

São Paulo School of Advanced Science on Epidemic Preparedness

School of Public Health, Universidade de São Paulo July 10-22, 2023

Challenges in Developing Indicators to Measure Public Policies

Lorena Barberia

Department of Political Science-University of São Paulo

E-mail: lorenabarberia@usp.br

Wednesday, July 12th 2023

Outline

- 1. Context
- 2. Why we should measure **policy intent**?
- 3. How can we increase reliability and validity of indicators that capture policy intent?
- indicators that capture policy intent?
- 4. Why we should measure **policy implementation**?
- 5. How can we increase reliability and validity of
- policy implementation?
- 6. Back to the Future: Pandemic Preparedness Indicators
- 7. Summary and concluding remarks

Oxford Supertracker The Global Directory for COVID Policy Trackers and Surveys

Home Policy Trackers Surveys Blog Contribute About

Policy Trackers

If you maintain or know of an additional dataset, please submit a new source. We will promptly review it in line with our criteria for incl

Results:232/232

Policy trackers by area covered

Table 2: Providers of Policy Trackers (31 August 2020, N=126) by Organizational Type

Providers of policy trackers	N	% 33.3% 26.2% 14.3% 13.5% 16.7% 9.5% 10.3%
Academics/institutes	42	
International organizations	33	
- UN, ILO	18	
- OECD (12), EU (5)	17	
NGOs	21	
Thinktanks	12	
Companies (internet, etc.)	13	
Public agencies (US, CAN)	3	2.4%
All policy trackers	126	100.0%
In addition: directory of surveys (7 September 2020)	44	

https://github.com/cgrtbrfed/covid19brpolicyresponses

What we claim to know and study Health Intervention Health Outcome

What we are trying to study

Citizen Behavior

What are our goals?

Descriptive Inference

Causal Inference

Impact Policies

What other factors moderate policy enactment, implementation and outcomes?

State Capacity

Ideology

Rule of Law

Interest Groups

Power Asymmetries

- Time Period Prior, during and after
- Geographic scope
- Federal, state, municipal, neighborhood,
- 3 stages Intent? Implementation? Outcome?

Why should <u>policy intent</u>, <u>implementation</u> and <u>outcomes</u> be measured with robust indicators?

- Benchmarking
- Comparability
- Policy Improvement and Learning
- Evaluation
- Accountability
- Reduce Bias
- Transparency

Who designs enacts policy?

Quite often, there are several entities that are simultaneously formulating, approving, and implementing policies.

- National government
 - Executive/Legislative/Judiciary
- Different government levels and agencies
 - Central/National, State/Provincial and Local governments
- De facto vs de jure

• Anvisa and Ministry of Health are both responsible for surveillance.

Validity and Reliability

What type of data should be collected?

There are different types of information that can be used, but there are tradeoffs in terms of their contribution to validity and reliability.

- Government decrees, rulings, bulletins, and other official documents
- Statements and data obtained from governments under freedom of information legislation
- Public speeches, press releases, etc.
- Confidential Interviews
- Surveys of government officials

What part of government is driving policy?

Fig. 2 Australia's expert advisory-decision making bodies relevant for pandemic response during 2020–2021. *The NCCC was disbanded in May 2021. Orange = advisory groups, grey = decision makers

Source: Easton et al 2021

What part of government is driving policy?

Source: Government of Sao Paulo, 2020

Is policy enactment constant, or changing?

- Often, we assume an intervention is homogenous across time.
- It is costly and difficult to create indicators that capture how policy intent is changing temporally and use them in research designs.

São Paulo School of Advanced Science on Epidemic Preparedness

How can we effectively measure policy with indicators?

- Dichotomous Two possible outcomes
- Categorical Distinct categories or levels
- Ordinal Categories that can be ranked or ordered
- Continuous A spectrum or a range of values

Dichotomous Indicators

Policy Indicator: Intervention: International Border Closure Enacted

Coding: 0 (no), 1(yes)

Time Dimension: Days, Weeks, Months, etc.

Advantages: Speed of collection

Disadvantages: Low level of reliability and validity

Ordinal Indicator

Policy Indicator: International Border Closure Enacted

Coding:

0 - no restrictions

- 1 screening arrivals
- 2 quarantine arrivals from some or all regions
- 3 ban arrivals from some regions
- 4 ban on all regions or total border closure

Advantages: Speed of collection

Disadvantages: Are intervals capturing substantive and homogenous differences?

