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Climate change increases viral spillover risk

In 2070, human population centres in equatorial Africa, south China, India and southeast Asia will
overlap with projected hotspots of cross-species viral transmission in wildlife.
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Anthropogenic environmental changes

Anthropogenic environmental changes disrupt ecosystems and climatic patterns, reduce

biodiversity, increase the frequency of extreme weather events and create additional
pressures on healthcare and food systems.

Changes in natural ecosystems and land use increase the risk of vector-borne diseases and
affect human health.
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Anthropogenic environmental changes impact lifecycles
and geographic distribution of Brazil’s deadliest animals

Mosquito lifecycles are strongly influenced by rainfall, temperature, and relative humidity.

Aedes (Stg.) aegypti
Linnaeus, 1762

—=*— Proboscis

Naturally infected with the
following viruses:

dengue 1-4, Zika,
chikungunya, and yellow fever
(outside Americas)

Antenna
Foreleg

Thorax

Family: Culicidae
Subfamily: Culicinae
Tribe: Aedini

Genus: Aedes

Subgenus: Stegomyia
Geographic distribution:
urban mosquito, found in
subtropical and tropical
regions

Ecology: found in urban
areas, including inside
buildings and houses (mean
dispersal 28 to 199m; lifespan
two weeks)

Abdomen

La— Midleg
,V:‘

\
A

—Hindleg

Haemagogus (Con.) leucocelanus
Dyar & Shannon, 1924  §

Naturally infected with the
following viruses:

yellow fever, llheus,
Maguari, Una, Mayaro and
Wyeomyia

Family: Culicidae

Subfamily: Culicinae

Tribe: Aedini

Genus: Haemagogus
Subgenus: Conopostegus
Geographic distribution:
Argentina, Brazil and Paraguay

Ecology: found in forests but /'/

can take blood from hosts at g

ground level, with diurnal and ' /

acrodendrophilic habits f \
(dispersal up to 11.5km?) 1 i

W
Segura & Castro, IEC-MS/SVS, Belém, 2007
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Zika virus In natural conditions
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Zika virus pandemic: early stages

The Americas, 2015-16 s e Sl G =
Zika is spreading throughout the > N R — & : 7
continent. The WHO declares a ] I By N3¢

Public Health Emergency of ! Jse i 7 =N

International Concern on February : \ : 5~ Y 57 4 Yap Island, 2007

1,2016 C | T o &_E";v ) First large outbreak of Zika, ~8,000
dac | = % : ' (73%) infected.

French Polynesia, 2013-14
Large Zika outbreak infects 66% of >, < 2
population (~183,000). First . W
evidence of Guillain-Barré R N . % O/
syndrome and retrospective TiA) NS / - K L i {
evidence of microcephaly. g : o \ . = é> 4
- (Uganda, 1947-48 i 1o “m o
Nigeria, 1953 Zika virus first is isolated from a A ; o,
First viral isolation of Zika from a rhesus monkey, followed by isolation =
human host. from A. Africanus mosquito. -
. Malaysia, 1969
?izzi:;l ,ﬁ.‘fg?bsem in the state of Erst isolation of Zika virus in Asia]
Bahia, and quickly spreads (Aedes aegypti mosquito)

throughout the country. Significant
rises in microcephaly incidence are

Earliest ewdence of Zika clrculatlon
observed. o I =

Alltypes [0 i © Human
virologic . . . . O Q O |/ Mosquito

Lessleretal. Science2016
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Expansion of Aedes spp. associated with
arbovirus epidemics in the Americas

Zika virus lineages Aedes aegypti expansion Aedes aegypti distribution
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Fariaetal. Science 2016; Brady and Hay, Annu Rev Entomol, 2019; Kraemeret al. eLife 2014
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Emergence of Zika virus in the
Americas: early findings

No. of Zika

ZIKV weekly
notified cases (x1000)

Zika first confirmed cases in early May 2015 Brazil (1)
First Zika genome sequence in January 2016 (2)
WHO PHEIC by 1st Feb 2016 (3)

Epidemic spread
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Association ZIKV and microcephaly (13 April 2016) (4)
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Factors determining scale and spread of an
emerging infection in naive populations

Incidence time series
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Serial interval distribution
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Serial interval

Likelihood: It ~Poiss(Rti]t_sws} J
=1

Prior:

Analytical Bayesian method

R ~G (a,b)

