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Surveillance and timeline
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Epidemiology and public health surveillance

Propagation models Human mobility

Surveillance modelsStructured 
populations

Stochastic modelling



Preparation phase



Human mobility networks



Human mobility networks
● Challenges:

– Brazilian airline data: 
● Public data:

– Passengers from A to B as final destination: B is the endpoint, but A might not be the starting one.
– Passengers from A to B for connecting flights: B is not the endpoint, and A might not be the starting one 

either.
● Alternative for detailed travel information: proprietary data.

– Ground transportation:
● Public data:

– Intercity commuting for work/study for every municipality only available through official Census: once 
every 10 years (at least).

– Lots of data regarding vehicle volume on roads/highways, number of buses between cities, or 
hierarchical areas of influence: not with actual people flow or a clear proxy for modeling purposes.

● Alternative for detailed origin-destination data: proprietary cellphone data and driving apps (gmaps, waze, 
…). Publicly shared data do not provide aggregated info on detailed origin-detination (even intercity, let alone 
inside a given city).



Human mobility networks
● Challenges:

– Brazilian airline data: 
● Public data:

– Passengers from A to B as final destination: B is the endpoint, but A might not be the starting one.
– Passengers from A to B for connecting flights: B is not the endpoint, and A might not be the starting 

one either.

The introduction of dengue follows transportation infrastructure changes in 
the state of Acre, Brazil: A network-based analysis
Lana et al. 2017. Plos NTD. DOI:10.1371/journal.pntd.0006070 
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Geographic distance x Network distance
Propagation routes

- Gautreau, A., Barrat, A., & Barthélemy, M. (2008). Global disease spread: Statistics and estimation of arrival times. Journal of 
Theoretical Biology, 251(3), 509–522. doi:10.1016/j.jtbi.2007.12.001

- Iannelli, F., Koher, A., Brockmann, D., Hövel, P., & Sokolov, I. M. (2017). Effective distances for epidemics spreading on 
complex networks. Physical Review E, 95(1). doi:10.1103/physreve.95.012313 

Brockmann & Helbing, 2013, Science, 
doi:10.1126/science.1245200



Geographic distance x Network distance

Propagation routes: basic theory

- Gautreau, A., Barrat, A., & Barthélemy, M. (2008). Global disease spread: Statistics and estimation 
of arrival times. Journal of Theoretical Biology, 251(3), 509–522. doi:10.1016/j.jtbi.2007.12.001

- Iannelli, F., Koher, A., Brockmann, D., Hövel, P., & Sokolov, I. M. (2017). Effective distances for 
epidemics spreading on complex networks. Physical Review E, 95(1). 
doi:10.1103/physreve.95.012313 

Key facts:
- based on Rvachev-Longini model (Rvachev L A and Longini I M, 1985 
Math. Biosci. 75 3);
- analytical results based on SI or SIR models;
- assumes that invasion occurs during exponential growth phase, that is 
I(t) ~ I0eλt



Exposure
Estimates published March 23 & 25, 
2020.
http://bit.ly/mave-covid19-relatorio2-fiocru
z

Medrxiv:
https://doi.org/
10.1101/2020.03.19.20039131 

Plos One:
Assessing the spread of COVID-19 in 
Brazil: Mobility, morbidity and social 
vulnerability
https://doi.org/10.1371/
journal.pone.0238214

http://bit.ly/mave-covid19-relatorio2-fiocruz
http://bit.ly/mave-covid19-relatorio2-fiocruz


Data as of 2020-09-22 

https://bigdata-covid19.icict.fiocruz.br/

2020-03-10

2020-03-28



Data as of 2020-09-22 

2020-03-10 2020-03-28



Mitigation strategies: time saved before invasion
Effective distance dij and time to invasion Tij

Effective distance ~ 1/travel flow. The less individuals 
traveling per time unit, the greater the effective 
distance.

R0 ~ infection rate. The lower the transmissibility or 
contact rate, the lower the reproductive number.



Mitigation strategies: time saved before invasion

Estimates published on March 23 & 25, 2020.
http://bit.ly/mave-covid19-relatorio2
Medrxiv: https://doi.org/10.1101/2020.03.19.20039131 
By Municipality: https://bit.ly/mave-covid19-estados2020-04-01

http://bit.ly/mave-covid19-relatorio2


Travel restrictions: the case of Ebola 2014

In general, “[…] a 50% travel reduction produces a delay 
[in risk of case importation] equal to the doubling time 
of the number of cases.”

Poletto et al. Euro Surveill. 2014
doi: 10.2807/1560-7917.es2014.19.42.20936.



