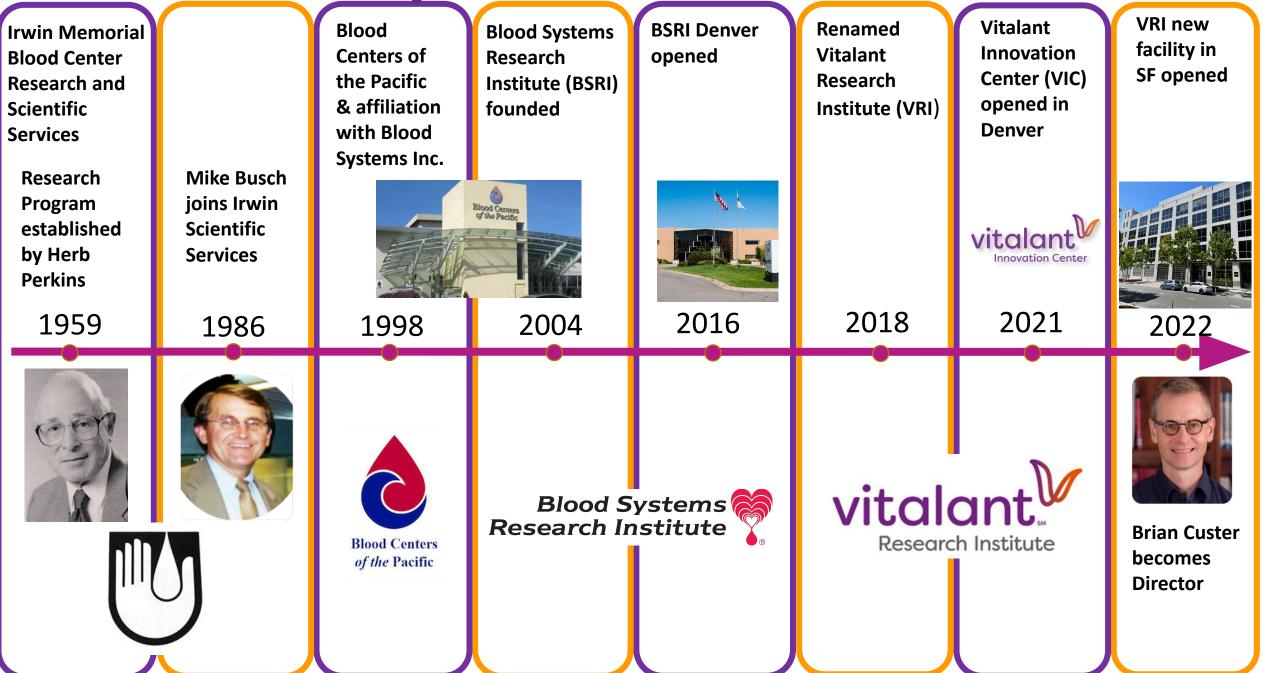


Impact of the HIV Epidemic on the Blood Supply System and Responses to Potential Transfusion Transmitted Emerging Infections Diseases

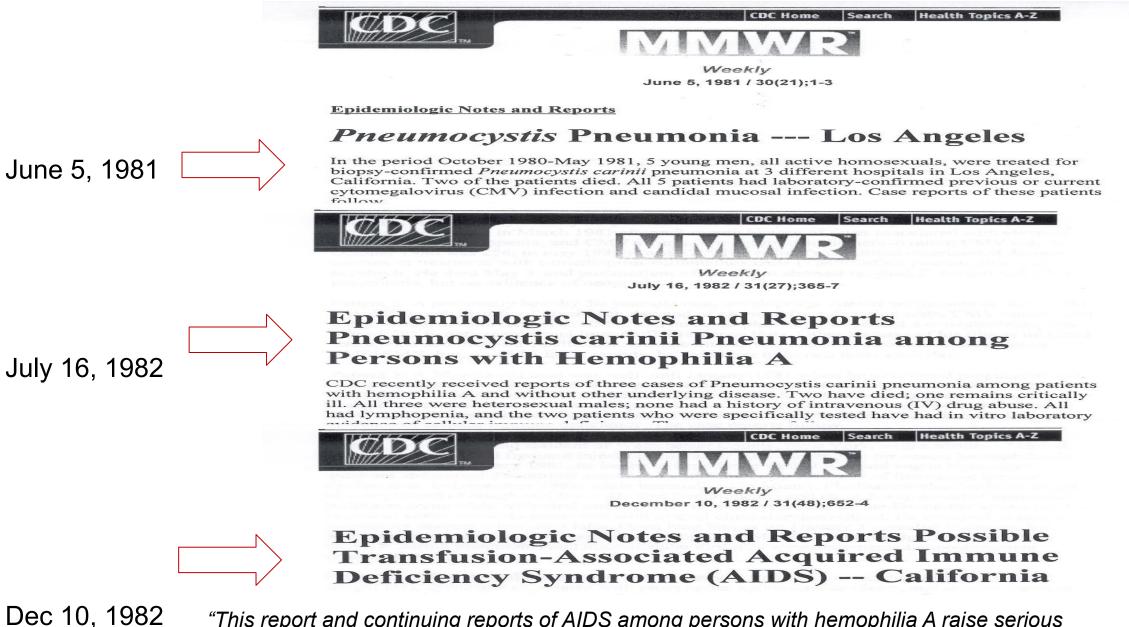
Michael Busch, MD, PhD

Vitalant Research Institute Department of Laboratory Medicine, University of California San Francisco

Vitalant Research Institute Research Institute


(VRI) is dedicated to advancing blood safety and efficacy world-wide through scientific research, education and the promotion of evidence-based policies, and to contributes to discovery and translational research based on global blood donor surveillance and pathogenesis studies.

(VIC) extends and focuses programs within VRI and the Vitalant Blood Services Division (BSD) to knit together discovery and translational science with implementation


History of Vitalant Research Institute

2021 – SARS-CoV-2 Options to EQAPOL 2021 – Transfusion-Transmissible Infections Monitoring System (TTIMS) 2020 – SARS-CoV-2 Supplement to REDS-IV-Pediatric 2020 – National SARS-CoV-2 Seroincidence Studies in Blood Donors & Research Donor Cohort Studies 2020 – Assessing Donor Variability and New Concepts in Eligibility (ADVANCE) Study	 2022 – Innate Sensing of the Cell-Free DNA & the Interferon-Mediated Control of HIV in Vivo 2022 – Hematopoietic & Immune Development in the Human Chorion 2021 – ACTIV Integration of Host-targeting Therapies for COVID-19 Administrative Coordinating Center (C3PO) 2020 – Transfusion-Related Immunomodulation Influences Infectious Disease Outcomes
2014 – Multiplex treatment-Outcomes Test fir Chagas Disease 2014 – Chikungunya Seroprevalence Study in Puerto Rico Following a 2014 2014 – Validation of Ultra-Sensitive Assays for Quantifying HIV Persistence 2012 – HIV Incidence Testing using Multiple Biological Specimens (CEPHIA 2012 – Screening and Confirmatory Testing for Human Babesia-SBIR Phas 2011 – Recipient Epidemiology and Donor Evaluation Study-III – Central La 2010 – Impact of Early Antiretroviral Therapy on HIV Persistence and Inflam 2010 – External Quality Assurance Program Oversight (EQAPOL)	e (RAVEN) 2019 – NIAID Virology Quality Assurance (VQA) A) 2018 – REDS-IV-Pediatric se II 2017 – RedeS aboratory 2016 – ZIKV Supplement to REDS-III
2004 – Acute HCV Infection in Injection Drug Users 2004 – Natural History & Pathogenesis of WNV in Viremic Blood Donors 2003 – Natural History of Acute and Chronic HCV in Blood Donors 2002 – Immunologic and Virologic Features of Early HIV Infection (OPTI	2004 – Retrovirus Epidemiology Donors Study, Part II (REDS-II)
1999 – Pathophysiology of HTLV-I and HTLV-II Infection "HOST" 1996 – Donor Leucocyte Activation/Proliferation Post-Transfusion 1994 – Viral Activation in Transfusion Study, VATS 1992 – Impact of Homologous Blood Transfusion on HIV Replication and D 1992 – HIV Diversity/Pathogenesis in Donor/Recipient Clusters)isease in vivo (AABB NBF)
1987 – AIDS Epidemiologic Study of Blood Donors 1986 – Transfusion-Related Viral Infections and Immune Response 1986 – Effectiveness of HIV-1 Screening 1986 – Development/Evaluation of New Screening Tests for HTLV-III HIV-1 Antibodies/Antigens/Nucleic Acids 1984 – Transfusion Safety Study (TSS)	1989 – Retrovirus Epidemiology Donor Study, REDS-I 1988 – Removal/Inactivation of Viruses in Blood 1988 – Natural History of AIDS in Homosexual Man ("San Francisco Men's Health Study") 1987 – Epidemiologic Study of Heterosexual Transmission of HIV from Persons with Transfusion-Associated Infections ("Partner Study")

Outline

- Discovery of TT-HIV and pre-screening risk
- Progressive improvements of HIV serological and NAT systems/assays for donor screening
- Molecular surveillance and breakthrough infections
- Implications for advancing HIV diagnostics and staging
- Implications for HIV surveillance & pathogenesis
- Response to Emerging Infectious Diseases

"This report and continuing reports of AIDS among persons with hemophilia A raise serious guestions about the possible transmission of AIDS through blood and blood products."

Workgroup to Identify Opportunities for Prevention of Acquired Immune Deficiency Syndrome

January 4, 1983, CDC, Atlanta

sease detectives puzzle over problem of control

BLOOM, from bA iom being stigmatized. o avoid increasing the cost products or interrupting

ood-processing companies blood banks wanted to avoid ering the blood-collecting with additional costly tests DC was mainly interested in g the dangers to public health arting society, regardless of pecial interests get hurt. Or at hat was the ideal.

a meeting started promptly at uesday morning in Auditorium. hich was the smaller of the 's two auditoriums but still quite e. The room was half filled by long tables arranged in a hare, so there was no bead table d all 38 people sitting around the uare were of ostensibly equal im-

About 150 observers crowded the maining half of the room, occupyng all the folding chairs and standig at the rear

Most of the discussions and arguments would come that afternoon. he morning would be spent listening to the latest grim details of the sidemic. The disease in question. was called Acquired Immune Defitiency Syndrome (AIDS) because it paired its victims' immune sysm, leaving them hopelessly vulnerble to infections

We now have 881 cases," said Dr. arold Jaffe, addressing the gatherng from in front of a large movie reen that displayed the figures. Fifty-nine percent of cases have een reported since January of last

As is customary at medical gatheris. Jaffe, a member of the AIDS force, spoke in almost a monowith no display of emotion or sign of the frightening nature his data. He neglected to point out at the number of cases was conto double every six months. of the victime 74.6 percent, Jaffe said No one knew only clue was that the chain who had Allos were unpromiscuous. They had had a with an average of \$1 different sers each year, as compared

Meeting at the Centers for Disease Control are epidemiologists and blood specialists concerned with the AIDS epidemic and worried about U.S. blood supplies The danger to hemophiliacs - under investigation Eight of the 10 which was the main reason the meet victims were dead, he said. In only cessors could stop using blood from ing had been called -- was addressed aix months. AIDS had become the by Dr. Bruce L. Evan, who had repress second leading cause of death for sexuals. Or, they could test the blood sented the CDC at a similar emergen- hemophiliacs, second only to un

high-risk groups, primarily homo-

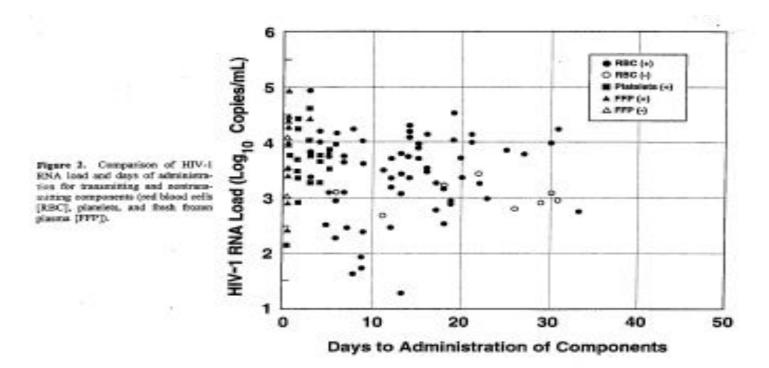
The New England Journal of Medicine

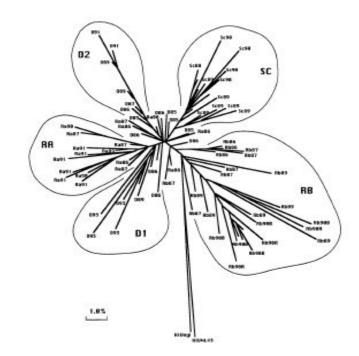
Copyright, 1984, by the Massachusetts Medical Society

Volume 310

JANUARY 12, 1984

Number 2

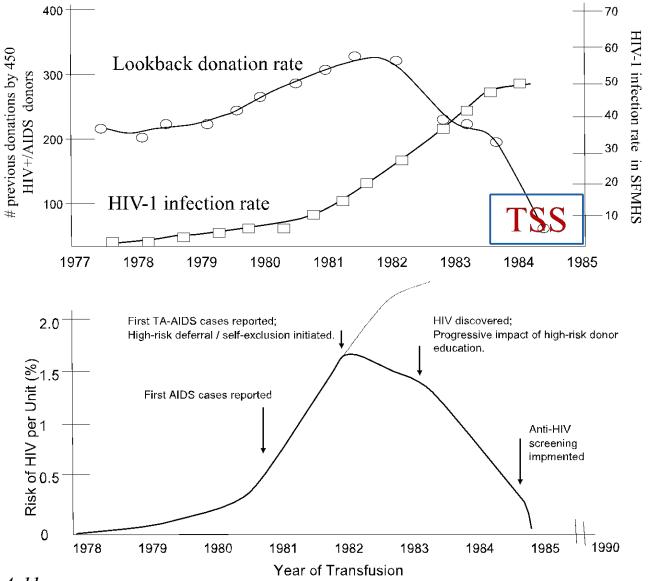

ACQUIRED IMMUNODEFICIENCY SYNDROME (AIDS) ASSOCIATED WITH TRANSFUSIONS


JAMES W. CURRAN, M.D., DALE N. LAWRENCE, M.D., HAROLD JAFFE, M.D., JONATHAN E. KAPLAN, M.D., LAWRENCE D. ZYLA, M.P.H., MARY CHAMBERLAND, M.D., ROBERT WEINSTEIN, M.D., KUNG-JONG LUI, PH.D., LAWRENCE B. SCHONBERGER, M.D., THOMAS J. SPIRA, M.D., W. JAMES ALEXANDER, M.D., GARY SWINGER, D.V.M., ARTHUR AMMANN, M.D., STEVEN SOLOMON, M.D., DAVID AUERBACH, M.D., DONNA MILDVAN, M.D., RAND STONEBURNER, M.D., JANINE M. JASON, M.D., HARRY W. HAVERKOS, M.D., AND BRUCE L. EVATT, M.D.

