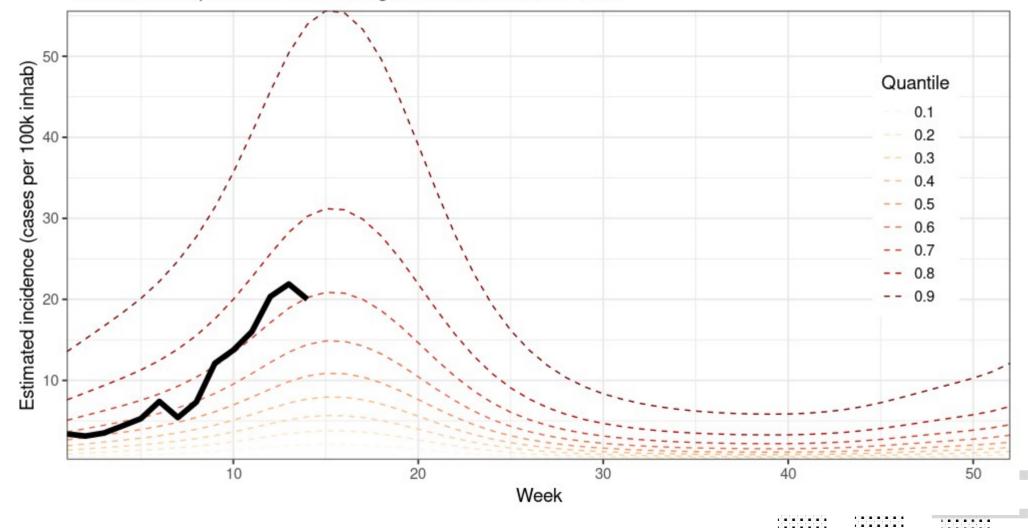

.

......

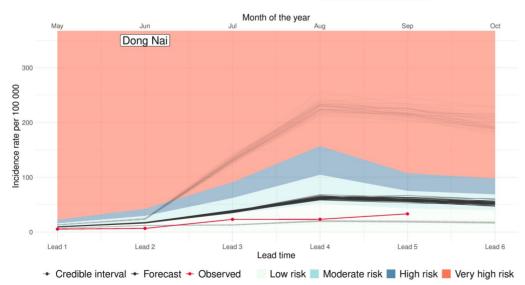
.

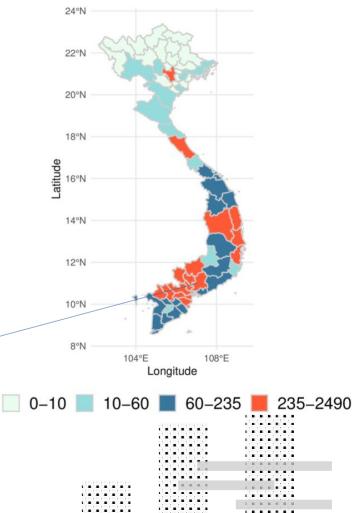

a share a share as a

.