Ordinal Indicator

Figure: Changes in proportion of countries with particular stringency of travel control measures over time Data are from the Oxford COVID-19 Government Response Tracker via Our World In Data.²³ Dashed lines show when alpha, delta, and omicron were declared variants of concern on Dec 18, 2020, May 11, 2021, and Nov 26, 2021, respectively.

Continuous Indicators

Policy Indicator: International Border Closure Enacted

Coding: # of countries in which borders are closed

of countries in which screening of travelers is mandatory

of travelers entering from each country

Advantages: Speed of collection, can be used in more complex statistical analyses and models

Disadvantages: Are changes capturing substantive and homogenous differences?

Continuous Indicators

IJID Regions 7 (2023) 242-251

Early response to COVID-19 in Brazil: The impact of a targeted approach to suspected cases and on epidemiological surveillance efforts *

Ana Freitas Ribeiro^{a,b}, Marcia C. Castro^c, Gabriela Lotta^d, Rebeca de J. Carvalho^e, Marcela Zamudio^f, Lorena G. Barberia^{f,*}

^a Institute of Infectious Diseases Emilio Ribas, Health Secretary of the State, Pacaembu, São Paulo, Brazil

- ^b Municipal University of São Caetano do Sul, Centro, São Caetano do Sul, Brazil
- ^c Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
- ^d Department of Public Administration, Getúlio Vargas Foundation, São Paulo, SP, Brazil

e Department of Public Administration and Government, FGV EAESP Business Administration School of São Paulo, Bela Vista, São Paulo - SP, Brazil

¹Department of Political Science, University of São Paulo, Cidade Universitária, São Paulo – SP, Brazil

Policy Intent WHO and MOH/Brazil

Table 1

Definitions of a suspected case adopted by the Ministry of Health (Brazil) and the World Health Organization, January 10 to March 20, 2020.

WHO		Ministry of Health, Brazil			
January 10, 2020 ^a	February 27, 2020 ^b	January 22, 2020 ^c	January 28, 2020 ^d		
Suspected case 1	Suspected case 1	Suspected case 1	Suspected case 1		
\overline{SARI} (fever + cough) + hospital admission	Acute respiratory infection (fever + at	Fever AND/OR respiratory symptoms	Fever AND at least one respiratory		
AND ONE OF FOLLOWING	least one sign or symptom of	(e.g., cough or difficulty breathing)	symptom (e.g., cough or difficulty		
(1) Travel to Wuhan, Hubei Province, China, in	respiratory disease) AND no other	AND	breathing)		
the 14 days prior to symptom onset;	etiology AND a history of travel to or	History of international travel	AND		
OR	residence in a country, area, or	to Wuhan 14 days before the onset of	History of international travel to		
(2) Health care worker working with SARIs;	territory that has reported local	symptoms	country* with community spread 14		
OR	transmission of COVID-19 disease	Suspected case 2	days before the onset of symptoms		
(3) Unusual or unexpected clinical course,	during the 14 days prior to symptom	Fever AND/OR respiratory symptoms	Suspected case 2		
without regard to the place of residence or	onset.	(e.g., cough or difficulty breathing)	Fever OR respiratory symptoms (e.g.		
history of travel.	Suspected case 2	AND	cough or difficulty breathing)		
Suspected case 2	Acute respiratory illness AND contact	Close contact with SARS-CoV-2	AND		
Acute respiratory illness of any degree of	with a confirmed or probable case of	suspect case 14 days before the onset	Close contact with SARS-CoV-2		
severity who, within 14 days before the onset of	COVID-19 disease 14 days prior to	of symptoms.	suspect case 14 days before the onse		
illness, had any of the following exposures:	the onset of symptoms.	Suspected case 3	of symptoms.		
(1) Close physical contact with a symptomatic	Suspected case 3	Fever OR respiratory symptoms (e.g.,	Suspected case 3		
confirmed COVID-19 case;	SARI (fever + at least one sign or	cough or difficulty breathing)	Fever OR respiratory symptoms (e.g.		
OR	symptom of respiratory disease) AND	AND	cough, or difficulty breathing)		
(2) A healthcare facility in a country where	hospitalization AND no other etiology	Close contact with a SARS-CoV-2	AND		
hospital-associated SARS-CoV-2 infections have	that fully explains the clinical	confirmed case 14 days before the	Close contact with a SARS-CoV-2		
been reported;	presentation.	onset of symptoms.	laboratory-confirmed case 14 days		
OR			before the onset of symptoms.		
(3) Direct contact with animals (if the animal source is identified) in countries where					
SARS-CoV-2 is circulating in animal populations.					