Transfusion Safety Study (TSS)

Rate of Transmission and Factors Influencing Human Immunodeficiency Virus Type 1 Transmission by Blood Transfusion and Pathogenesis

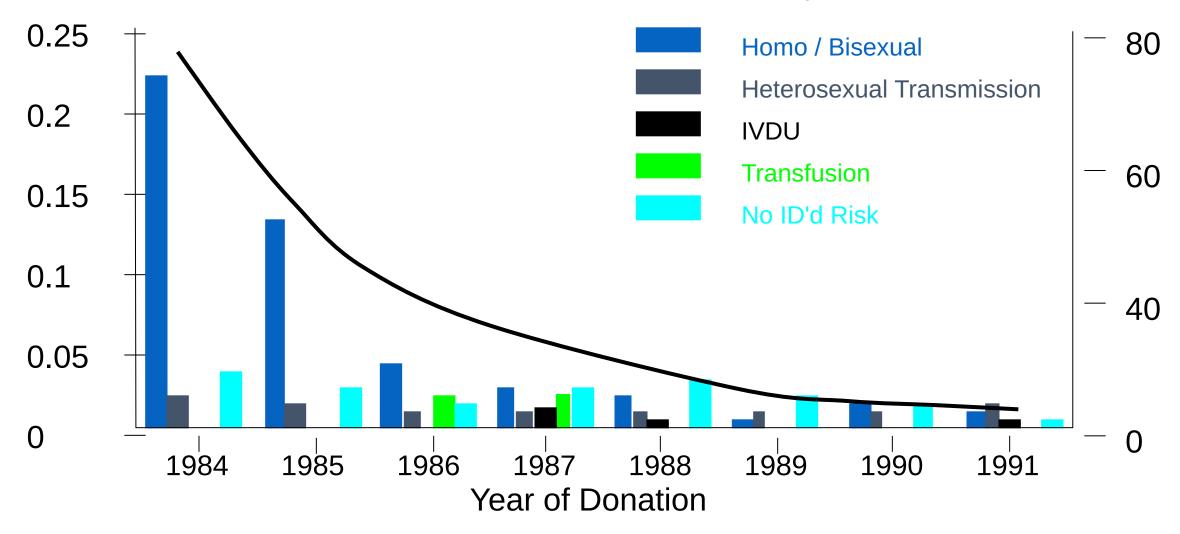
200,000 donor samples were saved in 1984 prior to HIV Ab testing 0.23% of repository samples test positive HIV on 1st gen Ab assays 91% of recipients of HIV-1 antibody positive transfusions were infected



Independent evolution of HIV quasispecies in linked donors and recipients

Donegan et al Ann Intern Med 113:733–739, 1990 Busch et al. JID 174: 26 - 33, 1996 Diaz et al. AIDS 11: 415 - 422, 1997

Risk of HIV Transmission by Blood Transfusions Before the Implementation of HIV-1 Antibody Screening



Busch et al. Transfusion 1991; 3: 4-11

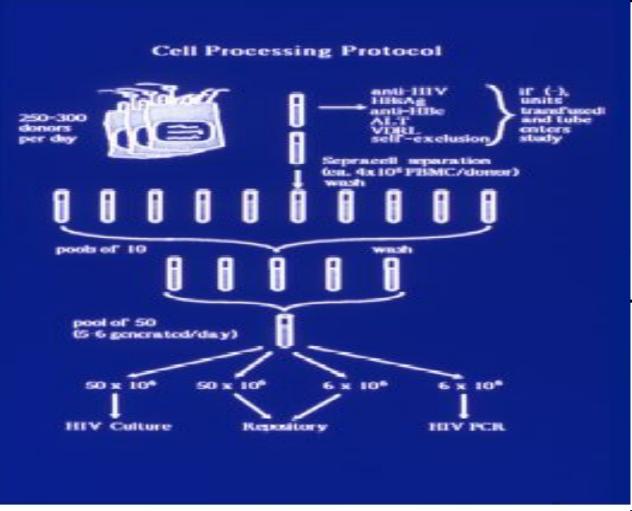
Rate and risk factors of HIV-infected donors in SF

% Donations Anti-HIV-pos

Number HIV-pos Donors w/ Indicated Risk

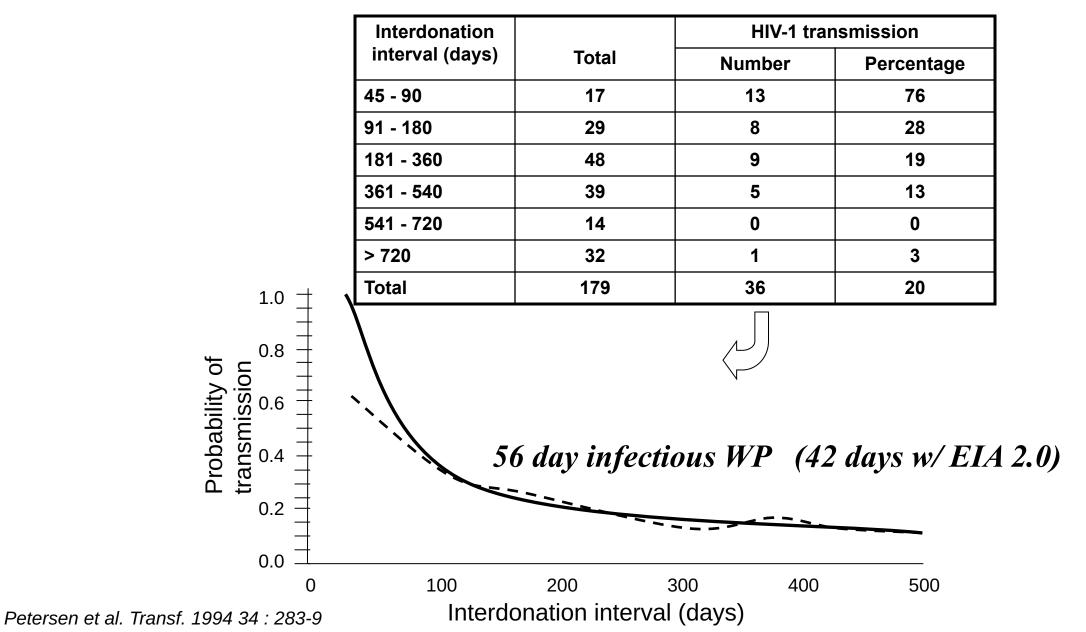
Busch MP. Retroviruses and Blood Transfusions: The Lessons Learned and the Challenge Yet Ahead. Blood Safety: Current Challenges. Transfusion 1992

TRANSMISSION OF HUMAN IMMUNODEFICIENCY VIRUS (HIV) BY BLOOD TRANSFUSIONS SCREENED AS NEGATIVE FOR HIV ANTIBODY

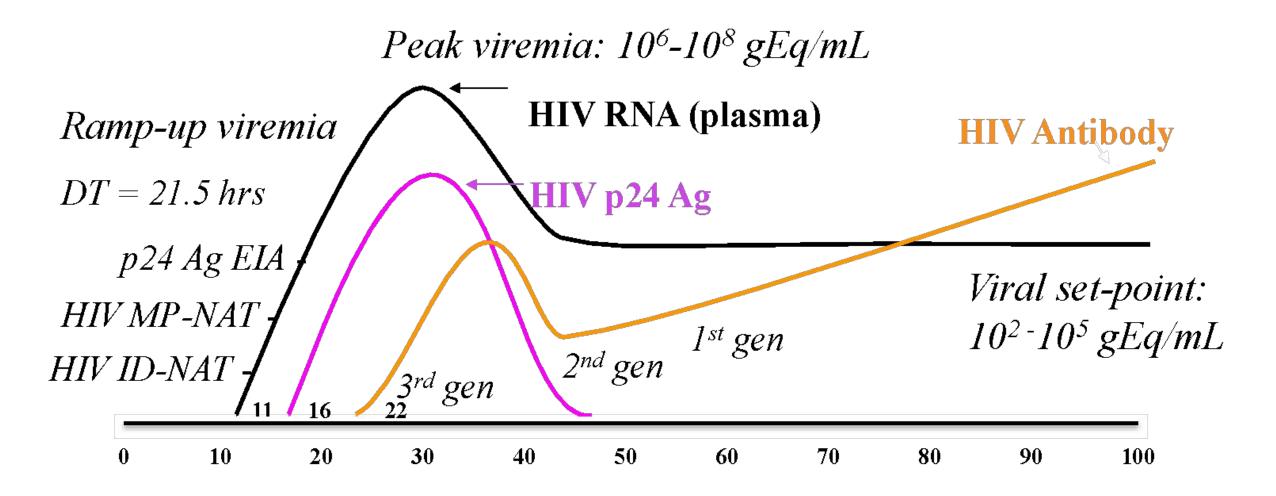

JOHN W. WARD, M.D., SCOTT D. HOLMBERG, M.D., JAMES R. ALLEN, M.D., DAVID L. COHN, M.D., SARA E. CRITCHLEY, M.S.N., STEVEN H. KLEINMAN, M.D., BRUCE A. LENES, M.D., OTTO RAVENHOLT, M.D., M.P.H., JACQUALYN R. DAVIS, MT(ASCP), M. GERALD QUINN, M.D., AND HAROLD W. JAFFE, M.D.

Donor (NO./AGE/SEX)	Mode of HIV Transmission to Donor	PUTATIVE PERIOD FROM INFECTION OF DONOR TO DONATION	ACUTE Retroviral Syndrome	RECIPIENT (NO./AGE/SEX)	TYPE OF COMPONENT RECEIVED*
1/31/M†	Homosexual	<12 wk	No	1/60/M 2/57/M	Platelets RBC
2/28/F	Heterosexual	<14 wk	No	3/46/M 4/61/F	RBC Cryo
3/20/M	Homosexual	<16 wk	No	5/<1/F 6/55/M	Platelets FFP
4/34/M	Homosexual	Unknown	No	7/71/F 8/45/M	RBC Platelets
5/39/M	Unknown	<16 wk	Yes	9/71/F 10/56/M	RBC RBC
6/20/M	Homosexual	Unknown	No	11/71/F	RBC
7/34/M	Homosexual	<12 wk	Yes	12/66/F 13/57/M	RBC FFP

Table 1. Cases of HIV Transmitted by Screened Blood Investigated March 1985 to October 1987, United States.

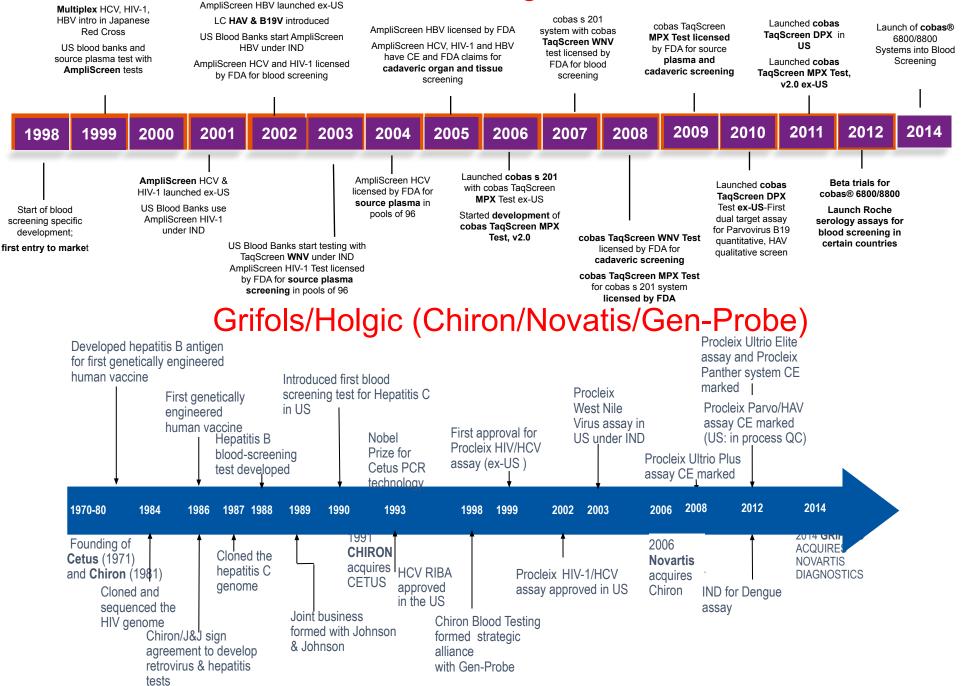

*RBC denotes red cells, Cryo cryoprecipitate, and FFP fresh-frozen plasma. †As described in reference 8.

HIV Culture and PCR of Pools of PBMCs from 75,000 Seronegative SF Blood Donations



(%)
(/0)
(6.1)
(93.9)
(0.7)
(0.07)
(6.3)
(2.4)
(0.11)

HIV-1 transmission by transfusion of blood from SC donors according to the inter-donation interval



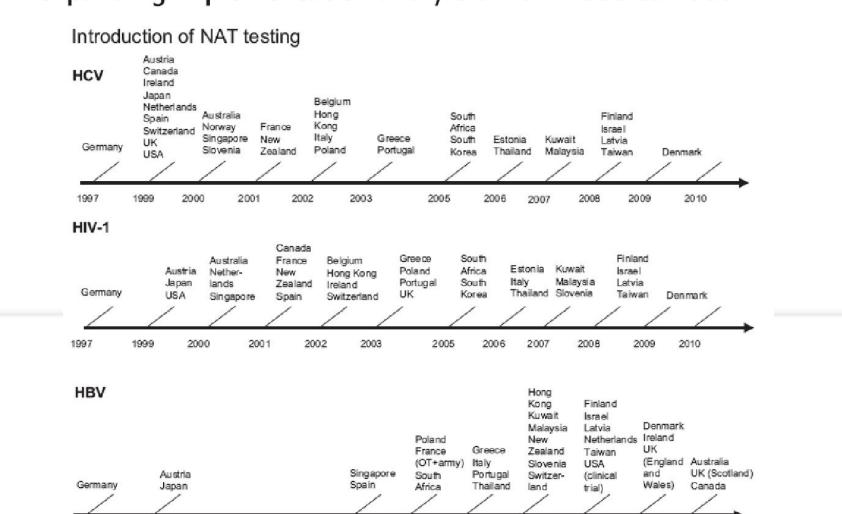
HIV Viremia and Seroconversion during Acute Infection

Transfusion. 2022;62:1334-1339.

Roche Diagnostics

Vox Sanguinis (2011)

INTERNATIONAL FORUM


1997

1999

© 2011 The Author(s) Vox Sanguinis © 2011 International Society of Blood Transfusion DOI: 10.1111/j.1423-0410.2011.01506.x

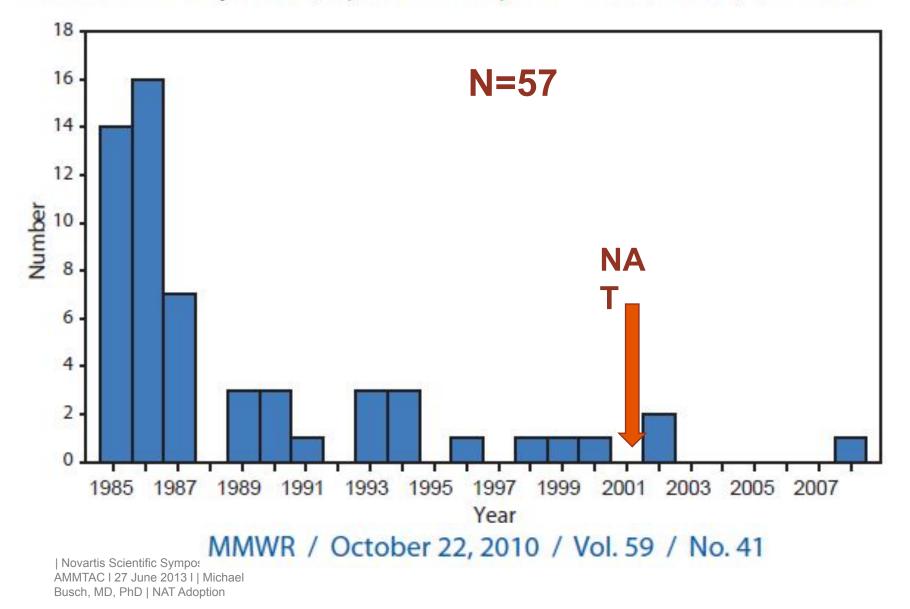
Vox Sanguinis

International survey on NAT testing of blood donations: expanding implementation and yield from 1999 to 2009

2004

2005

2006


2007

2008

2009

2010

FIGURE 2. Number of cases of transfusion-transmitted HIV infection from contaminated blood products, by transfusion year — United States, 1985–2008

JOURNAL OF VIROLOGY, Apr. 2009, p. 3288–3297 0022-538X/09/\$08.00+0 doi:10.1128/JVI.02423-08 Copyright © 2009, American Society for Microbiology. All Rights Reserved.