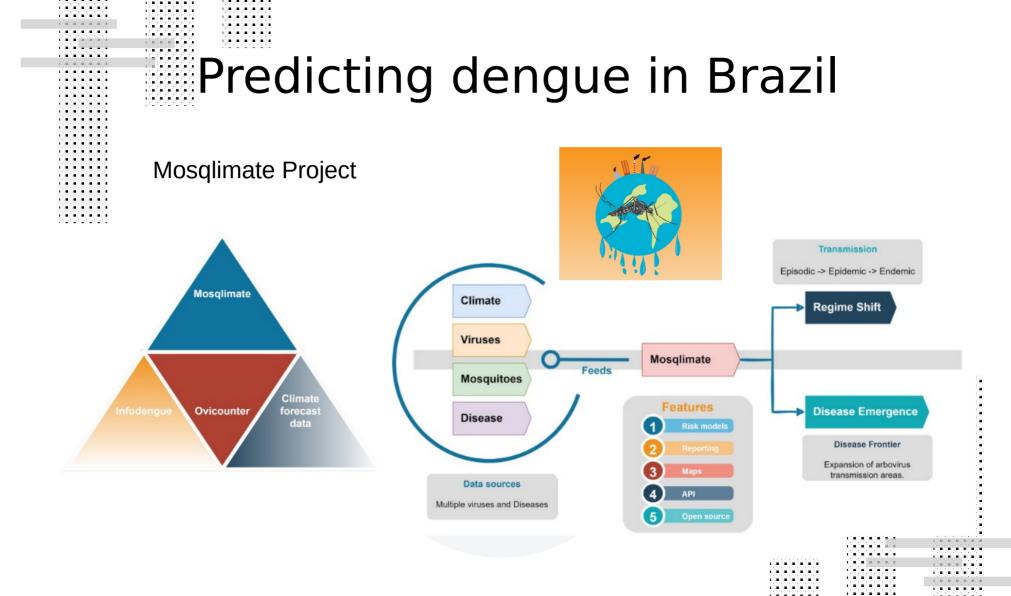


Model-based predictions for dengue incidence in Rio 2023




Model-based predictions for dengue incidence in Rio 2023

Predicting dengue in Vietnam


- Forecasts made once a year in November
- Climate variables (GloSea5*)
 - Hindcast from GloSea5 (Copernicus)

* GloSea5: Met Office Global Seasonal forecasting system version 5

.

Rio, 2023-03-04

.

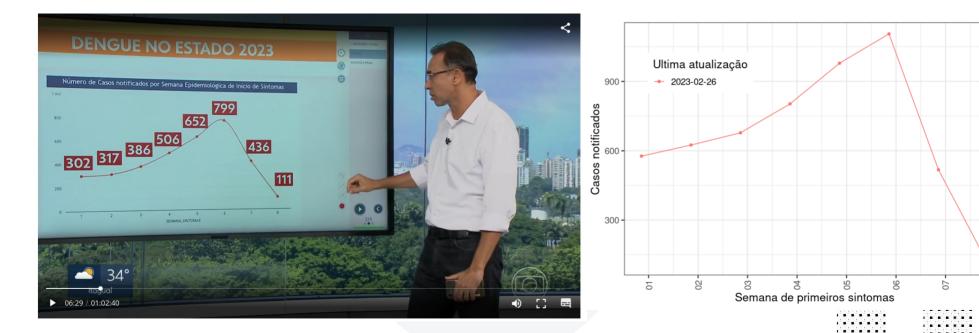
.

- End of week 9
- The TV presenter emphasizes that
 - the peak occur on week 6

.

 "good news" cases are dropping

≡ мени **g1**


the first and a first

had an and a had a d

.

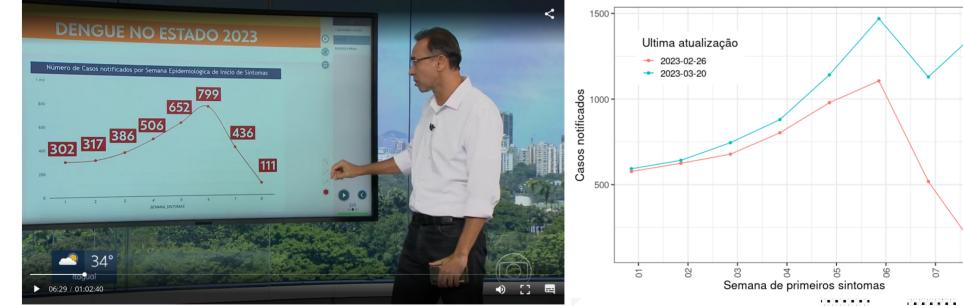
.

RIO DE JANEIRO

8

.

Rio, 2023-03-04


<u>≡</u> мели **g1**

.

.

. . .

RIO DE JANEIRO

Rio, 2023-03-04

04 -	- 30	- 90	- 20	- 80
a de prim	neiros sinto	mas		0
	Calebacaciana	9		
	i i i i i i i i i i			
		•		
		1		
		6		
		<u>e</u> 1		

. . .

Why does the delay occur?

Modeling the observation delay process

.

.

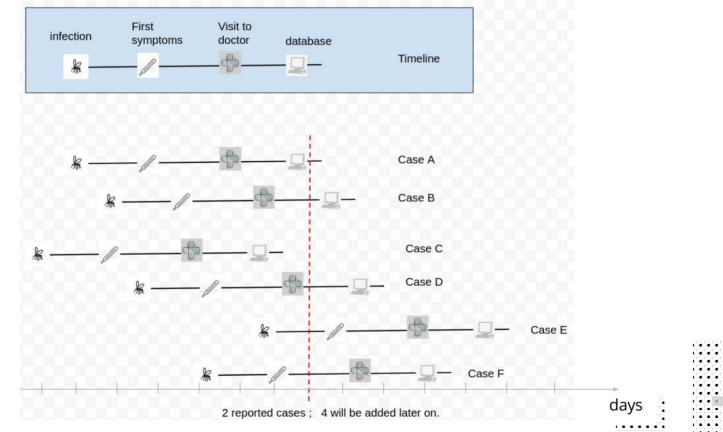
.