Time from illness onset in the primary case
to iliness onset in the secondary case

Human mobility
Large-scale connectivity
of human populations

Estimates of R,
Transmissibility: R

Loy average number of
5 10 secondary cases infected
51 by each case “at time t”
0 T T T T T T 1

0 14 28 42 (R < 1 stops an epidemic)

Predict the potential impact of the outbreak

Assess the feasibility of control measures

Track potential changes in transmissibility over time
Evaluate the effectiveness of control measures

Adaptedfrom Anne Cori 2022
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Countering the Zika epidemic in Latin America

Zika epidemic simulations
Zika epidemic in Brazil was expected to be largely over in No intervention

3 years, with seasonal oscillations in incidence caused by
transmissibility and variation in mosquito populations.
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Arbovirus genomic surveillance in Brazil

From mobile to fixed genomic sequencing and research laboratories
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Time series of RT—qPCR+ cases correlated with
suspected cases and Aedes aegypti suitability

Monthly climatic suitability
for Aedes aegypti
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No. ZIKV suspected and

RT-PCR+ cases NE-Brazil

RT-PCR+Zika cases (ZIBRA mobile
lab) and weekly MoH notified cases
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Motified cases (MoH)
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Amplicon-based sequencing and
protocol optimisationin real-time

Steps 1 and 2: Design/order primers

Step 3A(i-ii): RNA extraction ~ Step 3B: DNA extraction

Step 3A(iii-iv): cDNA synthesis

Steps 4—9: Multiplex PCR

Y Steps 10 and 11: Quantification and QC
3 1

3 Step 12: Library preparation

> and sequencing

<

& |

g; Steps 13-16: Analysis pipeline

< l

Steps 17 and 18: Quality control

Faria et al. Nature 2017 (with MS/SVS and PAHO); Quick et al. Nature Protocols 2017; Kraemeretal. eLife 2014
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Establishment and cryptic transmission of Zika
virus in Brazil and the Americas

Quantifying periods of transmission, investigating geographical spread and reintroductions between
populations, and evaluation of possibly relevant mutations associated with phenotypic changes.
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Zika virus and microcephaly in continental Africa:
what lineage and where from?

Introduction of Zika virus Asian lineage from Brazil, possibly
causing 76 suspected microcephaly cases in Luanda

Geographical

region or location:

—— South America

—— Central America

— Caribbean

—— North America

—— Angola
Oceania

— Other

2 years

Caribbean, Florida, and South America
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Factors affecting the likelihood of introduction
of Zika virus Asian lineage to Angola

Median monthly air passengers to Angola (January-October 2016)
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Geographical
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Hill, Vasconcelosetal. LancetInf Dis 2018 (Angolan MoH)
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A single mutation in the prM protein of Zika virus
contributes to fetal microcephaly

Supporting in vivo experiments with a mutant virus with the specific mutations of concern to
confirm or reject the specific properties of the candidate variants.

A 0.0175 N
« Single mutation (prM-S139N) contributes to foetal microcephaly QE
. . . . 2 0.0125;
* prM-S139N mutation arose in 2013 in French Polynesia before S 000 §
the virus jumped to Brazil (American lineage). g o ]
Q 1 S
. . . O @)
* Invitro, prM-S139N makes ZIKV more infectious for mouse and S <
human neural progenitor cells and promoted apoptosis. R e s | (e ;ji
= )
Neurovirulence phenotypes of the contemporary ZIKV strains and = — (s " §
heir ancestral Asian strain: N130S Vi =
t Vreow [rroea] s 5
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Yuan etal. Science 2017
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Yellow fever virus: virion,
genome and clinical symptoms

* RNA virus transmitted primarily by hematophagous arthropods.
 Member of the Flaviviridae family (flavus = yellow).

* Genus Flavivirus, as dengue, Zika and West Nile viruses.

* Primary amplifying hosts: non-human primates.