High Specific Infectivity of Plasma Virus from the Pre-Ramp-Up and Ramp-Up Stages of Acute Simian Immunodeficiency Virus Infection[∇] Zhong-Min Ma,^{1,2} Mars Stone,^{1,2} Mike Piatak, Jr.,³ Becky Schweighardt,⁴ Nancy L. Haigwood,⁵ David Montefiori,⁶ Jeffrey D. Lifson,³ Michael P. Busch,^{7,8} and Christopher J. Miller^{1,2,9}*

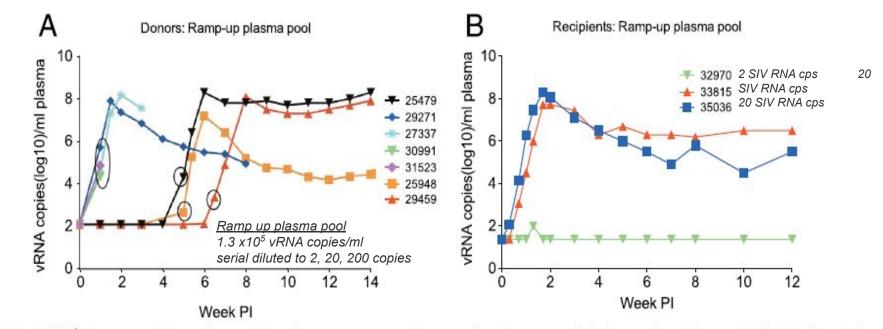
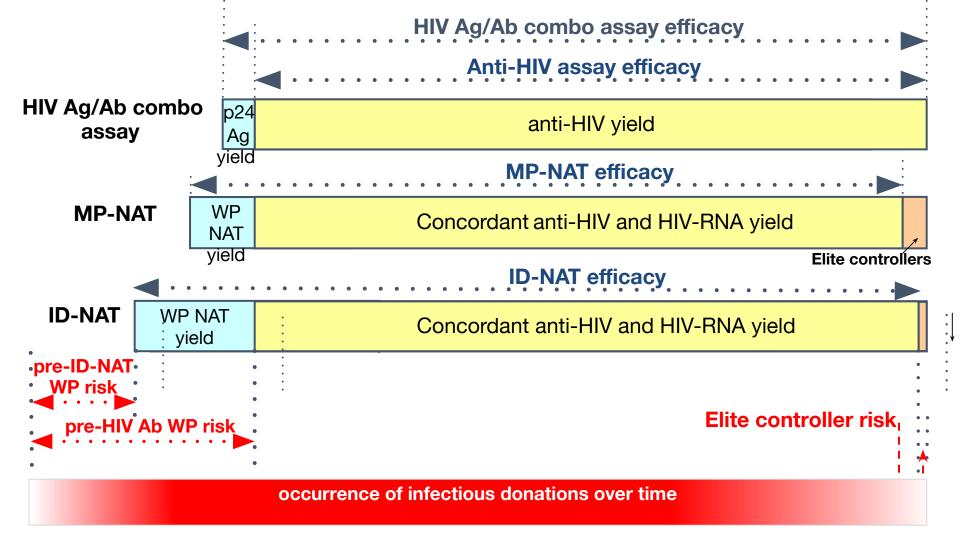



FIG. 3. vRNA⁺ plasma samples used to produce the ramp-up-stage plasma pool and outcome of challenge of recipient animals with the serially diluted ramp-up-stage plasma pool. (A) Plasma vRNA levels in donor animals that were vaginally inoculated twice in one day with 10^5 TCID_{50} of SIVmac251 or weekly from 0 to 13 weeks with 10^3 TCID_{50} of SIVmac251 until infection was detected. Each sample used to make up the ramp-up-stage pool is circled. (B) Plasma vRNA levels in SIV-naïve recipient animals after i.v. infusion of the ramp-up-stage plasma pool. While 1 animal inoculated i.v. with 2 SIV RNA copies (animal 32970) did not become infected, 2 of 2 animals inoculated i.v. with 20 SIV RNA copies (animals 33815 and 35036) did become infected. These two animals had a typical pattern of viremia after the plasma transfer.

Macaque ID_{50} = 1-10 SIV virions / inocula

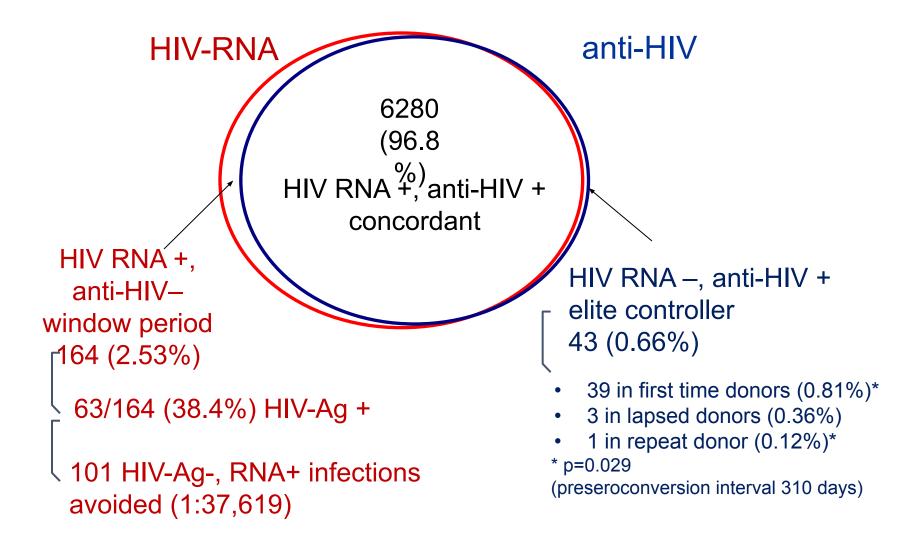
Efficacy of HIV Screening Assays and Closing Infectious Window Period

Bruhn et al. Transfusion 2013:53:2399-2412

#ISBTGothenburg

Global Nucleic Acid Amplification Testing (NAT) Use and Confirmatory Testing Approaches in Blood Donor Screening

HM Faddy^{1,2}, J Acutt¹, MM Dean^{1,2}, C Osiowy³, Clive Seed⁴, Brian Custer⁵, Michael Busch⁵, Susan Stramer⁶ on behalf of the Virology and SRAP subgroups of the ISBT WP on TTID.


Rogions covered /2 Red Cross and Vitalant Centres reporting	Bolgium and Denmark I region each Spain: 3 regions	asion	2 regions regions	
1 Celor Tegions	*	Oman: 1 region	Horg Kong Vietnam: 1 region Singapore	
2	 Represents region(s) within a country Represents entire region or country 	South Africa Entire country accept Western Cape reporting		1

	HIV-1	HCV	HBV	HEV	WNV	ZIKV
No. tested	517,547,384	540,392,660	370,188,56 5	7,721,980	140,202,92 1	19,301,07 1
NAT positive	32,914	74,945	67,895	1,763	3,143	589
First time^	61%	80%	75%	91%	13%	14%
Repeat [^]	39%	20%	25%	9%	87%	86%
NAT yield*	1,155 2.2/million	1,121 2.07/millio n	14,376 39/millio n	228/millio n	22/million	30/million
First time^	24%	36%	29%	-	-	-
Repeat [^]	76%	64%	71%	-	-	-

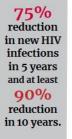
#ISBTGothenburg

HIV infections in five years of ID-NAT screening of 3,799,509 donations in South Africa (SANBS)

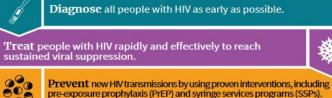
Vermeulen M et al, (SANBS, Johannesburg, South Africa)

HIV is back in the blood safety spotlight

鐖


¥.

Ending the HIV Epidemic: A Plan for America


HHS is proposing a once-in-a-generation opportunity to eliminate new HIV infections in our nation. The multi-year program will infuse 48 counties, Washington, D.C., San Juan, Puerto Rico, as well as 7 states that have a substantial rural HIV burden with the additional expertise, technology, and resources needed to end the HIV epidemic in the United States. Our four strategies - diagnose, treat, protect, and respond - will be implemented across the entire U.S. within 10 years.

GOAL:

HHS will work with each community to establish local teams on the ground to tailor and implement strategies to:

ð

Respond quickly to potential HIV outbreaks to get needed prevention and treatment services to people who need them.

The Initiative will target our resources to the 48 highest burden counties, Washington, D.C., San Juan, Puerto Rico, and 7 states with a substantial rural HIV burden.

Geographical Selection:

the

HIV

Epidemic

Data on burden of HIV in the US shows areas where HIV transmission occurs more frequently. More than 50% of new HIV diagnoses* occurred in only 48 counties, Washington, D.C., and San Juan, Puerto Rico. In addition, 7 states have a substantial rural burden - with over 75 cases and 10% or more of their diagnoses in rural areas.

Ending www.HIV.gov _

In 2017, HIVMA endorsed the U=U Consensus Statement, saving definitively that when a person living with HIV has an undetectable viral load, they will not transmit HIV.

The science is clear.

Combined data from 2008-2016 show that there were ZERO linked HIV transmissions after more than a hundred thousand condom-less sex acts within both heterosexual and male-male serodiscordant couples where the partner living with HIV had a durably undetectable viral load.

But the need remains great.

- Only 11% of young adults 18-30 believe that ART is "very effective" in preventing HIV.
- Only 50% of people living with HIV are engaged in care and virally suppressed.

"The body of scientific evidence to-date has established that there is effectively no risk of sexual transmission of HIV when the partner living with HIV has a durably undetectable viral load, validating the U=U message of HIV treatment as prevention."

> Anthony S. Fauci, MD July 2018

www.HIVMA.org

Oct. 2018

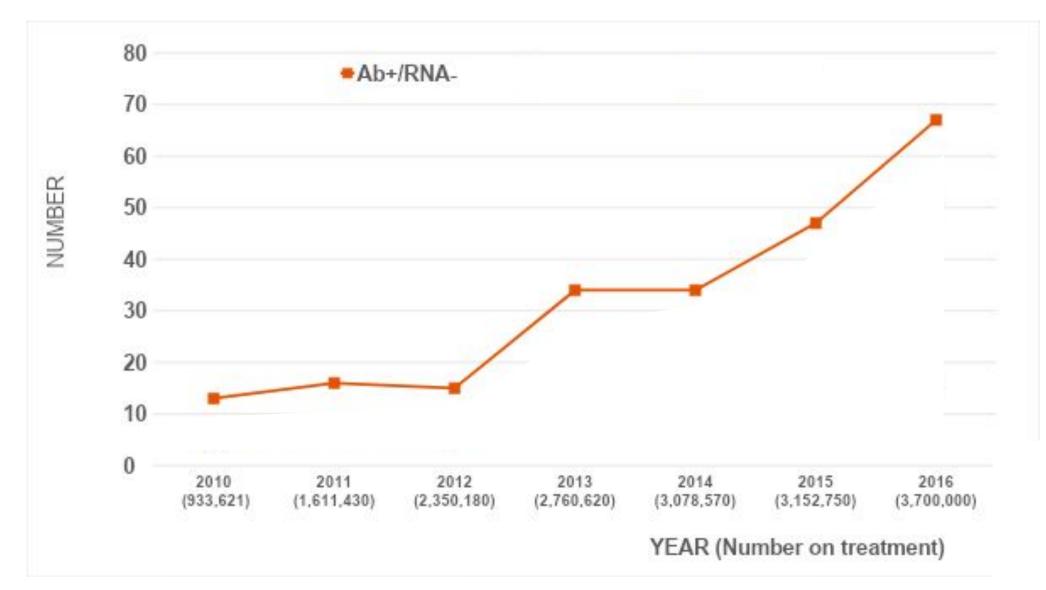
#UegualsU

*2016-2017 data

HIV Diagnosis

REVIEW

Challenges of HIV diagnosis and management in the context of pre-exposure prophylaxis (PrEP), post-exposure prophylaxis (PEP), test and start and acute HIV infection: a scoping review

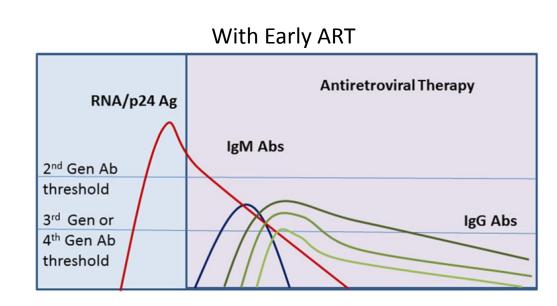

Tamara Elliott^{1,2} (D), Eduard J Sanders^{3,4}, Meg Doherty⁵, Thumbi Ndung'u^{6,7,8,9}, Myron Cohen¹⁰ (D), Pragna Patel¹¹, Gus Cairns^{12,13}, Sarah E Rutstein¹⁰, Jintanat Ananworanich^{14,15} (D), Colin Brown^{16,17} and Sarah Fidler^{1,18,§} (D)

Discussion: Missed acute HIV infection prevents people living with HIV (PLHIV) from accessing early treatment, increases likelihood of onward transmission, and allows for inappropriate initiation or continuation of PrEP, which may result in HIV drug resistance. While immediate ART is recommended for all PLHIV, studies have shown that starting ART in the setting of acute HIV infection may result in a delayed or complete absence of development of HIV-specific antibodies, posing a diagnostic challenge that is particularly pertinent to resource-limited, high HIV burden settings where HIV-antibody POCTs are standard of care. Similarly, ART used as PrEP or PEP may supress HIV RNA viral load, complicating current HIV testing algorithms in resource-wealthy settings where viral detection is included. As rollout of PrEP continues, HIV testing algorithms may need to be modified.

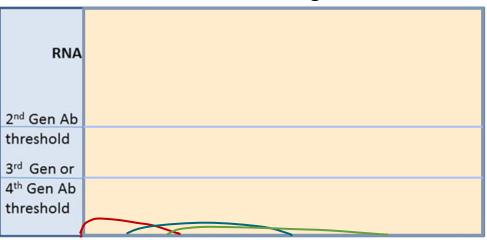
Conclusions: With increasing use of PrEP and ART in acute infection we anticipate diagnostic challenges using currently available HIV testing strategies. Research and surveillance are needed to determine the most appropriate assays and optimal testing algorithms that are accurate, affordable and sustainable.

Discovery of "False Elite Controllers": HIV Antibody-Positive RNA-Negative Blood Donors Found to be on Antiretroviral Treatment - REDS-III South Africa

Sykes et al. J Infect Dis. 2019 Apr 5. pii: jiz145. doi: 10.1093/infdis/jiz145.


HIV infection progression

Timing Is Everything: Shortcomings of Current HIV Diagnostics in the Early Treatment Era


Sheila M. Keating, Christopher D. Pilcher, and Michael P. Busch

Blood Systems Research Institute and Departments of Medicine and Laboratory Medicine, University of California, San Francisco

Without ART

PrEP Breakthrough?

- What happens to HIV progression and detection for someone taking PrEP or PEP if there is a breakthrough rather than aborted infection?
- How will the biomarkers of infection be altered?
- Can we detect those markers using blood screening assays?