. . .

. . .

....

. . . .


. . . .

....

....

. . . .

023232

. . .

.....

Delay correction models

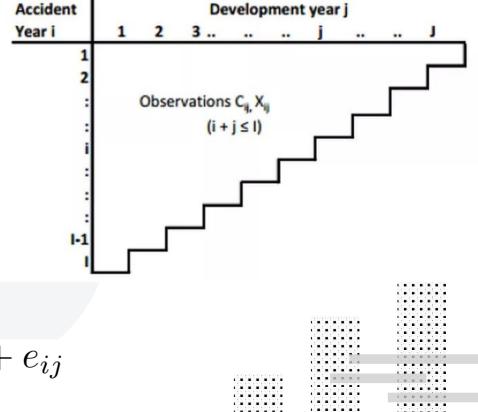
• Actuarial sciences 1980/90

Chain ladder model

Kremer (1982), Two-way ANOVA

$$C_{ij} = E_i S_j R_{ij}$$

.

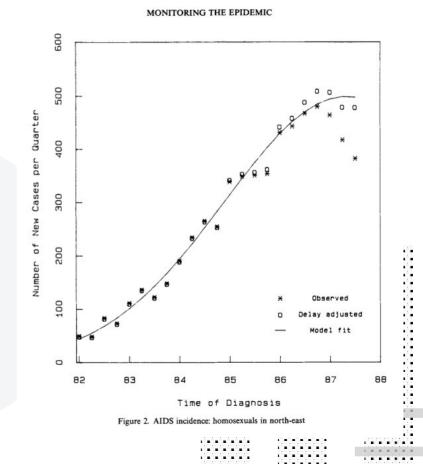

. . . <u>. .</u>

.

......

Renshaw (1989), Modelo linear misto Verhall (1990), Modelo de Espaço de estados + Linear Bayes

$$Y_{ij} = \log(C_{i,j}) = \mu + \alpha_i + \beta_j + e_{ij}$$


Delay on HIV/AIDS in 1980s

Brookmeier and Damiano (1989)
Zeger, See and Diggle (1989)

 $Y_{t,u} \sim Poisson(\mu_{t,u})$

$$\log(\mu_{t,u}) = s(t,\beta) + d(u,\theta)$$

- Brookmeier and Liao (1990), EUA
- Barbosa and Struchiner (1998), Brasil

Bayesian Nowcasting

0

 n_{10}

1

n₁₁

2

 $n_{1,2}$

Time

 $\{n_{t,d}\} = \{n_{t,d} : T \le t+d\}$

D

n_{1 D}

Ν

N₁

D-1

 $n_{1,D-1}$

Dengue and Influenza*

$$n_{t,d} \sim NegBin(\lambda_{t,d},\phi)$$

Bastos et al. (2019) (INLA)