% Countries WHO and MOH/Brazil

Reliability and Validity

São Paulo School of Advanced Science on Epidemic Preparedness

Assessing COVID-19 Border/Travel Policy Intent

MOH/Brazil Policy Implementation

Period	Travler Type	Total Samples Collected	Total Positive Tests	Total Hospitalized	Total Travelers	% of Tests Collected	% of Positive Tests	% Hospitalized
Period 0 2020/01/01 to 2020/01/21	Non-designated countries	25	19	11	27	92.59%	70.37%	40.74%
Period 1 2020/01/22 to 2020/01/27	Designated countries	2	1	2	2	100.00%	50.00%	100.00%
Period 1 2020/01/22 to 2020/01/27	Non-designated countries	25	13	7	27	92.59%	48.15%	25.93%
Period 2 2020/01/28 to 2020/02/20	Designated countries	31	24	7	33	93.94%	72.73%	21.21%
Period 2 2020/01/28 to 2020/02/20	Non-designated countries	498	364	77	588	84.69%	61.90%	13.10%
Period 3 2020/02/21 to 2020/02/23	Designated countries	12	9	2	15	80.00%	60.00%	13.33%
Period 3 2020/02/21 to 2020/02/23	Non-designated countries	265	200	28	297	89.23%	67.34%	9.43%
Period 4 2020/02/24 to 2020/03/02	Designated countries	889	607	72	1,013	87.76%	59.92%	7.11%
Period 4 2020/02/24 to 2020/03/02	Non-designated countries	797	457	53	942	84.61%	48.51%	5.63%
Period 5 2020/03/03 to 2020/03/20	Designated countries	3,335	1,327	154	4,062	82.10%	32.67%	3.79%
Period 5 2020/03/03 to 2020/03/20	Non-designated countries	1,173	398	98	1,492	78.62%	26.68%	6.57%
-	Contacts No country or period information	14,405 748	1,513 192	984 72	19,783 940	72.82% 79.57%	7.65% 20.43%	4.97% 7.66%

São Paulo School of Advanced Science on Epidemic Preparedness

Back to the Future: Pandemic Preparedness Indicators

The 140 GHS Index questions are organized across six categories:

1. PREVENTION

Prevention of the emergence or release of pathogens

4. HEALTH SYSTEM

Sufficient and robust health system to treat the sick and protect health workers

2. DETECTION AND REPORTING

Early detection and reporting for epidemics of potential international concern

5. COMPLIANCE WITH INTERNATIONAL NORMS

NORMS

Commitments to improving national capacity, financing plans to address gaps, and adhering to global norms

3. RAPID RESPONSE

Rapid response to and mitigation of the spread of an epidemic

6. RISK ENVIRONMENT

Overall risk environment and country vulnerability to biological threats

Indexes

- Additive Index
- Additive with Weights
- 0-100?
- Deviation from the Mean?

São Paulo School of Advanced Science on Epidemic Preparedness

Back to the Future: Pandemic Preparedness Indicators

OVERALL FINDING

National health security is fundamentally weak around the world. No country is fully prepared for epidemics or pandemics, and every country has important gaps to address.

The GHS Index analysis finds no country is fully prepared for epidemics or pandemics. Collectively, international preparedness is weak. Many countries do not show evidence of the health security capacities and capabilities that are needed to prevent, detect, and respond to significant infectious disease outbreaks. The average overall GHS Index score among all 195 countries assessed is 40.2 of a possible score of 100. Among the 60 high-income countries, the average GHS Index score is 51.9. In addition, 116 high- and middle-income countries do not score above 50. Overall, the GHS Index finds severe weaknesses in country abilities to prevent, detect, and respond to health emergencies; severe gaps in health systems; vulnerabilities to political, socioeconomic, and environmental risks that can confound outbreak preparedness and response; and a lack of adherence to international norms.

Specific scores for the GHS Index categories are as follows:

PREVENTION: Fewer than 7% of countries score in the highest tier⁸ for the ability to prevent the emergence or

DETECTION AND REPORTING: Only 19% of countries receive top marks for detection and reporting.