²CID 2016:63 (15 August)

HIV antiretroviral therapy and prevention use in US blood donors: a new blood safety concern

American Society of Hematology Helping hematologists conquer blood diseases worldwide

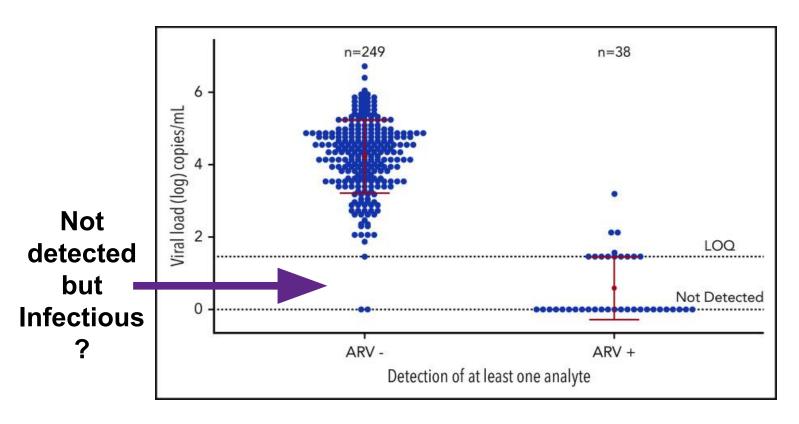
Copyright © 2020 American Society of Hematology

Brian Custer,^{1,2} Claire Quiner,^{1,3} Richard Haaland,⁴ Amy Martin,⁴ Mars Stone,^{1,2} Rita Reik,⁵ Whitney R. Steele,⁶ Debra Kessler,⁷ Phillip C. Williamson,⁸ Steven A. Anderson,⁹ Alan E. Williams,⁹ Henry F. Raymond,¹⁰ Willi McFarland,¹¹ William T. Robinson,^{12,13} Sara Glick,¹⁴ Kwa Sey,¹⁵ C. David Melton,¹⁶ Simone A. Glynn,¹⁷ Susan L. Stramer,¹⁸ and Michael P. Busch,^{1,2} for the Transfusion-Transmissible Infections Monitoring System

Antiretroviral therapy (ART) to treat infection and pre-exposure prophylaxis (PrEP) to prevent HIV infection modify detectability of biomarkers of HIV infection in blood and could change the safety of the blood supply. Are people on ART and PrEP donating blood? ransfusion Transmissible infections Monitoring System National HIV Behavior Samples for ART Surveillance (NHBS) Survey (TTMIS) testing collected Accepted Male Accepted Male NHBS during period of and Female First-Time, survey 9/2015 - 12/2017 Donors Male Donors participants Laboratory assessment of ART use Laboratory assessment of PrEP use Self-reported PrEP & blood donation in accepted blood donors in accepted blood donors in men who have sex with men HIV-HIV-/Other infections -HIV+ HIV-Respondents Donations Donations Donations n=299 n=591 n=300 n=1494 Samples for PrEP testing collected 85% had No 100% had No 0.6% had 99.4% had No 4.8% PrEP Use 15% had 94.2% No during period of ART Drugs ART Drugs ART Drugs Donation PrEP Drugs **PrEP Drugs** and Donation in Donation in Donation in Donation **Proximate to PrEP** in Donation in Donation Proximate in Time 9/2018 - 5/2019 The implications for our ability to detect HIV infection in donated blood in persons using ART or PrEP needs further investigation

Transfusion Transmissible Infections Monitoring System

ART Use in U.S. Blood Donors


	HIV-positive donors at	Samplas	ARVs	Estimated days since last ARV dose		
HIV Blood Screening Results	TTIMS blood centers during period*	Samples tested for ARVs		1 day ago n (row %)	2 days ago n (row %)	3 days ago n (row %)
HIV Negative	-	300	0			
HIV Positive	463	299	46 (15.4)**	31 (67.4)	12 (26.1)	3 (6.5)
NAT yield (NAT reactive, serology non-reactive	11	0	-	-	-	-
NAT and serology reactive	398	252	5 (2.0)	4 (80.0)	1 (20.0)	0
Serology reactive	54	47	41 (87.3)	27 (65.9)	11 (26.8)	3 (7.3)

September 2015 through December 2017 ** 95% Confidence Interval 11.5 – 20.0%

Blood. 2020 Sep 10;136(11):1351-1358. doi: 10.1182/blood.2020006890.

Key concern about PrEP/PEP #1: Viral nucleic acid levels may be suppressed

A comparison of HIV RNA concentrations in ARV-negative and ARV-positive donations from HIV-positive persons with and without evidence of ART use at the time of blood donation from 299 HIV-positive voluntary blood donations collected in the US from September 2015 through December 2017. Thirteen ARV drug analytes (raltegravir,

Thirteen ARV drug analytes (raitegravi tenofovir [TFV], abacavir, ritonavir, lamivudine, efavirenz, emtricitabine [FTC], elvitegravir, dolutegravir, cobicistat, etravirine, darunavir, and rilpivirine) were simultaneously measured.

Custer B et al. HIV antiretroviral therapy and prevention use in US blood donors: a new blood safety concern. *Blood*. 2020;136(11):1351-1358. doi:10.1182/blood.2020006890

Saeed S et al. Evaluation of a pre-exposure prophylaxis (PrEP)/post-exposure prophylaxis (PEP) deferral policy among blood donors. Transfusion. 2021 Jun;61(6):1684-1689. doi: 10.1111/trf.16349. Epub 2021 Mar 16. PMID: 33724472.

Update on ARV Use in U.S. Blood Donors (9/2015 – 6/2022)

	A	ation		
HIV screening results	ARVs Not	Median HIV VL	ARVs	Median HIV VL
	Detected	(IQR)*	Detected N	(IQR)*
	N (%)		(%)	
NAT Only	10 (100)	-	0	-
Concordant Positive	665 (95.3)	22855	33 (4.7)	299 (57-11388)
		(4948-81691)		
Low-level RNA NAT Confirmed	5 (9.6)	39 (21-75)	47 (90.4)	21 (0-21)
Unresolved Potential Controller	12 (14.8)	21 (16-28)	69 (85.2)	0
Serology Confirmed Positive	1 (11.1)	-	8 (88.9)	0 (0-16)
Serology Repeat Reactive	5 (26.3)	-	14 (73.7)	-
Total	698 (80.3)	21383	171 (19.7)	11 (0-38)
		(4198-80822)		

The International Journal of Transfusion Medicine

International Societ of Blood Transfusio

Vox Sanguinis (2017) 112, 473-476

© 2017 International Society of Blood Transfusion DOI: 10.1111/vox.12516

SHORT REPORT

Blood safety implications of donors using HIV pre-exposure prophylaxis

C. R. Seed,¹ D H. Yang² & J. F. Lee¹ ¹Australian Red Cross Blood Service, Perth, WA, Australia ²Australian Red Cross Blood Service, Sydney, NSW, Australia

A donor using PrEP may unknowingly become HIV infected with a breakthrough infection Suppressed viral replication resulting in a virus level undetectable by the most sensitive HIV NAT.

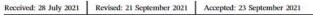
False negative' results on HIV serological IAs, including 4th generation HIV Ab/Ag combo immunoaasays. Blood components derived from such donations with large volumes of plasma could contain levels of HIV above the putative infectious threshold for transmission by blood.

The International Journal of Transfusion Medicine

Vox Sanguinis (2021) 116, 379-387 © 2020 International Society of Blood Transfusion DOI: 10.1111/vox.13011

ORIGINAL PAPER

Effect of HIV pre-exposure prophylaxis (PrEP) on detection of early infection and its impact on the appropriate post-PrEP deferral period

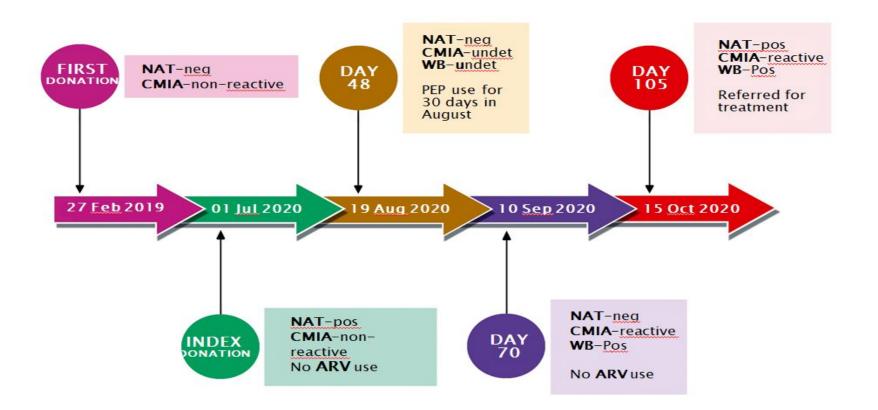

Clive R. Seed,¹ D Claire E. Styles,¹ D Veronica C. Hoad,¹ D Hung Yang,² Michael J. Thomas^{3,4} & lain B. Gosbell^{2,5} ¹ ¹Australian Red Cross Lifeblood, Perth, Australia ²Australian Red Cross Lifeblood, Sydney, Australia ³Australian Red Cross Lifeblood, Brisbane, Australia ⁴University of Queensland, Brisbane, Australia ⁵School of Mc

- Three study groups were compared; those taking oral daily tenofovir disoproxil fumarate (TDF) or FTC/TDF ('PrEP as randomized'), a subset of these who had detectable TDF concentrations in plasma in any sample during the seroconversion period ('PrEP as treated') and a 'Placebo' group.
- PrEP slows the progression of seroconversion.

Table 2 Modelled cumulative time from Fiebig stage 1 to reach next Fiebig stages among seroconverters in the Partners PrEP study

		Estimated mean time to reach (days)		
Fiebig stage	Defined as first appearance of:	PrEP as treated (N = 21)	Placebo (N = 65)	
2	p24 antigen	10	3	
3	Antibody (rapid test)	16	9	
4	WB indeterminate	19	10	
5	WB positive without p31 band	28	17	
6	WB complete	80	49	

WB, western blot.


DOI: 10.1111/trf.16698

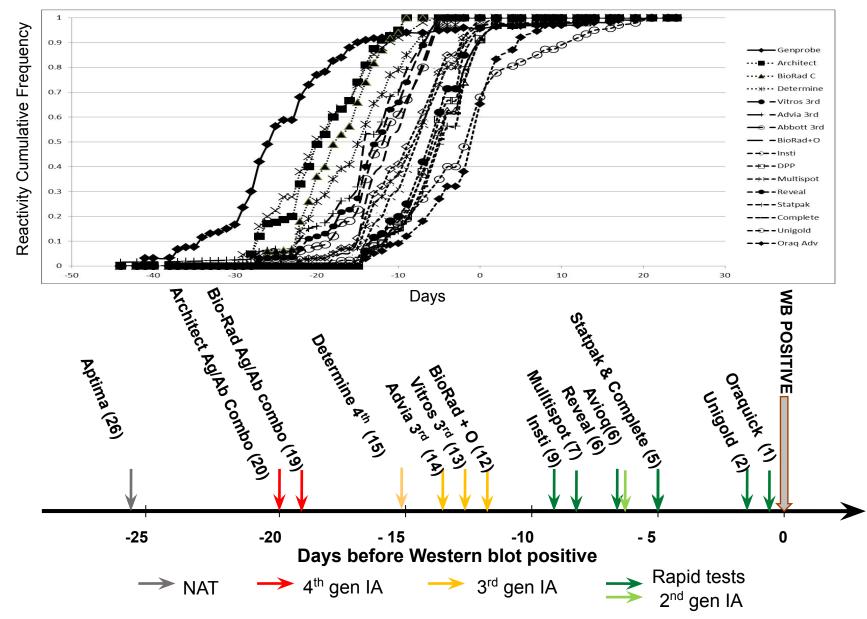
CASE REPORT

TRANSFUSION

Influence of unreported HIV prophylaxis on the kinetics of post-blood donation HIV seroconversion

Anna S. Nishiya^{1,2}|Nanci A. Salles¹|Cesar de Almeida-Neto^{1,4}|Steven S. Witkin^{3,5}|Suzete C. Ferreira^{1,2}|Fátima A. H. Nogueira¹|Tila Facincani¹|Vanderson Rocha^{1,2,4,6}|Alfredo Mendrone-Jr^{1,2}

Long-acting early viral inhibition (LEVI)

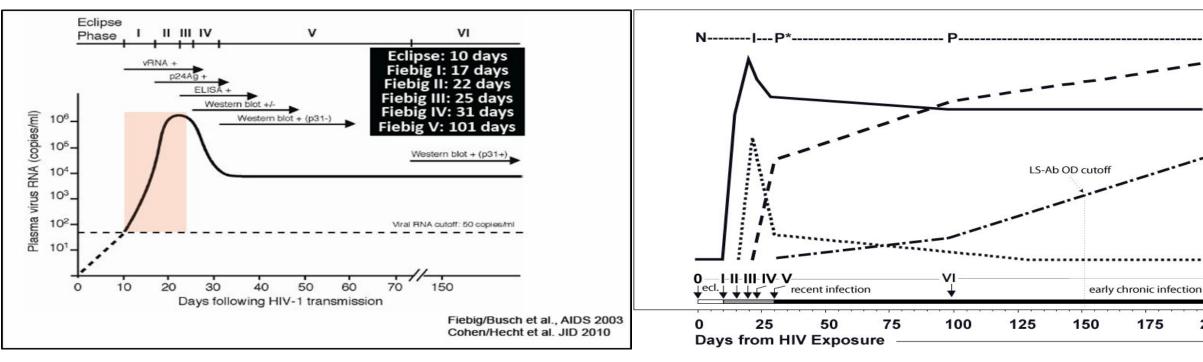

Comparison of acute HIV infection (AHI) to infections that occur in the setting of long-acting early viral inhibition (LEVI)

	AHI	LEVI
Cause	Phase of natural HIV infection	Long-acting anti-viral PrEP agent (prototype: CAB-LA)
Onset	New infection	Infection during PrEP Initiation of PrEP agent during acute/early infection
Viral replication	Explosive	Smoldering
Symptoms	Fever, chills, rash, night sweats, muscle aches, sore throat, fatigue, swollen glands	Minimal, variable, often no symptoms reported
Detection	Ag/Ab assay, RNA assays (including less sensitive POC and pooled tests), DNA assays, total nucleic acid assays	Ultrasensitive RNA assay (often low or undetectable RNA, low/undetectable DNA, diminished/delayed Ab production)
Assay reversion	Rare	Common for many test types
Duration	1-2 weeks (until Ab detection)	Months (until viral breakthrough, drug clearance, or ART start); can persist months after the anti-viral agent is discontinued
Transmission	Very likely	Unlikely (except possibly through blood transfusion)
Drug resistance	No (unless transmitted)	Yes (can emerge early when viral load is low)

Marzinke, JID 2021; 224:1581 Eshleman, JID 2022; 225:1749 Eshleman, JID 2022; 226:2170 Marzinke, AAC 2023; In Press

Impact of TM Research on HIV Diagnostics and Staging of Infection

- Developed concept of infectious pre-SC window phase (WP) and Incidence-WP model to project yield of enhanced testing that shorten the diagnostic WP
- Analyzed plasma donor SC panels to establish HIV replication dynamics (doubling time during "ramp-up viremia") and Fiebig staging classification system (eclipse phase through complete SC) now widely employed to classify newly diagnosed persons
- Diagnostic utility of improved serological (2nd-4th generation) assays and mini-pool relative to individual sample NAT in donor and diagnostic settings
- Contributing NAT yield and early SC donation plasma to evaluations of enhanced diagnostic and VL assays and to NIAID EQAPOL program


Data from 17 pasma that progressed from antibody negative/ NAT positive to WB positive used to construct a relative sequence of reactivity timeline

Adapted from Owen et al J Clin Micro 2008 and Masciotra et al J Clin Virol 2011,2013

Long term impact of blood donor HIV studies

Fiebig Stages of HIV Infection

Development of HIV Incidence Assays

Janssen RS, Satten GA, Stramer SL, ..., Busch MP. New Testing Strategy to Detect Early HIV-1 Infection for Use in Incidence Estimates and for Clinical and Prevention Purposes. JAMA, 280(1):42-48, 1998.