 $\log(\lambda_{t,d}) = \alpha + \beta_t + \gamma_d$

Observations Nowcasting N_2 2 n_{20} n_{21} n_{22} n_{2D-2} n_{2.D-1} **n**_{2 D} N₃ 3 n_{30} $n_{3.1}$ n_{32} $n_{3,D-2}$ n_{3.D-1} n_{3 D} T-D N_{T-D} $n_{T-D,1}$ $n_{T-D,2}$ $n_{T-D,D-1}$ $n_{T-D,0}$ $n_{T-D,D-2}$ n_{T-D.D} T-D+1 n_{T-D+1D} N_{T-D+1} n_{T-D+10} n_{T-D+11} n_{T-D+1} D-2 $n_{T-D+1D-1}$ $n_{T-D+1.2}$ T-D+2 n_{T-D+20} $n_{T-D+2,D-2}$ N_{T-D+2} $n_{T-D+2.1}$ $n_{T-D+2.2}$ $n_{T-D+2,D-1}$ $n_{T-D+2,D}$ T-2 N_{T-2} n_{T -2,0} $n_{T-2,D-2}$ $n_{T-2,1}$ $n_{T-2,2}$ $n_{T-2,D-1}$ $n_{T-2,D}$ T-1 N_{T-1} $n_{T-1.0}$ $n_{T-1,1}$ n_{T-1.2} n_{T -1,D -2} n_{T-1,D-1} $n_{T-1,D}$ т NT ... $n_{T,D-2}$ $n_{T,0}$ $n_{T,1}$ $n_{T,2}$ $n_{T,D-1}$ n_{T.D} T+1 N_{T+1} n_{T+10} n_{T+11} $n_{T+1.2}$ n_{T+1D-2} n_{T+1.D-1} n_{T+1D} Forecasting T+2 N_{T+2} $n_{T+2,0}$ n_{T +2,1} $n_{T+2,2}$ $n_{T+2,D-2}$ n_{T+2,D-1} $n_{T+2,D}$: T+K **П**Т +К 0 n_{T +K} 1 NT + 1 2 n_{T+K D-2} n_{T +K}, D n_{T+K}D NT $\{n_{t,d}^*\} = \{n_{t,d} : T > t + d\}$ $P(\{n_{t,d}^*\} \mid \{n_{t,d}\}) = \int_{\theta \subset \Theta} p(\theta, \{n_{t,d}^*\} \mid \{n_{t,d}\}) d\theta$ $= \int_{\theta \in \Theta} p(\theta \mid \{n_{t,d}\}) p(\{n_{t,d}^*\} \mid \theta) d\theta$

D-2

 $n_{1,D-2}$

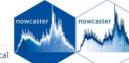
- McGough et al. (2020) (MCMC) $\lambda_{t,d} = \delta_d e^{\beta_t}$

Bayesian Nowcasting

Bastos et al. (2019) foi implemented in:

- InfoGripe

.


.

.

- InfoDengue
- R package: nowcaster

Nowcaster

a frank a frank a frank a frank

nowcaster is a R package for "nowcasting" epidemiological time-series. Every single system of notification has an

intrinsic delay, **nowcaster** can estimate how many counts of any epidemiological data of interest (*i.e.*, daily cases and deaths counts) by fitting a negative binomial model to the time steps of delay between onset date of the event, (*i.e.*, date of first symptoms for cases or date of occurrence of death) and the date of report (*i.e.*, date of notification of the case or death).

nowcaster is based on the <u>R-INLA</u> and <u>INLA</u> packages for "Integrated Nested Laplace Approximation" algorithm to Bayesian inference. **INLA** is a fast alternative to others methods for Bayesian inference like **MCMC**. An introduction to **INLA** can be found <u>here</u>.

nowcaster is build for epidemiological emergency use, it was constructed for the Brazilian Severe Acute Respiratory Illness (SARI) surveillance database (SIVEP-Gripe).

Installing

Before installing the package certify you have an active installation of INLA, to do so you can run the follwing code:

install.packages("INLA",

repos=c(getOption("repos"), INLA="https://inla.r-inla-download.org/R/stable"), dep=TRUE)

https://covid19br.github.io/nowcaster/:

Links Browse source code Report a bug

License Full license GPL (>= 3) Citation Citing nowcaster

Developers Rafael Lopes Author, maintainer © Leonardo Bastos Author ©

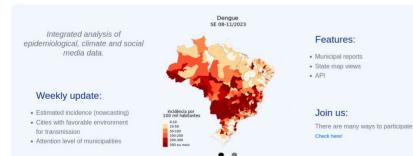
A 4 4 4

.

(Nearly) Real-time monitoring systems

a frank and and and a di-

had all all all all all


						FGV EMAP ESCOLA DE MATEMÁTICA APLICADA	FIOCRUZ
Home	About us	Team	Data	Report	Search by city		

Estimated cases

.

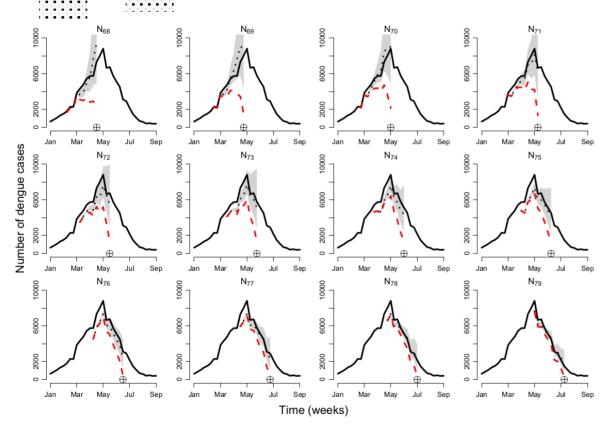
.