2020-05-27 

https://bigdata-covid19.icict.fiocruz.br/



Epidemiological surveillance



COVID-19 in Brasil: data sources?
● Official databases:

● Severe Acute Respiratory Sindrome (SARI): “Síndrome respiratória 
aguda Grave (SRAG)”, Sivep-gripe

● Non-SARI COVID-19 (ILI): e-SUS VE
● State or municipal spreadsheets/dashboards

● Federal Government panel: “Painel Croronoavírus”
● https://covid.saude.gov.br/

https://covid.saude.gov.br/


ILI and COVID-19: challenges
Mild cases identified by ILI surveillance: ambulatory cases and private 
labs’ positive cases
● Heterogeneous testing criteria and method between municipalities:

─ Hinders municipal-level comparisons;
─ Non-uniform state level aggregation (data collection bias).

● Testing criteria and method varying over time:
─ Hinders temporal evolution evaluation.
─ Hinders its usage as projection models’ input.

● Why not run RT-PCR on all ILI cases?
─ State labs (LACENs) already overwhelmed by SARI.



SARI: What is it?
• Per historical definition, in line with WHO's recommendation 

(not to be confused with SARS):
● Fever (dropped) +
● Coaghing OR sore throat +
● Dyspnea OR oxigen saturation < 95% OR difficulty breathing +
● Hospitalization OR death



SARI and COVID-19 in Brazil
Positivity among tested cases

Viral identification among positive cases



Seasonal profile and activity thresholds

MEM – Moving Epidemics Method
Vega et al. 2013 DOI:10.1111/j.1750-2659.2012.00422.x.
Vega et al. 2015 DOI:10.1111/irv.12330.

Very high activity threshold

High activity threshold
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Alert zone
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COVID-19 and hospitalizations for SARI in Brazil: a comparison up to 
the 12th epidemiological week of 2020
Bastos et al., http://dx.doi.org/10.1590/0102-311X00070120

Detection timeliness: week 12 2020



Case counts



Counting cases...

From math:
  
New cases = 
                (cumulative cases as of today) - 
                             (cumulative cases as of yesterday)



Counting cases...

From data collection:

cumulative cases as of today = 
cumulative as of yesterday
+ new cases registered
– duplicates identified
– discarded cases



Counting cases...

cumulative cases as of today = 
cumulative as of yesterday
+ new cases registered
– duplicates identified
– discarded cases

(cumulative cases as of today) –
             (cumulative cases as of yesterday) XNew cases



From case occurrence to database entry

Event date Search for 
care

Notification 
sheet fill-out

Database 
insertion

Date of 
symptoms’ 

onset

Hospitalization 
date

Notification 
date

Digitization 
date



Challenge: time to database insertion (backfill)



After 1 week we already 
have 90% of 

hospitalizations

4 weeks to have 80%, and 5 
weeks to reach 90% of 

hospitalizations



Challenge: time to database insertion (backfill)

Observed up 
to week t

Consolidated 
up to week 
33 2021

Aggregated by 
digitization date



Challenge: time to database insertion (backfill)

0



Time of event vs notification vs digitization

http://info.gripe.fiocruz.br
InfoGripe’s weekly reports: http://bit.ly/mave-infogripe-fiocruz

Week of symptoms onset
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Bastos, LS, Economou, T, Gomes, MFC, et al.
A modelling approach for correcting reporting delays in disease 
surveillance data. Statistics in Medicine. 2019; 38: 4363– 4377. 
https://doi.org/10.1002/sim.8303 

Time of event vs notification vs digitization

https://doi.org/10.1002/sim.8303


Bastos, LS, Economou, T, Gomes, MFC, et al.
A modelling approach for correcting reporting delays in disease 
surveillance data. Statistics in Medicine. 2019; 38: 4363– 4377. 
https://doi.org/10.1002/sim.8303 

Time of event vs notification vs digitization

https://doi.org/10.1002/sim.8303


http://info.gripe.fiocruz.br
InfoGripe’s weekly reports: http://bit.ly/mave-infogripe-fiocruz

Time of event vs notification vs digitization

http://info.gripe.fiocruz.br/


Situation analysis (week 24 2021)



Situation analysis

http://info.gripe.fiocruz.br
InfoGripe’s weekly reports: http://bit.ly/mave-infogripe-fiocruz

Increase prob.
> 95%
Increase prob.
> 75%
Stability/Oscill.

Decrease 
Prob.> 75%

Decrease 
Prob.> 95%

Week 24 2021
(Jul-13 - Jul-19)

http://info.gripe.fiocruz.br/


http://info.gripe.fiocruz.br
InfoGripe’s weekly reports: http://bit.ly/mave-infogripe

Situation analysis: macrorregions of health

Increase prob.
> 95%
Increase prob.
> 75%
Stability/Oscill.

Decrease 
Prob.> 75%

Decrease 
Prob.> 95%

http://info.gripe.fiocruz.br/


Age stratification



Incidence by age group
2020 2021 2022

SARI by SARS-CoV-2 
week 12 2020 to 33 2022.

Data extracted at week 
35 2022.



Situation at week 8 2022



Situation at week 8 2022
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Week 26 2023



Restricted to lower than 2 y.o.
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