IV International Meeting on Plant Breeding

"Uncovering the power and the secrets behind DNA modifications"

PROCEEDINGS

October – 2020

THE INTERNATIONAL MEETING ON PLANT BREEDING

Plant breeding is one of the fundamental strategies for the development of more adapted and productive cultivars, particularly in a world surrounded by uncertainty on food security. Given this scenario, scientists have been putting great efforts into the development of tools that could help to overcome challenges faced every day in the field. Therefore, we feel that discussions around these new tools are important to build next-generation breeders who will make them useful and effective, ensuring its correct application within research and breeding.

The International Meeting on Plant Breeding is one of several events that compose the "Corteva Agriscience Plant Science Symposia Series". In this fourth edition, the topic we intended to address was the world of DNA modifications and gene editing, which has been widely discussed within breeders, geneticists, biotechnologists in the last years. Recent advances have been done regarding genome manipulation, showing itself as a potential tool for many breeding programs. That said, we wanted to go deeper into that discussion and provide a propitious environment for updates and propagation of information.

GVENCK

The Genetics and Plant Breeding Group "Prof. Roland Vencovsky" (GVENCK) is composed by graduate and undergraduate students in Genetics and Plant Breeding at "Luiz de Queiroz" College of Agriculture (ESALQ/USP), under coordination of Professor Dr. José Baldin Pinheiro. Our mission is to integrate academics, professors and professionals with the goal of improving the training of future breeders and geneticists.

The main activities of the group are:

• Organization of scientific and training events;

• Promotion of discussion on relevant topics in genetic and plant breeding;

• Technical visits to companies and public research institutions;

• Promote the guidance of young talents under training from the "alumni voice", in which the alumni with consolidated careers will share professional experiences;

• Promote moments and opportunities for interaction between students, professors and researchers outside the university;

• Establishment of partnerships with companies and public institutions.

ORGANIZATION

Coordination José Baldin Pinheiro Maiara de Oliveira Jessica Aparecida Ferrarezi

Secretary Fernanda Smaniotto Campion Melina Prado

Treasury Adriano Abreu Moreira Patrícia Braga

Scientific Gustavo Nandi Rafael Roque Roberta Luiza Vidal

Communication Ana Lúcia Pinheiro Bruna de Moura Lopes Eduardo Oliveira Ellen Grous Melissa Cristina de Carvalho Miranda

> *Logistics* Felipe Augusto Krause Talieisse Gomes Fagundes Vitória Bizão Murakami

ACKNOWLEDGEMENTS

The organizing committee is thankful for all the support provided by Corteva Agriscience, ESALQ ("Luiz de Queiroz" College of Agriculture), Department of Genetics, The graduate program in Genetics and Plant Breeding.

PROGRAM:

September 30th, 2020 - Wednesday:

13:30 - 14:00 \rightarrow **Jason Rauscher** - Opening session (Corteva)

14:00 - 15:00 \rightarrow Agustin Zsögön - "De novo domestication of wild species: a platform to create more nutritious and resilient crops" (Federal University of Viçosa - UFV)

15:00 - 16:00 \rightarrow **Daniel Voytas -** "Overcoming Bottlenecks in Editing Plant Genomes" (University of Minnesota)

 $16:00 - 16:20 \rightarrow$ Research Presentation – Alexandre Aono "Assessing the potential of deep learning for sugarcane yellow leaf symptom severity phenotyping"

16:20 - 16:40 \rightarrow Break – Poster presentation

16:40 - 17:40 \rightarrow **Yinong Yang -** "CRISPR/Cas-enabled plant genome editing and precision breeding" (Pennsylvania State University)

 $17:40 - 18:00 \rightarrow$ Research Presentation – Iara Gonçalves dos Campos "Major locus for spontaneous haploid genome doubling in exotic maize germplasm detected by a case-control GWAS"

October 1st, 2020 - Thursday

13:30 - 14:30 \rightarrow Antonio Costa de Oliveira - "New Challenges for Cereal Breeding in Southern Brazil" (Federal University of Pelotas - UFPel)

14:30 - 15:30 \rightarrow Sandra Milach - "Predictive Breeding in the Era of Genome Editing" (Corteva)

 $15:30 - 15:50 \rightarrow$ Research Presentation – Marcos Antonio de Godoy Filho "*De novo* assembly of contrasting soybean genomes for the study of resistance to the stink bug complex"