......

3 🖪 🖪	🗑 🚟 📶			► Boletim	► Equipe → Mapa d	o site
	ciência para todo		E NOTÍCIA	AS		
Busque aqu	i ÞBus	scar		Ē	Hang	

Tweet

04/04/2023

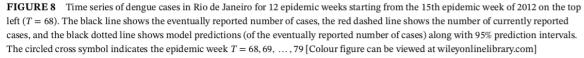

InfoGripe: VSR e Covid-19 aumentam internações de crianças e adultos

Recomendar Like 0

Regina Castro (Agência Fiocruz de Notícias)

	27.07.07.07.07.07.0	
	1,5,5,5,5,5,5,5	
0.00000000000	Contraction and the second	
		1.0.0.0.0.0.0.0.0
	7, 5, 5, 5, 5, 5, 5, 5	
	······	

Model performance



.

.

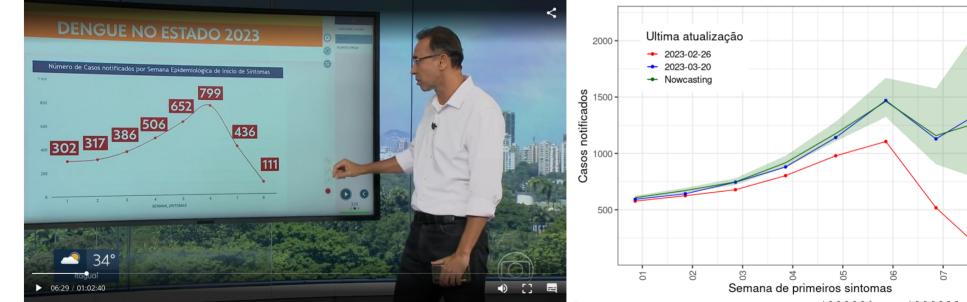
.

. . .



FIGURE 6 Q-Q plots comparing R-INLA and MCMC samples from the predictive distribution of the total counts N_t for t = 59, ..., 68, where T = 68 is the 15th epidemic week of 2012. INLA, integrated nested Laplace approximation; MCMC, Markov chain Monte Carlo

INLA ve	rene M(MC
	1303 101	
	1.5.5.5.5.5.	
11010010010010010		
	decenerated and a character	

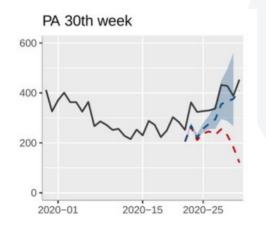

<u>≡ ме</u>ли **g1**

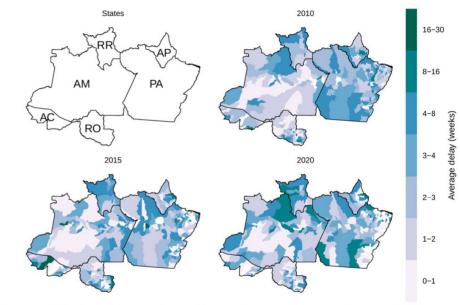
.

.....

. . .

RIO DE JANEIRO


Rio, 2023-03-04


mana da prim	oiree einter		
mana de prim	ierros sintor	nas	
	200000000000	10.000	
		() - () - () - ()	
		1.00	
124747474747474			
	1	1.11.1	
		(1. jul) -	
		1.0.1	
		1	

 ∞

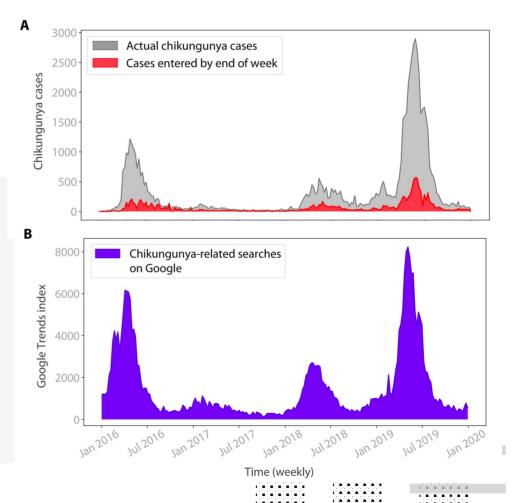
Notification delay (Malaria in the Amazon)

- Malaria is a mosquito-borne disease endemic in the Amazon region (99% of the notified cases)
- There is notfication delay, then the nowcasting is needed!