RAPID RESPONSE: Fewer than 5% of countries scored in the highest tier for their ability to rapidly respond to and mitigate the spread of an epidemic.

HEALTH SYSTEM: The average score for health system indicators is 26.4 of 100, making it the lowest-scoring category.

COMPLIANCE WITH INTERNATIONAL NORMS:

Less than half of countries have submitted Confidence-Building Measures under the Biological Weapons Convention (BWC) in the past three years, an indication of their ability to adhere to important international norms and commitments related to biological threats.

RISK ENVIRONMENT: Only 23% of countries score in the top tier for indicators related to their political system and government effectiveness.

Preparedness is not clearly defined, the construction of what constitutes "preparedness" is a *political process*.

State Parties Annual Reporting (SPAR) using government-reported data

WHO-administered Joint External Evaluations (JEE)

Global Health Security Index (GHSI) - Economist/John Hopkins/NTI

Preparedness is not clearly defined, the construction of what constitutes "preparedness" is a *political process*.

Incumbent governments should not be defining the "criteria" or "evaluation"

Researchers and society should be driving the discussion.

Preparedness is not clearly defined, the construction of what constitutes "preparedness" is a *political process*.

State Parties Annual Reporting (SPAR) using government-reported data

WHO-administered Joint External Evaluations (JEE)

Global Health Security Index (GHSI) - Economist/John Hopkins/NTI

São Paulo School of Advanced Science on Epidemic Preparedness

Back to the Future: Pandemic Preparedness Indicators

Public Health Laboratories Surveillance Capabilities

 Barberia et al.

 Global Health Research and Policy
 (2022) 7:27

 https://doi.org/10.1186/s41256-022-00260-4

Global Health Research and Policy

RESEARCH

Evaluation of the effectiveness of surveillance policies to control the COVID-19 pandemic in São Paulo, Brazil

Lorena G. Barberia^{1*}, Natália de P. Moreira¹, Brigina Kemp², Maria Amelia de Sousa Mascena Veras³, Marcela Zamudio¹, Isabel Seelaender Costa Rosa¹, Rebeca de J. Carvalho⁴ and Tatiane C. M. Sousa^{1,5}

São Paulo School of Advanced Science on Epidemic Preparedness

Public Health Laboratories Surveillance Capabilities

How to Impact Policy Making?

- Measure what matters, even if it is hard to do (e.g. orphans and lab capacity)
- Timeliness matters, but reliability and validity should be given more attention.
- Complex information needs to be synthesized to influence policy.
- Evidence and data need to be transparent, politicians and governments avoid doing so.
- Be clear on your role and your objectives, recognize ethical conflicts of interest
- Key Stakeholders need to be involved.
- Do not underestimate the politics.

Concluding Remarks

Most of the indicators we need require a lot of work to measure and their is little political will to generate it.

This does not absolve us as researcher from incorrect inferences.

What we measure is a POLITICAL decision.

What we study is a POLITICAL decision.

If we do not measure, we let others dominate the narrative.

If we do not publish and communicate, we let others dominate the narrative.

Contributors and Collaborators

Lorena Barberia (USP) Isabel Seelaender (USP) Maria Letícia Claro de F. Oliveira (USP) Tatiane C. Moraes Sousa (Fiocruz + USP) Gabriel Zanlorenssi (USP) Rebeca de Jesus Carvalho (FGV-CEPESP) Felipe Vilela (USP) André Garibe (USP) Natália de Paula Moreira (USP Ellen fernandes (uSP) Vinicius Bello (USP)) Luiz Guilherme Roth Cantarelli (USP) Pedro Schmalz (USP, CEPESP/FGV) Marcela Zamudio (USP, CEPESP/FGV) Ingrid Castro Loureiro Silva (USP) Dara Aparecida Vilela Pinto (USP) Maíra Meyer (USP) João gusmão (USP) Gustavo fernandes de Paula (USP) Carolina Langbeck Osse (USP) Raquel Requena Rachid (USP)

For more information:

COVID-19 Government Response Tracker for the Brazilian Federation(CGRT-BRFED) <u>https://github.com/cgrtbrfed</u>

Rede de Pesquisa Solidária em Políticas Públicas e Sociedade <u>https://redepesquisasolidaria.org/</u>

lorenabarberia@usp.br

Observatório COVID-19 Br https://covid19br.github.io/ Thank you! Obrigada! Gracias!