Busch MP, Pilcher CD, Mastro TD, et al,. Beyond Detuning: Ten Years of Progress and New Challenges in the Development and Application of Assays for HIV Incidence Estimation from Surveys. AIDS 24(18):2763-2771, 2010

WB

Ab

RNA

LS-Ab

p24 Ag

200

The Journal of Infectious Diseases

MAJOR ARTICLE

HIV Antibody Level as a Marker of HIV Persistence and Low-Level Viral Replication

Sheila M. Keating,^{1,2} Christopher D. Pilcher,^{3,a} Vivek Jain,³ Mila Lebedeva,¹ Dylan Hampton,¹ Mohamed Abdel-Mohsen,⁴ Xutao Deng,¹ Gary Murphy,⁵ Alex Welte,⁶ Shelley N. Facente,³ Frederick Hecht,³ Steven G. Deeks,³ Satish K. Pillai,^{1,2} and Michael P. Busch^{1,2,a}

Impact of TM Research on HIV Pathogenesis Research

- Studied clusters of HIV infected donors and recipients contributed to understanding of HIV quasispecies, bottleneck of transmission and rates and viral and immune correlates of quasispecies evolution
- Plasma donor panels studied in collaboration with CHAVI established the concept of transmitted/founder (T/F) viruses and subsequent evolution of HIV and mechanisms driving evolution
- Characterizing evolution of T/F viruses over time in acutely infected donors in US, SA and Brazil to corroborate recent evidence for directional evolution of HIV toward viruses that resist neutralizing Abs and may be more pathogenic
- Enrolling and following cohorts of acutely infected donors in US, SA, Brazil to

Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection

Brandon F. Keele^a, Elena E. Glorgi^{bo}, Jesus F. Salazar-Gonzalez^a, Julie M. Decker^a, Kimmy T. Pham^a, Maria G. Salazar^a, Chuanxi Sun^a, Truman Grayson^a, Shuyi Wang^a, Hui LP, Xiping We^a, Chuniai Jiang^d, Jennifer L. Kirchherr^d, Feng Gao^d, Jeffery A. Anderson^a, Li-Hua Ring¹, Ronald Swanstrom¹, Georgia D. Tomaras⁹, William A. Blattner^b, Paul A. Goepfert^a, J. Michael Kilby^a, Michael S. Saag³, Eric L. Delwart¹, Michael P. Busch¹, Myron S. Cohen^a, David C. Monteflorf⁹ Barton F. Haynes⁴, Brian Gascher^b, Gayathri S. Athreya^b, Ha Y. Lee, Natasha Wood⁴, Cathal Seolghe^b, Alan S. Perelson^b, Tanmoy Bhattacharya^{bJ}, Bette T. Korber^{bJ}, Beatrice H. Hahn^{ava}, and George M. Shaw^{ayann}

Review

Modeling sequence evolution in acute HIV-1 infection

Ha Youn Lee ^{a,b,1}, Elena E. Giorgi ^{a,c,1}, Brandon F. Keele ^d, Brian Gaschen ^a, Gayathri S. Athreya ^a, Jesus F. Salazar-Gonzalez ^d, Kimmy T. Pham ^d, Paul A. Goepfert ^d, J. Michael Kilby ^{d,2}, Michael S. Saag ^d, Eric L. Delwart ^e, Michael P. Busch ^e, Beatrice H. Hahn ^d, George M. Shaw ^d, Bette T. Korber ^{a,f}, Tanmoy Bhattacharya ^{a,f}, Alan S. Perelson ^{a,*} *Journal of Theoretical Biology 261 (2009) 341–360*

Published June 1, 2009

JEM

The first T cell response to transmitted/ founder virus contributes to the control of acute viremia in HIV-1 infection

Published June 1, 2009

JEM

Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection

OPEN OACCESS Freely available online

PLOS PATHOGENS

ARTICLE

Whole Genome Deep Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune Recognition During Acute Infection March 2012 | Volume 8 | Issue 3 | e1002529

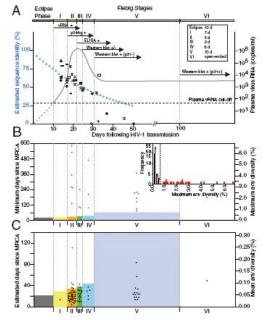
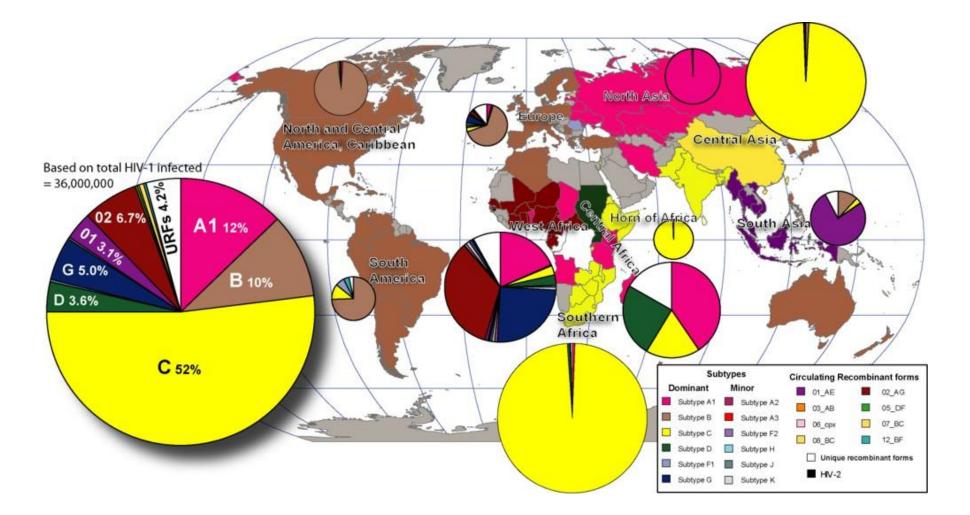


Fig. 1. HIV-1 env diversity in relation to Fiebig stage. (A) Fiebig stages (28)

Table 1


Fiebig stage classification for sub-stages of HIV-1 primary infection, and the average and cumulative duration of each phase.

Stage	Duration of each phase (days)	Cumulative duration (days)	
Eclipse	10 (7,21)	10 (7,21)	
I (vRNA+)	7 (5,10)	17 (13,28)	
II (p24Ag+)	5 (4,8)	22 (18,34)	
III (ELISA+)	3 (2,5)	25 (22,37)	
IV (Western Blot \pm)	6 (4,8)	31 (27,43)	
V (Western Blot +, p31-)	70 (40,122)	101 (71,154)	
VI (Western Blot +, p31+)	Open-ended		

PNAS

ARTICLE

Geographical distribution of HIV clades

Global distribution of HIV genotypes At <u>http://www.hiv.lanl.gov</u>.

Molecular surveillance of HIV, HCV, and HBV in blood donors

- Major risk of TTV is from donations during acute infection WP (incident infections); testing errors, viral variants and immunosilent infections are minor contributors
- Combined NAT and serological screening, supplemented by novel serological test strategies (e.g., detuned EIAs), identifies incident cases and test errors
- Systematic program for genetic characterization of viral genomes in donors with incident infections
 - monitor circulating strains of viruses transmitted to donor population, and this within "low risk" general population
 - detect rare variants, including vaccine and drug escape mutants, that may be increasing in U.S. population

Surveillance of the Genetic Variation in Incident HIV, HCV, and HBV Infections in Blood and Plasma Donors: Implications for Blood Safety, Diagnostics, Treatment, and Molecular Epidemiology

Human immunodeficiency virus type 1 incidence among blood donors in France, 1992 through 2006: use of an immunoassay to identify recent infections

TRANSFUSION 2008;48:1567-1575.

Josiane Pillonel, Francis Barin, Syria Laperche, Pascale Bernillon, Stéphane Le Vu, Sylvie Brunet, Damien Thierry, Jean-Claude Desenclos, for the "Transfusion-Transmissible Agents Working Group" of the French Society of Blood Transfusion

Genetic Diversity of Recently Acquired and Prevalent HIV, Hepatitis B Virus, and Hepatitis C Virus Infections in US Blood Donors

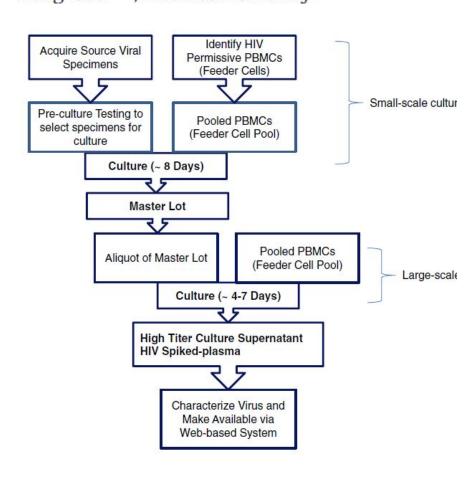
The Journal of Infectious Diseases

Eric Delwart,^{1,2} Elizabeth Slikas,¹ Susan L. Stramer,³ Hany Kamel,⁴ Debra Kessler,⁵ David Krysztof,³ Leslie H. Tobler,¹ Danielle M. Carrick,⁶ Whitney Steele,⁶ Deborah Todd,⁶ David J. Wright,⁶ Steven H. Kleinman,^{6,7} and Michael P. Busch^{1,2} for the NHLBI-REDS-II Study Group

The human immunodeficiency virus-1 genotype diversity and drug resistance mutations profile of volunteer blood donors from Chinese blood centers

TRANSFUSION 2012;52:1041-1049.

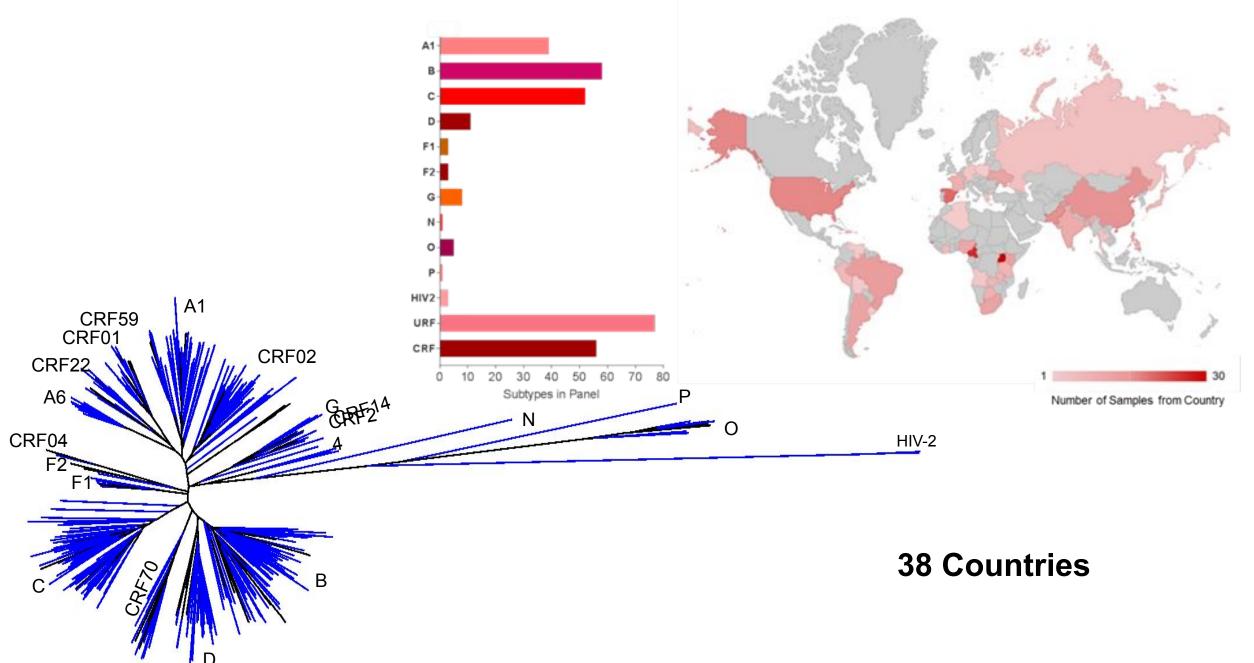
Peibin Zeng, Jingxing Wang, Yi Huang, Xiaoming Guo, Julin Li, Guoxin Wen, Tonghan Yang, Zhongqiao Yun, Miao He, Yu Liu, Yuzhe Yuan, Jane Schulmann, Simone Glynn, Paul Ness, J. Brooks Jackson, and Hua Shan, for the NHLBI Retrovirus Epidemiology Donor Study-II (REDS-II), International Component


HIV genotypes and primary drug resistance among HIV seropositive blood donors in Brazil

JAIDS 63(3):387-392, 2013.

Alencar CS^{1,2}, Sabino EC³, Carvalho SMF⁴, Leao S⁵, Carneiro- Proietti AB⁶, Capuani L⁷, Oliveira CL⁸, Carrick D⁹, Birch RJ⁹, Gonçalez TT¹⁰, Keating S¹⁰, Swanson P¹¹, Hackett JJr¹¹ and Busch MP¹⁰, for the NHLBI Retrovirus Epidemiology Donor Study-II (REDS-II), International Component

Development of a contemporary globally diverse HIV viral panel by the EQAPOL program


Ana M. Sanchez^a, C. Todd DeMarco^a, Bhavna Hora^a, Sarah Keinonen^a, Yue Chen^a, Christie Brinkley^a, Mars Stone^b, Leslie Tobler^b, Sheila Keating^b, Marco Schito^c, Michael P. Busch^b, Feng Gao^{a,*}, Thomas N. Denny^a Characterization of expanded viruses in EQAPOL Viral Diversity panel