 Humans are accidental hosts and present range clinical forms

* Vaccine-preventable (very effective 17D, live-attenuated, long-life

protection, available since 1938), yet >82,000 deaths annually worldwide.

| e g | Genomic polyprotein |]’ ﬂ 3-0H
M protein 50 nm diameter
E dimer . (= ! l
C protein '| ‘ LN A B
. - A llz E NS1 N52A| NS3 NS5 |
/7] l l'-..,«"'!d"a,,.. : =P v
V) )
7 /. ‘Signa peptidase +Golgi protease 7 NS3 protease

A®N323 NS4A +NS4B

Vileen s
N
\ NS3 NS5

=
\g?l;/rote ase Polymerase

Genomic RNA |
ss+RNA (11 kb)

The yellow fever iceberg:

1.
2.
3. Severe form: 10 to 20%

4. Fatal: 5t0 10%

Pariset& Mazet, 1819 (Wellcome Collections)
https://viralzone.expasy.org Vasconcelos P, Rev Soc Bras Med Trop, 2003; Gaythorpe et al eLife, 2021

Yellow fever virus



Brief history of YFV in Brazil

Historical YFV periods:

Dark Age
Golden Age

Disillusion Age Us Amy
Reed Commission ;
Vaccine Age -
(A B
C. Finlay: : sl
YFV transmission
by Ae. a ti | . -
4 2P Original Asibi
17D YFV vaccine 1940-1960s
DDT “miracle treatment”
Largest outbreak in decades in
Panama Canal Brazil: sylvatic or urban?
___________________ | I i
I T T T T T
1850 1875 1900 1925 1950 1975 2000
____________________ | | I I I I I
PE (1685) ‘
60deaths ______ Sporadic urban outbreaks 1L >1500 sylvatic cases " SE-Brazil
— (1849-1928) N, SE- & NE-Brazil S (1934-2003) Brazil 2204 H cases
| 757 deaths*
Yellow fi titutes in th th of the the epidemiological rules which belong to : z *
cou:tl’(;'w(}ler‘;:l)co:s}:r:b‘:r:lnmuechm::)oreodifﬁs yellow fever, to the point of suggesting a Diseovery of e jdngie X oyle gﬁ%PAiozgféa
cult of solution than was believed; the dis- MOrbid entity not yet catalogued, were it not : y S e
semination of the virus extends over a large for the mf.“sual dlssemn}atzon of .St.‘go"’ym The Newer EpldeIOIOgY of é\""ﬁ
area, both within and outside the cities, in Calopi (Abes (Slenoneinl ealaps)) I thine Yellow Fever® vl
spar;ely populated points, and, at tix’n o re%lons together w(;th l:be clinical obsl,ler:anon; B\~
ar ; S, ) » and autopsies made by persons well traine: FRED L SOPER, M.D., Dr.P.H. V\—"
failing to obey in a most disconcerting manner in the subject of yellow fever. International Health Division, The Rocksfeler Founaation, New York, N. Y.~
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Spatial structure of YFV genetic diversity

Yellow fever virus (YFV) can be classified in four genotypes, two can be
found in Africa, and two can be found in the Americas.

 Similar timing of arrival of Aedes aegypti and YFV in the Americas during
period of Atlantic Slave Trade and first contact between the two continents

« South American genotypes arrival has been dated around 1697

« Ae. aegypti arrival to Americas dated before 1618

430-550
years ago

140-230
years ago

(1413, 1883)

100|

1697

West Africa

rrrrrrrr

South America |

: X South America Il

New World Asia Africa

11111
77777

» East Africa

uuuuuuuuuuu
uuuuuuuuuuu

Powel et al. Bioscence 2018 Bryant et al. PLoS Pathogens, 2007
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Time-series of yellow fever human cases in
Brazil from 1950-2019

Aedes aegypti
Aedes albopictus
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primate

Non-human
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N

Mosquito

Human ,__/

Jungle
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Adapted from MS-SVS 2019
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Factors hypothesised to explain
recent explosive YFV outbreak

Age group (years)

P Bos NN W oW A A U on National YFV
A W PT RPY P T ITTLT Y o
o _ %, B L & 8 8,8 2,2 8,2 8,49 82 vaccination by

« Low vaccination coverage in areas that were & §  agegroup:
previously not at risk, particularly the larger states in Q2 _% 90-100%
SE-Brazil (S&o Paulo, Rio de Janeiro and Minas B z 80-90%

. %, ¥ 70-80%
Gerais states). 60-70%

«  Waning of YFV immunity in reservoir hosts (non- 5 % .
human primates?) in the Amazon region, where the (%)'% 30-40%
virus is endemic. %2 o

- - @o i ’

* Anthropogenic environmental changes favoured 0-10%

mosquito populations (including urbanization, land
use and climate change).

* Increased mobility due to illegal trade of reservoir
populations (non-human primates?) and vector
expansion via air and fluvial travel.