Fig. 2 State units of the Brazilian Legal Amazon and average delays in weeks per municipality in years 2010, 2015 and 2020

Avala at al. (2022	Malaria Jaura N
Ayala et al. (2023)	Malaria Journal):::

Improving the delay correction


• Covariates may improve the corrections

$$n_{t,d} \sim NegBin(\lambda_{t,d}, \phi)$$

$$\log(\lambda_{t,d}) = \alpha + \beta_t + \gamma_d + \mathbf{x}_{t,d}^T \delta$$

Bastos et al. (2019)

Mizzi (2019, PhD Warwick), Miller et al. (2022)

Spatial nowcasting

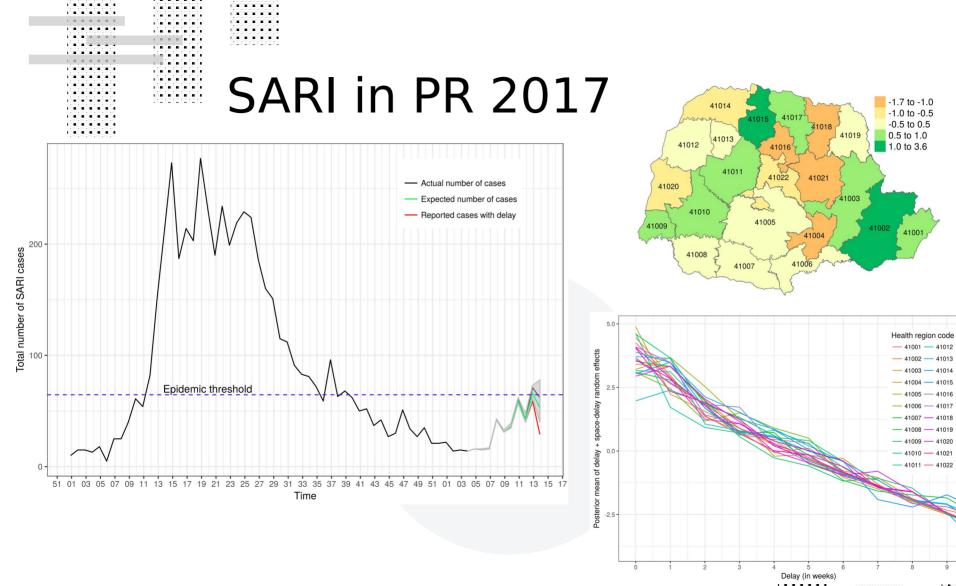
Spa

 Disease dynamics may vary on space

.

. . . .

Population immunity, different ways to fight a possible epidemic event, vector adaptation, etc


- Delay may also vary in space
 - Structural problems, lack of training etc

 In Bastos et al. (2019), we added a spatial structure

$$n_{t,d,r} \sim NegBin(\lambda_{t,d,r},\phi)$$

$$\log(\lambda_{t,d,r}) = \alpha_r + \beta_{t,r} + \gamma_{d,r}$$
$$\sum_{\beta_{t,r}} = \sum_t \otimes \sum_r$$
$$\sum_{\gamma_{d,r}} = \sum_d \otimes \sum_r$$
tial random effects is modelled using CAR

.

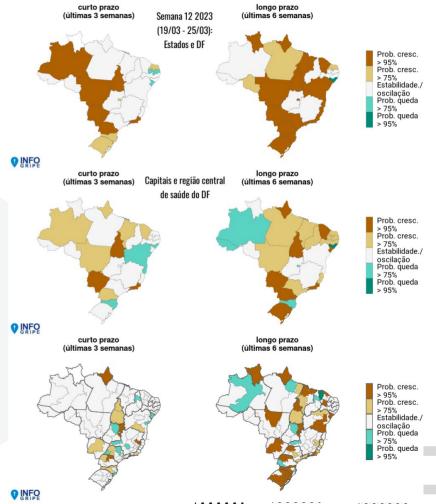
SARI during the pandemic

- We needed a simple and fast measure to show trend
- A linear model coefficient applied on each sample sample trajectory

.