Journal of Immunological Methods

Sample name	Fiebig stage	Donation year	Country of origin	Source GenBank	HIV subtype	Coreceptor usage	GenBank
DEMA106ES002	ND	2006	Spain ^a	FJ670523	A1	CCR5	JX140651
DEMA105TZ001	ND (CHI)	2005	Tanzaniaª	FJ670519	A1	CXCR4	JX140650
DEMA07UG005	IV	2007	Uganda ^b	JX 236676	A1	CCR5	KC596070
DEMA03RW001	Ш	2003	Rwanda ^b	IX236678	A1	CCR5	KF716499
DEMA03UG002	IV	2003	Uganda ^b	IX236669	A1	CCR5	KF716500
DEMA11KE001	IV	2011	Kenya ^c	KC018749	A1	CCR5	KC018749
DEMA110UG001	VI	2010	Uganda ^c	KC019075	A1	CCR5	KF859745
DEMB09B0001	ND (AHI)	2009	Bolivia	KC112996, KC112997	B	CCR5	JX140656
DEMB10CN002	ND (CHI)	2010	Chinad	None	B	CCR5	JX140658
DEMB05FR001	11/111	2005	France ^e	None	B	CCR5	JX140652
DEMB08FR002	11/111	2008	France	None	B	CCR5	JX140654
DEMBXXDE001	1/11	UNK	Germany ^e	None	B	CCR5	KC596067
DEMB03JP004	1/1	2003	Japan	None	B	CCR5	KC473846
DEMBXXPL001		UNK	Polande	JN687774, JN687691	В	CCR5	KC596069
DEMB08ES001	ND (AHI)	2008	Spain ^a	F[670531	B	CCR5	IX140653
DEMB08UY001	ND (AHI)	2008	Uruguay*	GU362886	B	CCR5	JX140655
DEMB09US002	1/11	2009	USA	None	B	CCR5	JX140657
DEMB10VE001	ND (AHI)	2010	Venezuela ^a	KC113011, KC113010	B	CCR5	JX140659
DEMB10ES002	ND (AHI)	2010	Spain ^a	KC113004	B	CCR5	KC473842
DEMB09CN002	ND (CHI)	2009	Chinad	None	B	CCR5	KC596066
DEMB10US001	1/11	2010	USA	None	B	CCR5	KC473825
DEMB11US006	1/II	2010	USA	None	B	CCR5	KC473833
DEMB10US007		2010	USA	None	B	CCR5	KC473828
DEMB10US011	VI	2010	USA	None	В	CCR5	KC473830
DEMB11US002	VI	2011	USA	None	В	CCR5	KC473831
DEMB10ES003	ND (AHI)	2010	Spain ^a	KC113005	B	CCR5	KC473843
DEMB09ES007	ND (AHI)	2009	Spain ^a	KC112998, KC112999	B	CCR5	KC473841
DEMB 10US003	VI	2010	USA	None	B	CCR5	KC473826
DEMB11US015	VI	2011	USA	None	B	CCR5	KC473835
	VI						
DEMB10US004		2010	USA	None	В	CCR5	KC473827
DEMB11US004	VI	2011	USA	None	В	CCR5	KC473832
DEMB11US011	V	2011	USA	None	B	CCR5	KC473834
DEMB10US009	VI	2010	USA	None	B	CCR5	KC473829
DEMB09US003	1/11	2009	USA	None	В	CCR5	KC473824
DEMB11FR001	1/11	2011	France	None	B	CCR5	KF716496
	ND	2007	Angolaª	EU884500	C	CCR5	JX140662
DEMC07A0001	VI	2007					
DEMC07BR003			Brazil ^e	JN687737, JN687655	C	CCR5	JX140663
DEMC08NG001 DEMC07ZA011	ND II	2008 2007	Nigeria ^a South Africa ^e	EU786681 JN687618-JN687627, JN687694-JN687703, JN687778-JN687798	C C	CCR5 CCR5	JX140665 JX140664
000000000000000000000000000000000000000		2000	Court Advise		с	CODE	IN LOCCC
DEMC08ZA011	II	2008	South Africa®	JN687724, JN687641		CCR5	JX140666
DEMC09ZA008	IND	2009	South Africa ^f	None	C	CCR5	JX140667
DEMC09ZA009	I/II	2009	South Africa	None	C	CCR5	JX140668
DEMC10ZA001	1/11	2010	South Africa ^f	None	C	CCR5	JX140669
DEMC06ES003	ND (AHI)	2006	Spain ^a	EU786673	C	CCR5	KC473844
DE00210CM013	ND	2010	Cameroon ^g	IN864054	CRF02 AG and	CCR5	KF859739
				,	URF_01A1G	Contro	KF859740
DE00109CN003	IV	2009	Chinad	IX960615	CRF01_AE	CCR5	KC596061
DE00109CN004	IV	2009	Chinad	JX960618	CRF01_AE	CCR5	KC596062
DE00110CN001	IV	2010	Chinad	JX960610	CRF01_AE	CCR5	KC596063
DE00111CN003	ND (CHI)	2011	Chinad	JX960600	CRF01_AE	CCR5	KC596065
DE00111CN002	IV	2011	Chinad	None	CRF01_AE	CCR5	KC596064
DE00206A0001	ND (RHI)	2006	Angola ^a	EU884501	CRF02_AG	CCR5	JX140645
DE00208CM004	VI	2008	Cameroon ^g	None	CRF02_AG	CCR5	JX140647
DE00208CM001	VI	2008	Cameroon ^g	None	CRF02_AG	CCR5	JX140646
DE00208CM001 DE00400GR002	ND	2008	Greece	JN687744, JN687745, JN687660, JN687661	CRF04_CPX	CCR5/CXCR4	IX140648
DE01405BR001	ND	2005	Brazil ^a	FJ670522	CRF14_BG	CCR5/CXCR4	JX140649
DE01405ES002	ND (CHI)	2005	Spain ^a	FJ670528	CRF14_BG	CCR5/CXCR4	KC473837
DE02210CM011	ND	2010	Cameroon ^g	JN864051	CRF22_01A1	CCR5	KF716461
DE02210CM012	ND	2010	Cameroon ^g	IN864058	CRF22_01A1	CCR5/CXCR4	KF716462
DE02210CM014	ND	2010	Cameroon ^g	JN864059	CRF22_01A1	CCR5	KF716463
DE02210CM010	ND	2010	Cameroon ⁸	JN864050	CRF22_01A1	CCR5	KF716460
DE02210CM010	ND (RHI)	2010		FJ670526	CRF24_BG	CCR5	KC473838
			Spaina				
DE04708ES004	ND (AHI)	2008	Spain ^a	FJ670529	CRF47_BF	CCR5	KC473840
DE04708ES003	ND (AHI)	2008	Spain ^a	GQ372987	CRF47_BF	CCR5/CXCR4	KC473839
DEMD10CM009	VI	2010	Cameroon ^g	None	D	CCR5/CXCR4	JX140670
DEMD07UG002	П	2007	Uganda ^b	X236670	D	CCR5	KC596071
DEMD08UG001	I	2008	Uganda ^b	X236672	D	CCR5	KC596072
	I						
DEMD07UG007		2007	Ugandab	JX236673	D	CCR5	KF716503
DEMD07UG001	IV	2007	Ugandab	JX236679	D	Pending	KF716502
DEMD05UG001	П	2005	Uganda ^b	JX236668	D	CCR5	KF716501
DEMD11KE003	IV	2011	Kenya ^c	KC018957	D	Pending	KF716476

Geographic and Phylogenetic Diversity of EQAPOL Panel

Blood Center Testing Allows the Detection and Rapid Treatment of Acute and Recent HIV Infection

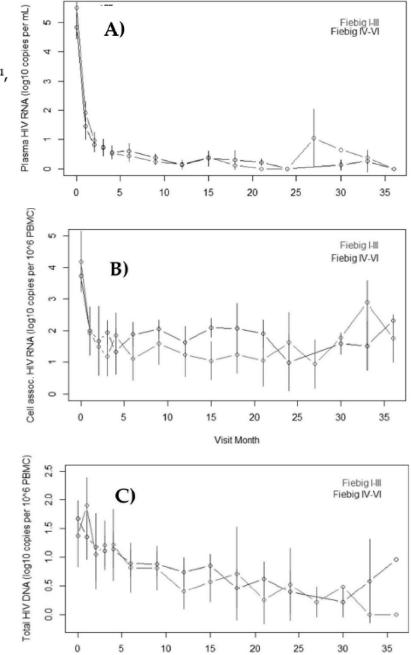

Karin van den Berg¹, Marion Vermeulen¹, Sonia Bakkour^{2,3}, Mars Stone^{2,3}, Genevieve Jacobs¹, Cynthia Nyoni¹, Coreen Barker⁴, Christopher McClure⁵, Darryl Creel⁵, Eduard Grebe^{2,6}, Nareg Roubinian^{2,3,7}, Ute Jentsch¹, Brian Custer^{2,3}, Michael P. Busch^{2,3}, Edward L. Murphy^{2,3,8,*} and on behalf of the Recipient Epidemiology and Donor Evaluation Study (REDS)-III South Africa International Program⁺

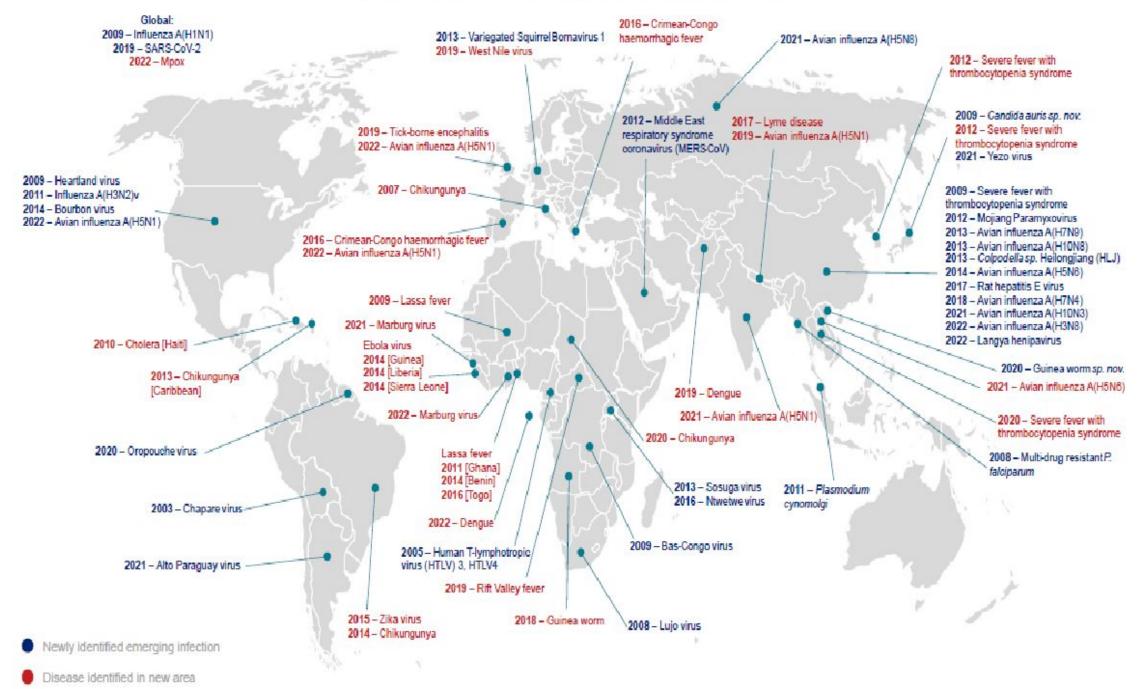
Table 1. Characteristics of the study population, by Fiebig stage at time of treatment initiation and in the untreated HIV comparison group. Numerical variables are presented as median (interquartile range (IQR)) and categorical variables as n (%).

Variable	Fiebig I–III (n = 18)	Fiebig IV–VI (n = 45)	Elite Controllers (N = 11)	Untreated HIV cases (n = 100)
Age (median)	29 (20)	26 (10)	34 (13)	27 (9)
Female	13 (72%)	32 (71%)	9 (82%)	75 (75%)
Population group *				
African	16 (89%)	40 (89%)	11(100%)	94 (94%)
Other	2 (11%)	4 (11%)	0	6 (6%)
Geographic region				
Egoli (Johannesburg region)	7 (39%)	17 (38%)	3 (27%)	28 (28%)
Other region (KwaZulu-Natal, Mpumalanga, Northern, Eastern cape)	11 (61%)	28 (62%)	8 (73%)	72 (72%)

Viruses 2022, 14, 2326. https://

doi.org/10.3390/v14112326

Risks of major transfusion-transmitted viral infections and emerging infectious agents of concern to blood safety Blood Center Testing Allows the Detection and Rapid Treatment of Acute and Recent HIV Infection De blood safety treats &


agents but not TT or disease associated Alleged threats that were determined to not cause human infections

Karin van den Berg¹, Marion Vermeulen¹, Sonia Bakkour^{2,3}, Mars Stone^{2,3}, Genevieve Jacobs¹, Cynthia Nyoni¹, Coreen Barker⁴, Christopher McClure⁵, Darryl Creel⁵, Eduard Grebe^{2,6}, Nareg Roubinian^{2,3,7}, Ute Jentsch¹, Brian Custer^{2,3}, Michael P. Busch^{2,3}, Edward L. Murphy^{2,3,8,*} and on behalf of the Recipient Epidemiology and Donor Evaluation Study (REDS)-III South Africa International Program[†]

Busch MP, Bloch EA, Kleinman S. Prevention of Transfusion Transmitted Infections. Blood 2019

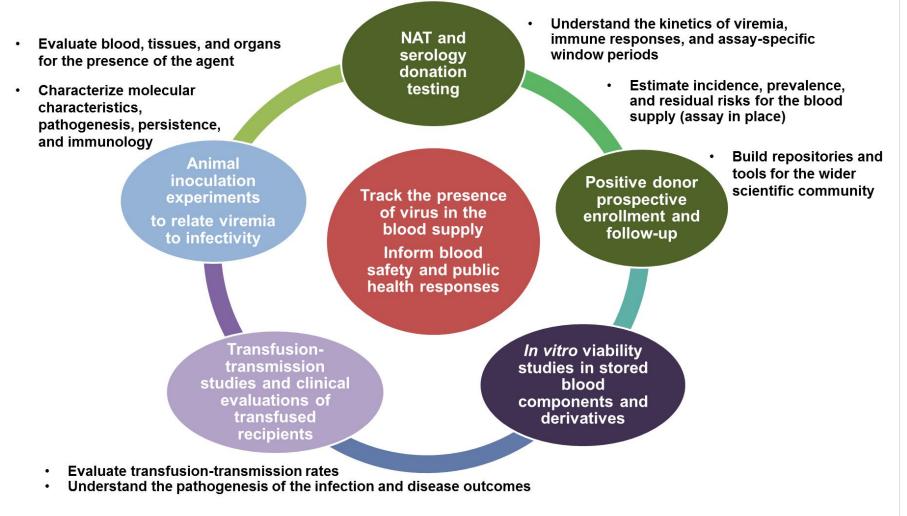
Global map of emerging infections since 2003

Evaluating EID threats to blood safety

3 basic questions need to be answered:

Is it in the blood supply?

- Measure the agent in donors during epidemics (RNA, Ag, Abs, infectivity)
- Estimation of donor risks: prevalence, incidence, durations of detection
- Estimation of blood component risks
 - Temperature, preparation, storage duration effects on infectivity?
 - Is antibody in the infected donor or co-transfused components protective?


Is it transfusion-transmitted and what is the risk?

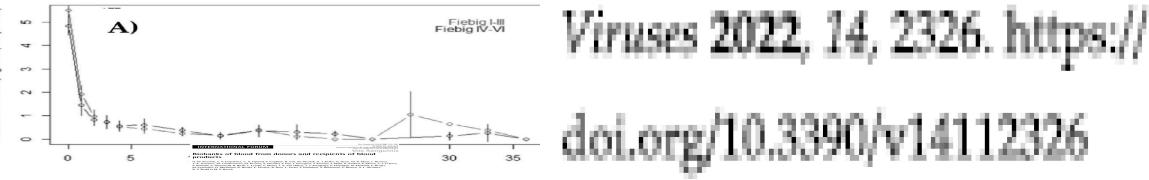
- Is transmission risk dependent on stage of infection or VL in the donor/component
- Do recipient antibodies from prior infection protect from TT

If transfusion-transmitted, does it have a clinical impact in transfused recipients?