* High altitude migration of windborne mosquitoes
carrying YFV for hundreds of kilometres (observed for

Anopheles spp.)

Shearer et al. LancetInfec Dis2017
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Using epidemiological data to shed light on the
mode of YFV transmission

Strong cross
correlation
between human
and NP cases:
human cases
lagged by 4
days
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Faria et al. Science 2018 (with PAHO)
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Sharing pathogen sequence data, analyses and
Interpretation in real-time at outbreak epicenter (l)

Largest outbreak for decades in Brazil (>2204 human cases, 757 deaths)

Pathogen GSD helped to answer key epi question: sylvatic transmission or urban transmission?
Preliminary data, interpretation and protocols shared 6 days upon arrival at the epicentre of outbreak
Maximum impact on public health, no negative impact on peer review publication

A

Yellow fever virus » Top Epidemic 2017 mosqui -
« Epidemic 2017 rume o
Epidemic 2017 prmate v
Venezusla 4
« Brazi Pre-Outbresk Oubraak
v A : § oo p 2016201

Ya
4l

Yellow fever outbreak in Nigeria 2018 @ @ 2 5.1k

Yellow fever virus in Angola Q 6 4.7k

Yellow Fever Virus genomic sequence from a Dutch
traveller returning from Suriname

P
3

New insights into the origin of the YFV 2017 Brazilian
outbreak

https://virological.org/t/real-time-genomic-surveillance-of-the-yellow-fever-virus-outbreak-in-brazil-2017/182 (5 May 2017)
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Frequent spillover of yellow fever detected within

days at the outbreak’s epicentre

Tracking zoonotic reintroduction in both directions over the species barrier and identifying (or
ruling out) vaccine reversions.

* Real-time genomic sequencing in FUNED-MG: within 5
days, GSD data showed a pattern consistent with
wildtype YFV SA1 lineage infection, indicating frequent
spillover while ruling-out urban transmission.

ldealized
phylogeny £
sylvatic
cycle "
@

© Genome from human

@ Genome from monkey

Idealized
phylogeny —E
urban
cycle °
@

@ Genome from human
@ Genome from monkey

« At least two patients living in rural areas in Minas
Gerais died 2d after receiving the YFV vaccine. Real-
time GSD analysis ruled out YFV vaccine reversion.
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Tripling the amount of YFV genomes from Brazil to
elucidate drivers of spread
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YFV enzootic and spillover transmission are
driven by spatial proximity

Identifying drivers of virus zoonotic spread.
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Coalescent phylodynamic models —
underlying principleis that we canrecover
population sizes from phylogenetic tree shapes

Exponential Growth Constant Population Size
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Chikungunyavirus: co-circulation of multiple genotypes

In the Americas

Establish the contribution of local transmission compared to imported cases can help make

policy decisions, including vector control and vaccination.

* Chikungunya virus (CHIKV) is an Aedes < v
mosquito-borne alphavirus (12kb) that has |
caused large epidemics linked to acute, %:‘
chronic, and severe clinical outcomes. l g;

ECSA

B

» Asian genotype (Caribbean origin) local B
transmission detected in Oiapoque, N-Brazil, ] 4| o
in July 2014.

» East-Central-South-African (ECSA) genotype
(Angola origin) local transmission detected in
Feira de Santana, NE-Brazil, in Aug 2014.

Asian
and
Caribbean

« ldentification of introductions and monitoring Molecular clock phylogeny of [
. . . . ‘s CHIKV, w/ 6 complete genome !
of viral diversity, together with human mobility  sequences from Brazi k\

data can provide accurate short term (but not
long term) forecasts of virus transmission.
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Angola M2022/1962
28/08/2014
1 26/08/2014
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Index case for ECSA genotype
Returning traveller from Angola

1
1 St Martin 2013
z St Martin 2013
Recife 03/07/2014
Qiapogque 28/8/2014
Ste Rose 21/8/2014
British Virgin Island 2014

Index case for Asian genotype
Returning traveller from French Guiana

Nunes, Faria etal. BMC Medicine 2015
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Chikungunyavirus: recent genotype replacement
In the Americas

Single mutations in the ECSA and IOL lineages may change viral behaviour, transmissibility,
pathogenicity and fitness in alternative Aedes albopictus.
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Tsetsarkinet al. PLoS Pathogens, 2007; Faria NR, 2023 (n=1661, updated 16 June 2023)
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Seven epidemic waves of chikungunya virus in Brazil

Over 59.5% of Brazilian municipalities reported CHIKV laboratory-confirmed cases between 2013
and 2022. Between 2015 onwards, all sequences cases belonged to the CHIKV ECSA genotype.