. . .

÷....


. . .

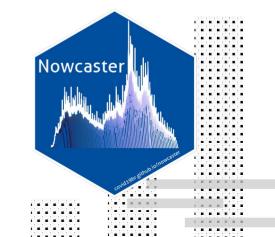
.

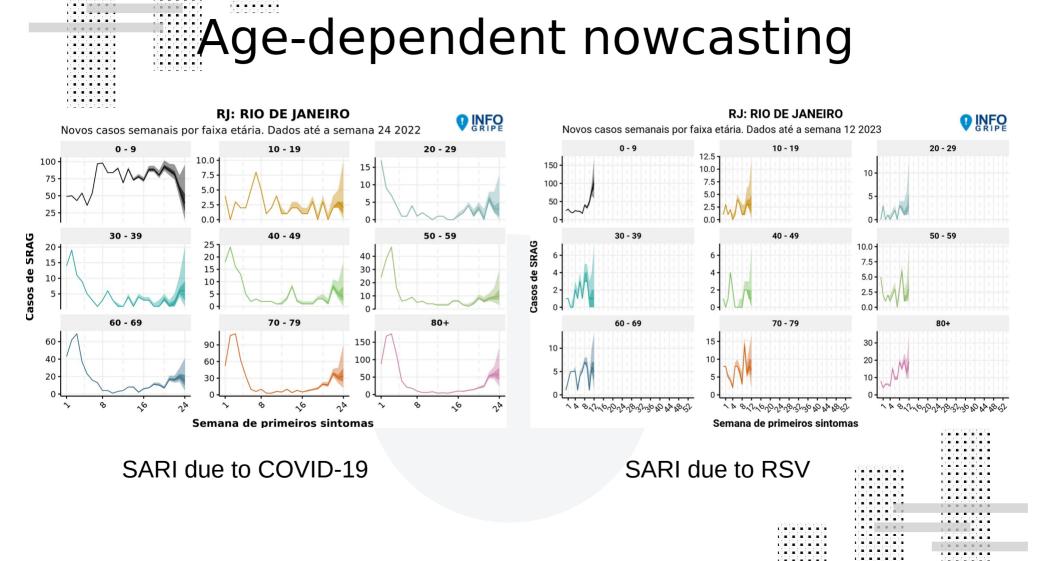
.

• Monte Carlo probabilities can de calculated

$$N_t = A + Bt + e_t, \quad t = 1, 2, ..., W$$

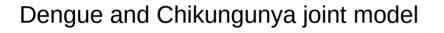
 $P(B > 1) \qquad P(B < 1)$




Age-dependent nowcasting The dynamic of COVID-19 hospitalizations varies on age groups

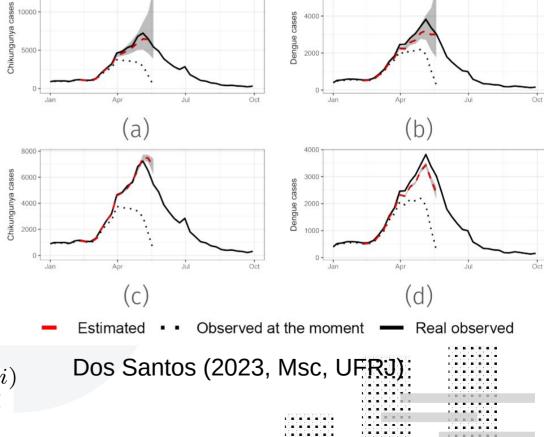
• Hence, the nowcasting model should consider age

$$n_{t,d,g} \sim NegBin(\lambda_{t,d,g},\phi)$$
$$\log(\lambda_{t,d,g}) = \alpha_r + \beta_{t,g} + \gamma_{d,g}$$


.

.

Multivariate nowcasting


Shared component model

.

. .

$$n_{t,d}^{(i)} \sim NegBin(\lambda_{t,d}^{(i)}, \phi^{(i)})$$

$$\log(\lambda_{t,d}^{(i)}) = \alpha + \beta_t + \gamma_d + \beta_t^{(i)} + \gamma_d^{(i)}$$

.

wellcome

Leo Bastos

PROCC/Fiocruz

Leonardo.bastos@fiocruz.br

@leosbastos