• Is TT disease more or less severe than usual routes of infection

Assessing the risk of transfusion-transmission for newly discovered pathogens

Lanteri et al, Transfusion 2016

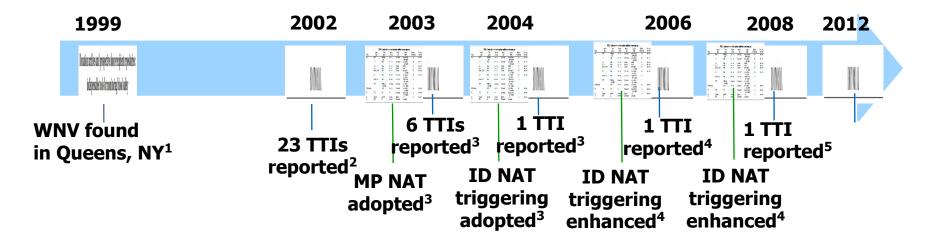

Jean Pierre Allain Division of Transfusion Medicine University of Cambridge Cambridge, UK Michael P. Busch Blood Systems Research Institute San Francisco, California e-mail: mbusch@bloodsystems.org

Blood Systems Andress California San Francisco, California Donation archives and prospective donor-recipient repositories: indispensable tools for monitoring blood safety

Eggisteringerstaversetteren

WHIRE ARE PRIMARALLO

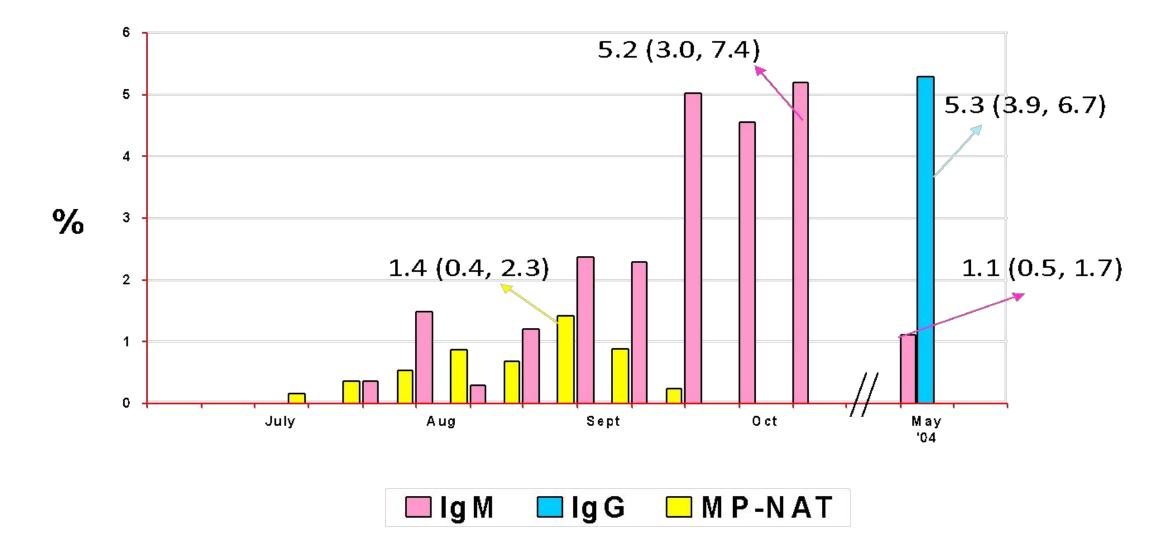
Country	Name of study	Funding agency	Time frame of funding	Samples type	Number of samples	Number of original articles	Time frame of publications
USA	HEART	NIH Clinical Center	1968-1997	Donor-recipient	29,055 donations, 3,429 recipients	73	1970-2005
	TTVS	NHLBI	1974-1979	Donor-recipient	5,655 donations, 1,533 recipients	14	1978-1984
	TSS	NHLBI	1984-1985	Donations	201,212	27	1990-2003
	FACTS	NHLBI	1985-1991	Recipients	11,494	9	1989-2004
	REDS GSR/GLPR	NHLBI	1991-1994	Donations	508,151 (GSR)/ 147,915 (GLPR)	17	1993-2006
	VATS	NHLBI	1995-1999	Donor-recipient	3,864 donations, 531 recipients	26	2001-2003
	REDS RADAR	NHLBI	2003-2005	Donor-recipient	13,201 donations, 3,574 recipients	2	
	TRIPS	NIH Clinical Center/NHLBI	2002-ongoing	Donor-recipient	4,401 donations, 8,771 recipients	1	
The Netherlands		Internal	1985-1990	Donor-recipient	5,000 donations, 1,000 recipients	15	1989-2006
UK	TTISG	NHS	1991	Donor-recipient	21,923 donations, 5,579 recipients	2	1999-2000
Italy	Cooleycare	Italian NIH	1989-2002	Recipients	1,481	8	1990-2004
EU	BOTIA	EU	2006-2008	Donor-recipient	30,000 pairs		


-Mata Blandettran Laun.

www.weitherenewith.com.com.enewie.com.actione

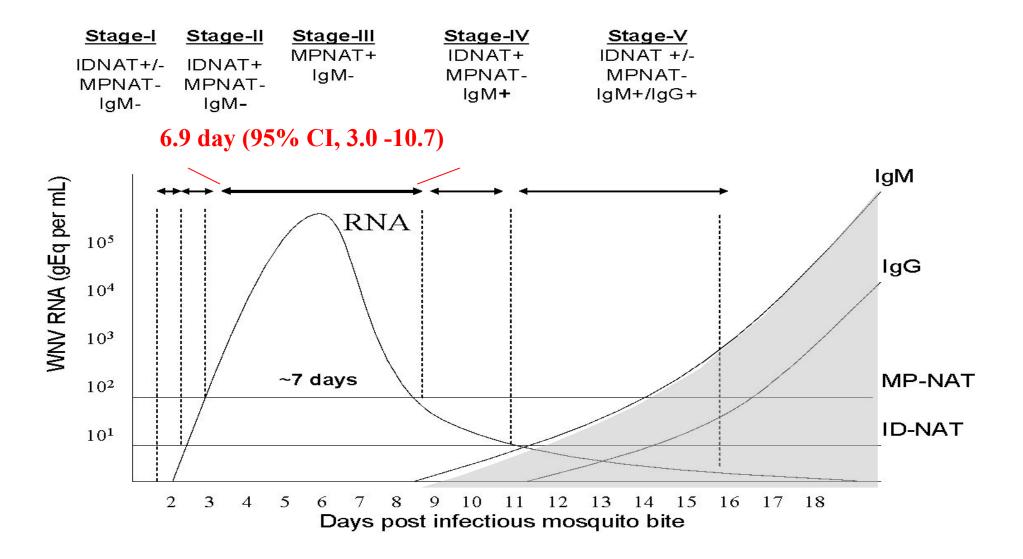
Plasma HIV RNA (log10 copies per mL)

U.S. WNV blood donor screening timeline


All transfusion-transmitted infections (TTIs) traced to WNV RNA(+) / Antibody(-) transfusions, except for 2013 case in which donation had very low VL with IgM and IgG

 ¹Lanciotti, RT, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, et al. Science, 1999
 ²Pealer LN, Marfin AA, Petersen LR, Lanciotti RS, Page PL, Stramer SL, Stobierski MG et al. N Engl J Med. 2003
 ³Busch MP, Caglioti S, Robertson EF, McAuley, JD, Tobler LH, Kamel H et al. New England J Med, 2005 Stramer SL, Fang CT, Foster GA, Wagner AG, Brodsky JP, Dodd RY. N Engl J Med. 2005
 ⁴Kleinman SH, Williams JD, Robertson G, Caglioti S, Williams RC, Spizman R et al. Transfusion. 2009
 ⁵Centers for Disease Control and Prevention. Morbidity and Mortality Weekly Report. 2009
 ⁶Centers for Disease Control and Prevention. Morbidity and Mortality Weekly Report. 2013

Window Periods for acute WNV infection parameters, and need for targeted ID-NAT WNV RNA (Log₁₀ copies/mL)


Busch et al, JID, 2008

WNV MP NAT yield relative to IgM and IgG seroprevalence rates North Dakota, 2003

Busch et al, EID, 2006

Derivation of T_{MP-NAT} from period-specific MP-NAT yield and peak IgM prevalence rates

Busch et al, EID, 2006

State-specific WNV infection rates (per 1000) in 2003, projected from MP-NAT yield and T_{MP-NAT}

- Highest infection rates in Nebraska (4.9%), Colorado (4.3%), North Dakota (4.1%), South Dakota (4.0%), Wyoming (3.5%) and Kansas (2.1%)
- Nationally, 735,000 persons (95% CI 583,000-887,000) infected with WNV in 2003

Busch et al, EID, 2006

Estimated cumulative incidence of West Nile virus infection in US adults, 1999–2010

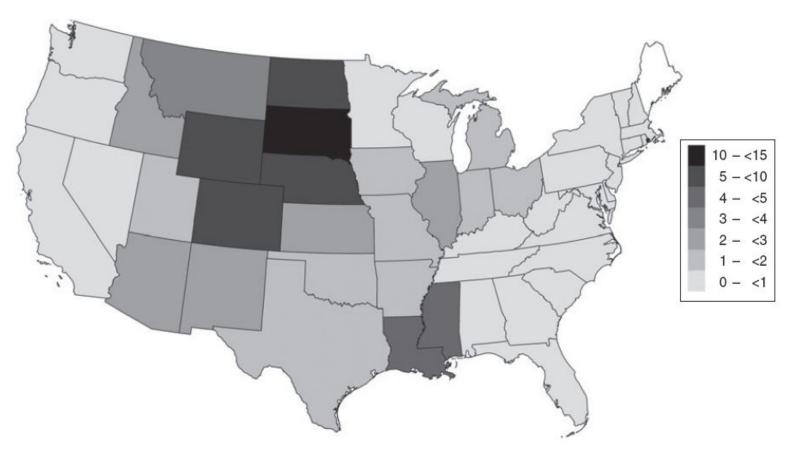
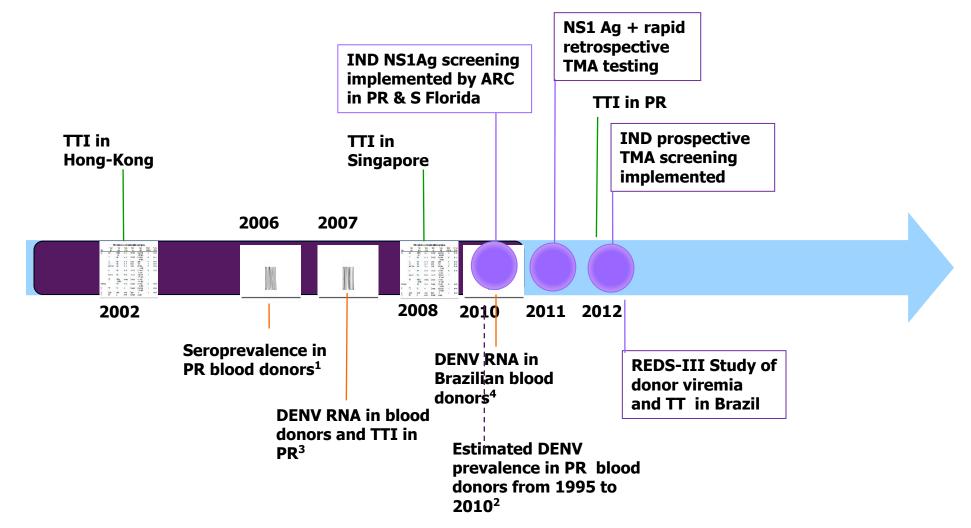
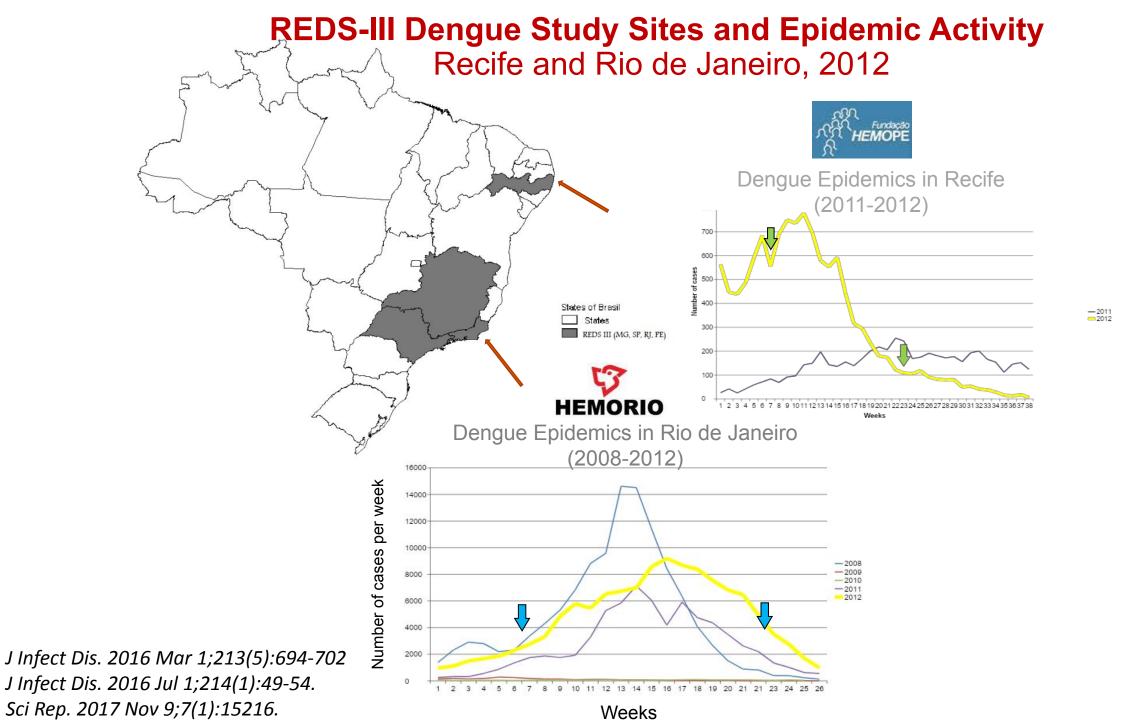



Fig. 1. Estimated cumulative incidence of West Nile virus infection (per cent of population infected) in US adults aged ≥ 16 years, 1999–2010.

~2.8 million infected and 780,000 developed clinical disease in US by 2012

Petersen et al. Epid Infect 2012

Evaluating the risk for dengue transfusion-transmission in Puerto Rico and Brazil

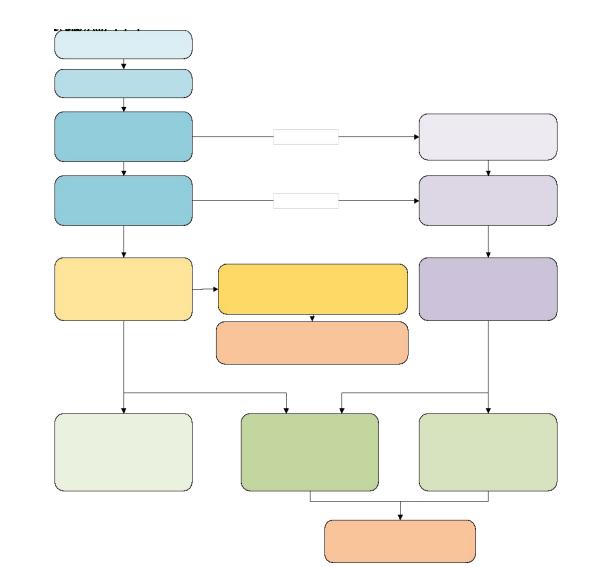


¹Mohammed H., Tomashek K.M., Stramer S.L., Hunsperger E., Transfusion August 2012

² Petersen L.R, Tomashek K.M., Biggerstaff B.J., Transfusion August 201

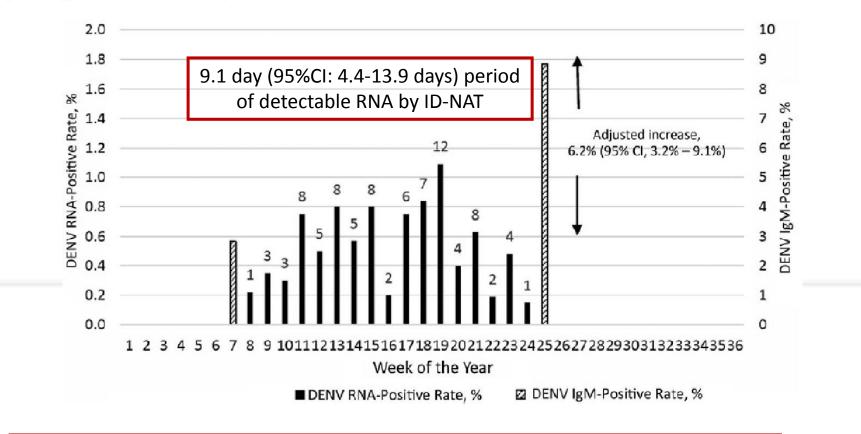
³ Stramer S.L., Linnen J.M., Carrick J.M., et, *Transfusion August 2012*