No mutations previously associated with enhanced transmission potential for Ae. albopictus mosquitoes (e.g., E1-
A226V) inthe CHIKV strains circulating in Brazil.
Spatial heterogeneity of CHIKV spread and population immunity might explain the recurrence pattern of CHIKV in Brazil.
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Early cases of SARS-CoV-2 in Wuhan, December 2019

COVID-19 cases in Wuhan in December 2019 Location and timing of human Location and timing of human
® Home address of cases with epidemiological link to Huanan Market cases in Huanan market cases in Huanan market
@ No link to Huanan Market O Market =4 Hospital
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Earliest confirmed
cases of SARS-
CoV-2 Iin Huanan
seafood market In
01 Jan 2020
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Timeline of Brazil-UK CADDE
studies on SARS-CoV-2

« Confirmed Cases: 37,671,420 (10 Jul 2023)
* Confirmed Deaths: 703,964 (10 Jul 2023)

Centre for Arbovirus I I

Dnscovery Diagnostics, Genomics & Epidemiology

Y4
anC

Phase 4 (Omicron and Omicron-like)

. . . im
« 4t highest number of deaths/100,000 inhabitants (JHUM)
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Seroprevalence in
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First genome Journal T Medicine
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Latin America
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(CNM) Scient Data
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Social disparities |
BMJ Global Health
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Mapping sylva'nc
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of yellow fever PNTDs

Measuring reinfection
by P.1/Gamma in Manaus

~ SARS-CoV-2 within-
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PrePrint

SARS-CoV-2 impact
in dengue transmission
Lancet Inf Dis

Full list of publications: www.caddecentre.org/publications;
data & protocols online 2" Dec 2019 *Epid. Data from WHO Dashboard, 12-06-2022)
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MobiIiFy datato predict an_d imprpve Z%cadde
detection of SARS-CoV-2in Brazil

. Early |dent|f|Cat|0n Of pred |Cted ot | N Proportion % passengers from affected countries
source of introductions is critical
for pandemic preparedness. . -

» Frequency of introductions:

¢ / g
volume of passengers and 5 - R e
incidence at source. T s e = -
: . oy ol Estimated % of COVID importations

« Strong post-hoc correlation Legend
between predicted and =i | - -
confirmed cases (r=0.9, p- — il
value<0.001). oot " — =

COVID-19 destinations P » . @ Porto Alegre (4%) e

Florianopolis

D Candido () J Croda, W Oliveira () EC Sabino, NR Faria. Journal Travel Medicine Mar 2020;

SARS-CoV-2 in Brazil — Phase 1



First SARS-CoV-2 genome from Latin America, >v
analyses and interpretation shared within 48h

zn cadde

Discovery, Diagnostics, Genomics & Epidemiolo ay

» First confirmed cases in Latin America (and Brazil): 48 hours from RT-PCR to genome and interpretation
» Required a multidisciplinary team with laboratory diagnostic capacity, previous expertise in pathogen

genome sequencing and in sequencing data analysis.

| SARS-CoV-2 coronavirus » | | ] Genome Reports » Latest JEE[]s]

Topic

First cases of coronavirus disease (COVID-19) in Brazil, South v, =
America (2 genomes, 3rd March 2020)

14

@ cChina @ Travellers returning from ltaly @ Italy @ Elsewhere
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https://virological.org/t/first-cases-of-coronavirus-disease-covid-19-in-brazil-south-america-2-genomes-3rd-march-2020/409 (28 Feb 2020)
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Rapid spread of SARS-CoV-2in Brazil

* Rapid increase in number of cases and deaths, but decline in
epidemic spread (R) after implementation of NPIs in late March — (messanas)

Rio de

. . . [1045t05 Janeiro
* NPIs halted by lack of public health centralized strategies 251010 ciy (R)
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Souza et al. Nature Hum Behaviour 2020; Candido et al. Science 2020
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Asynchrony and complexity of COVID-19 e

‘ G Arbovirus I
‘{\ Discovery, Diagnostics, Genomics & Epidemiology

non-pharmaceutical interventions in Brazil m
a) b) »

« Novel dataset with survey responses from ¢ ; & |
4,027 mayors, covering 72.3% of all 1 L.
municipalities in the country (2020). 1 B2 lia T

« Asynchrony in implementation of non- A __é )
pharmaceutical interventions (NPIs) of g Tor -
control measures in Brazil. N

° C) d)

Impact of control measures poorly
understood and complicated by delays in
reporting => need for complementary
pandemic assessments from genomic &
serological data.

Easing of NPIs:
M March Il Apdl [ May ] Jure Not easing NA

de Souza Santos et al. Scientific Data 2020

SARS-CoV-2 in Brazil — Phase 1



First SARS-CoV-2 representative .
- P J4cadde
genomic dataset T

« June 2020: 427 genomes, 85 municipalities, 21 states ol Y s
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Thousands of introductions and three mains ¥cadde
lineages of SARS-CoV-2 in Brazil

Minimal surveillance lag of 2 days between date of Significant decline of within- & between-
first detection and arrival of major clades in Braazil. virus lineage migrations after start of NPIs
8 Location: . First phase Second phase
c .| @ Outside Brazil Source virus migration: Lo
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History of exposure to SARS-CoV-2: high ~cadde
rates of underreporting in Latin America = = 45 ==7500F

On average: there were 41 SARS-CoV-2 infections Blood donors: cost-effective & representative
per reported confirmed case in Latin America population to study exposure to viral pathogens
e ® Study examining general population
500 Upper Whisker: 84.8 seroprevalence
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Median: 41.1 o I 100.0%
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Arora et al. LID 2021 (https://serotracker.com)
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SARS-CoV-2 serosurveillance reveals high Y eadde
attack rate in Manaus by Oct 2020 4

Discovery, Diagnostics, Genomics & Epidemiology

Manaus (Population: 2.219.580) in Oct 2020: Séao Paulo (Population: 12.325.232) in Oct 2020:
Adjusted cumulative incidence 76% (95% CI 66 — 98)% Adjusted cumulative incidence 28.8% (95% CIl 26—-37)%
o Qo
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Resurgence of SARS-CoV-2 in Brazilian
Amazon, despite high seroprevalence

 Hypothesis 1: Virus lineages circulating in the
2"d wave could be better at evading immunity
generated in response to previous infection.

« Hypothesis 2: Virus lineages circulating in the
2"d wave may have > inherent transmissibility
compared to preexisting lineages circulating in
Manaus.

 Only 6 sequences available from Manaus
until 12 January 2021.

« Genomic & serological data shared in real-time.
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Targeted sequencing of SARS-CoV-2to W
- - , o z: cadde
investigate Manaus’ second epidemic wave

y, Diagnostics, Genomics & Epidemiology
Data source:

* Outbreak investigation in Manaus guided by serosurveillance

* Amplicon-based sequencing ARTIC protocol of available samples

 |dentification of a local cluster with 17 unique aa mutations.

« ldentification of a novel P.1/Gamma lineage: simultaneous
iIncrease in lineage frequency, deaths and hospitalizations.
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Altered epidemiological characteristics of
the P.1/Gamma VOC in Manaus

Two-category mathematical model to investigate transmissibility, immune

evasion and disease severity of Gamma VOC in Manaus:

Increased transmissibility: Gamma s 1.7-2.4
(50% BCI) more transmissible compared to non-
Gamma lineages in Manaus.

Immune evasion: Gamma can evade 21-46%
(50% BCI) of protective immunity elicited by
previous infection with non-Gamma lineages.

Disease burden: Gamma 1.2-1.9 (50% BCI)
times more likely to result in mortality: strained
healthcare systems?
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Faria et al. Science 2021 Preprint, dataand code https://www.caddecentre.org/publications/
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Healthcare inequities drove fluctuations of
fatality ratios across Brazil

E.g. Manaus

Age groups:
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Semi-mechanistic age-structured model to
investigate effect of Gamma vs. healthcare
accessibility in in-hospital fatality ratios.
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Global and regional hubs in VOC dispersal

Key role of global and regional mobility and VOC
transmissibility means that many VOCs circulate
outside of their birthplace before their detection and
characterization through genomic surveillance (e.g.
Gamma surveillance lag was around 128 d).
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Towards a standardized, real-time viral metagenomic
survelllance framework to improve pandemic detection
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@ Real-time Zika virus generation and data sharing
@ Real-time yellow fever at outbreak epicenter
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