⁴ Dias L.L., Amarilla A.A., Poloni T.R., Covas D.T., Aquino V.H., Figueiredo L.T.M., Transfusion August 2012



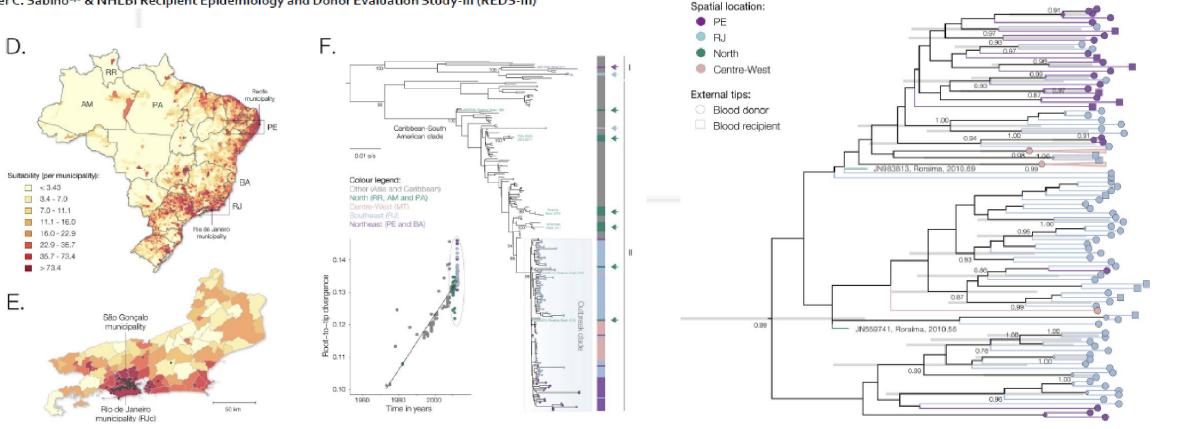
Dengue Transfusion-Transmission Study in Brazil 2012 Rio de Janeiro and Recife

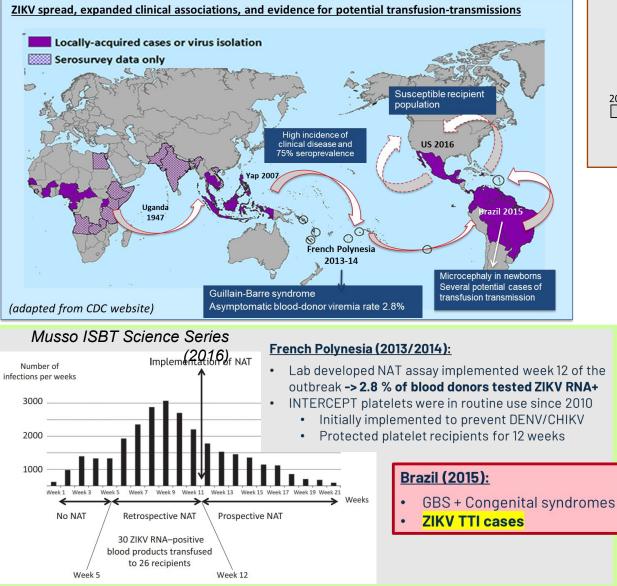
- DENV-4 viremia confirmed in 0.51% of donors in Rio de Janeiro and 0.80% in Recife
- Estimated rate of transfusion transmission 37.5% (95% CI 15–64%)
- Symptomatic infection, severity and death not different between TT and mosquito acquired infections and uninfected control patients

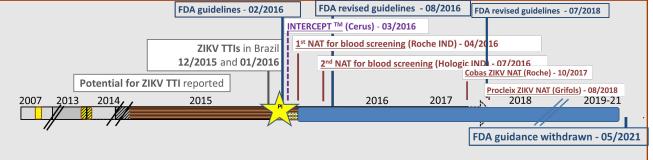


J Infect Dis. 2016 Mar 1;213(5):694-702 J Infect Dis. 2016 Jul 1;214(1):49-54. Sci Rep. 2017 Nov 9;7(1):15216.

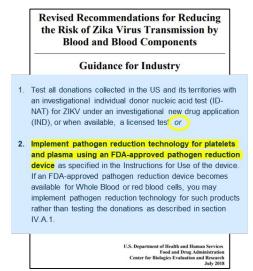
Duration of Dengue Viremia in Blood Donors and Relationships Between Donor Viremia, Infection Incidence and Clinical Case Reports During a Large Epidemic

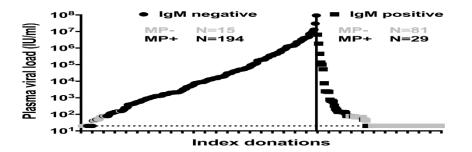

Michael P. Busch,¹² Ester C. Sabino,⁶ Donald Brambilla,⁵ Maria Esther Lopes,⁷ Ligia Capuani,⁶ Dhuly Chowdhury,⁵ Christopher McClure,⁵ Jeffrey M. Linnen,³ Harry Prince,^{4,a} Graham Simmons,^{1,2} Tzong-Hae Lee,¹ Steven Kleinman,⁵ and Brian Custer^{1,2}, for the International Component of the NHLBI Recipient Epidemiology and Donor Evaluation Study-III (REDS-III)^b

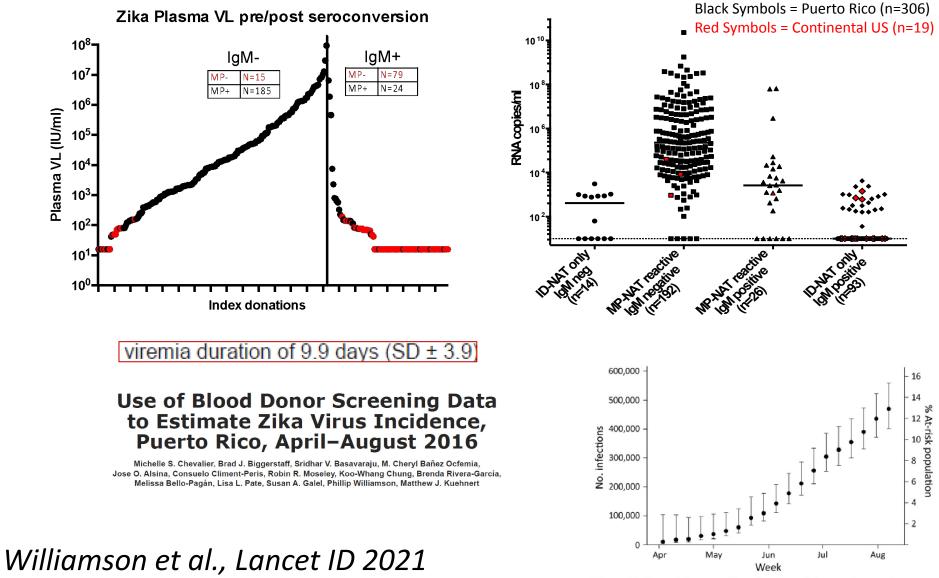

1 case of clinical dengue diagnosed for every 3 infections 853 cases of reported clinical disease per NAT yield donation


Genomic and epidemiological characterisation of a dengue virus outbreak among blood donors in Brazil

Nuno R. Faria¹, Antonio Charlys da Costa ^{2,3}, José Lourenço ¹, Paula Loureiro⁴, Maria Esther Lopes⁵, Roberto Ribeiro^{2,3}, Cecilia Salete Alencar ⁶, Moritz U. G. Kraemer¹, Christian J. Villabona-Arenas ⁷, Chieh-Hsi Wu⁸, Julien Thézé¹, Kamran Khan^{9,10}, Shannon E. Brent⁹, Camila Romano², Eric Delwart^{11,12}, Brian Custer^{11,12}, Michael P. Busch^{11,12}, Oliver G. Pybus¹, Ester C. Sabino^{2,3} & NHLBI Recipient Epidemiology and Donor Evaluation Study-III (REDS-III)^{*} Outbreaks caused by Dengue, Zika and Chikungunya viruses can spread rapidly in immunologically naïve populations. By analysing 92 newly generated viral genome sequences from blood donors and recipients, we assess the dynamics of dengue virus serotype 4 during the 2012 outbreak in Rio de Janeiro. Phylogenetic analysis indicates that the outbreak was caused by genotype II, although two isolates of genotype I were also detected for the first time in Rio de Janeiro. Evolutionary analysis and modelling estimates are congruent, indicating a reproduction number above 1 between January and June, and at least two thirds of infections being unnoticed. Modelling analysis suggests that viral transmission started in early January, which is consistent with multiple introductions, most likely from the northern states of Brazil, and with an increase in within-country air travel to Rio de Janeiro. The combination of genetic and epidemiological data from blood donor banks may be useful to anticipate epidemic spread of arboviruses.


Zika Virus – Lessons Learned




<u>U.S. (2015-2021):</u>

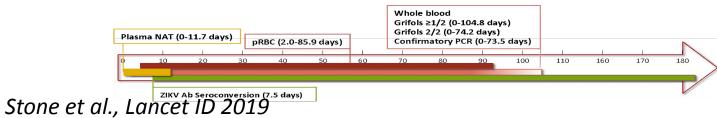
- Development of research assays
- Dethogen reduction in Puerto Rico
- □ ZIKV screening under IND then licensed
- ✓ ZIKV outbreak waned down
- ✓ Risk mitigation strategies discontinued

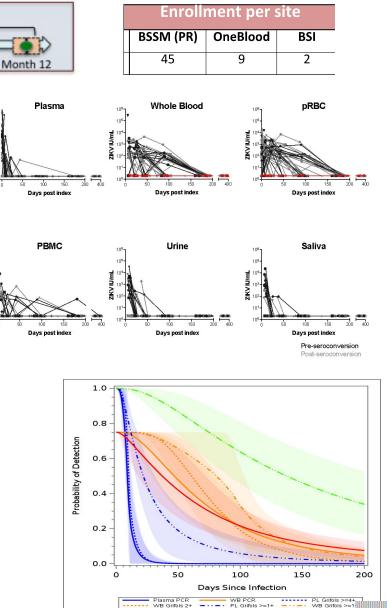
Staging ZIKV NAT yield cases and application to Incidence Estimation

Chevalier et al.. EID 2017

Figure 2. Cumulative weekly estimates of the number and percentage of at-risk population with incident Zika virus infections

Natural History Cohort of Zika Virus RNA+ Blood Donors

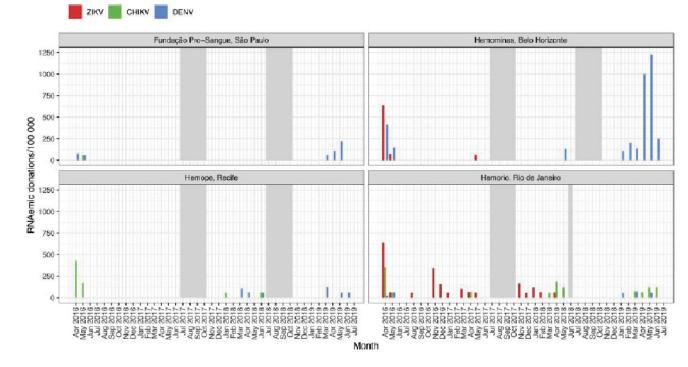


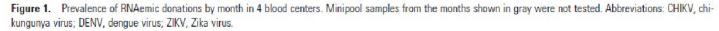

Objectives:

- Evolution of viral and immunological markers over time
- Distribution and compartmentalization in blood and body fluids
- Evaluate the viral and immune mechanisms leading to viral clearance or clinical pathogenesis
- Evaluate clinical outcomes post donation
- Shared samples with 40 government, academic and commercial laboratories
 - Characterize the performance of existing and future assays and provide standards for assay development

Compartment	Assay	Interval*	Mean (CI) days	
serum	MAC ELISA IgM	IgM detection	7.7 (6.1, 9.2)	
RBC	BSRI PCR	RNA detection	2.0 (0.8, 3.3)	
plasma	Grifols ≥1/8 pos	RNA clearance	34.8 (19.9, 56.2)	
plasma	Grifols ≥4/8 pos	RNA clearance	11.1 (9.2, 14.4)	
plasma	BSRI PCR	RNA clearance	9.9 (8.1, 12.0)	
RBC	BSRI PCR	RNA clearance	85.9 (58.4,109.6)	
WB	Grifols ≥1/2 pos	RNA clearance	104.8 (76.7, 129.9)	
WB	Grifols 2/2 pos	RNA clearance	74.2 (43.8, 104.9)	
WB	BSRI PCR	RNA clearance	73.5 (39.8, 107.5)	

* Since plasma NAT detectable infection




RBC PCR

RBD

Surveillance for Zika, Chikungunya, and Dengue Virus Incidence and RNAemia in Blood Donors at 4 Brazilian Blood Centers During 2016–2019

Brian Custer,^{1,2} Eduard Grebe,^{1,2,3} Renata Buccheri,¹ Sonia Bakkour,^{1,2} Mars Stone,^{1,2} Ligia Capuani,⁴ Cecilia Alencar,⁵ Luiz Amorim,⁶ Paula Loureiro,^{7,8} Anna Barbara Carneiro-Proietti,⁹ Alfredo Mendrone-Junior,¹⁰ Thelma Gonçalez,¹ Kui Gao,¹¹ Kristin W. Livezey,¹¹ Jeffrey M. Linnen,¹¹ Don Brambilla,¹² Chris McClure,¹² Michael P. Busch,^{1,2} and Ester C. Sabino,⁴ for the Recipient Epidemiology and Donor Evaluation Study (REDS-III) International Component Brazil

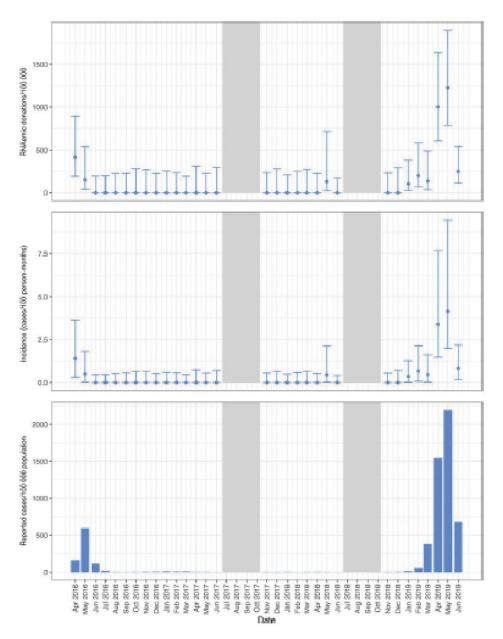


Figure 5. Provalence of RNAemic denations and donor incidence rates at Hemominas and reported case rates of dengue virus infections by month in Beio Horizonte. Minipool samples from the months shown in gray were not tasted.

Arbovirus RNA in Brazilian Blood Donors • JID 2023:227 (1 March)

Conclusions

- Progressive improvements in HIV screening assays have virtually (but not completely) eliminated TT-HIV (and HBV and HCV) infections
- Molecular characterization of NAT yield cases and surveillance for early-ART and PrEP breakthrough HIV infections contribute to HIV epidemic surveillance
- Advances in HIV donor testing and blood donor based research studies have contributed to HIV diagnostics, pathogenesis and cure research and public health surveillance
- Further opportunities to cross-fertilize transfusion medicine and HIV research and EID surveillance include:
 - establishing a global program to characterize incident infections in donors (risk factors, clades, resistance profiles) to help monitor the pulse of TT viral epidemic
 - referral of acutely infected donors to research programs for longitudinal studies focused on understanding the progressive stages of infections and responses to interventions
 - Rapid response with blood donor and recipient based studies to understand infection dynamics and clinical significance of EIDs for transfusion safety and epidemic potential