15:50 - 16:20 \rightarrow Break – Poster presentation

16:20 - 17:20 → Lázaro Eustáquio Pereira Peres - "Domestication and de novo domestication: tomato as a model." (Luiz de Queiroz College of Agriculture - ESALQ/USP) 17:20 - 17:40 → Award "Roland Vencovsky"

 $17:40 - 18:00 \rightarrow \text{Closing remarks}$

SPEAKERS

Dr. Agustin Zsögön

Dr. Agustín Zsögön is a geneticist and holds a Masters degree in Plant Physiology and Biochemistry from the University of São Paulo (2006). In 2011 he received a PhD in Plant Biology from the Australian National University, and subsequently conducted post-doctoral research at the University of Sydney and the University of São Paulo. He has been tenured as Assistant Professor of Molecular Plant Physiology at the UFV since 2015. His main research interest is the genetic and functional analysis of domestication and breeding traits in Solanaceae. His work is funded by the Royal Society, UK Research and Innovation and the Alexander von Humboldt Foundation.

Dr. Antonio Costa de Oliveira

Dr Antonio Costa de Oliveira is an agronomist, with a Master of Science degree in Genetics and Plant Breeding from University of Sao Paulo and a PhD in Genetics (Purdue University - 1996), and also a Post-Doctorate from University of Georgia – 2007. Dr Antonio is currently a Professor of Genetics and Plant Breeding at FAEM / UFPel-Brazil, as well as PQ- Researcher 1A. He was President of the International Crop Science Society (2008-2012) and is currently the President of the Brazilian Society of Plant Breeding (SBMP). Dr Antonio has na expertise in the field of Agronomy, with emphasis in Vegetal Breeding, working in: genomics applied to cereals,

quantitative traits, variability and breeding. He has various international collaborations with groups from USA, Italy, Spain, France, Portugal, UK and Mexico.

Dr. Dan Voytas

Dr. Daniel Voytas is a Professor in the Department of Genetics, Cell Biology and Development and the Director of the Center for Precision Plant Genomics at the University of Minnesota. Dr. Voytas graduated from Harvard College in 1984 and received his Ph.D. from Harvard Medical School in 1990. He conducted postdoctoral research at Johns Hopkins University School of Medicine where he was a fellow of the Life Science Research Foundation. Prior to joining the University of Minnesota in 2008, Dr. Voytas was a professor at Iowa State University. Dr. Voytas' research focuses on developing methods to edit plant genomes. His laboratory developed a powerful genome editing reagent – Transcription Activator- Like Effector Nucleases (TALENs) – which was heralded by Science magazine as one of the top ten

scientific breakthroughs of 2012. Dr. Voytas' lab is currently optimizing methods for efficiently making targeted genome modifications in a variety of plant species to advance basic biology and develop new crop varieties.

Dr. Lázaro Peres

Dr. Lázaro Eustáquio Pereira Peres is a Professor of Plant Physiology at the University of São Paulo (USP), Brazil, where he also received his PhD. His main research interest is plant development and its interaction with the environment, using tomato as a model. Dr. Peres has established and curates a large collection of induced mutants, natural genetic variation and transgenic plants in the model system tomato cv. Micro-Tom, which are being used worldwide for the study of physiological mechanisms and the genes behind them. Some of the genes studied in the Dr. Peres's lab have alleles that are exclusive from tomato related wild species, representing valuable genetic resources

for fundamental studies on plant adaptation, domestication and breeding.

Sandra Milach had a Bachelor of Science degree in Agronomy from Federal University of Pelotas, Brazil, followed by a Master of Science degree in Genetics and Plant Breeding from the Federal University of Rio Grande do Sul, Brazil. She then earned her doctorate in Genetics and Plant Breeding from the University of Minnesota. Sandra leads Systems & Innovations for Breeding and Seed Products within the Research & Development organization for Corteva Agrisciences. Sandra is responsible for enabling and accelerating breeding and seed product development systems through applied science and technologies. Since January 2016, she leads the Global Breeding and Marker Technologies and now to Systems and

Dra. Sandra Milach

Innovations for Breeding and Seed Products. Prior to joining the organization, Sandra was a Professor of Plant Genetics and Breeding at Federal University of Rio Grande do Sul and also worked at EMBRAPA, leading molecular breeding efforts in wheat and barley.

Dr. Yinong Yang

Yinong Yang is a Professor in the Department of Plant Pathology and Environmental Microbiology and the Huck Institutes of Life Sciences at the Pennsylvania State University. He received a BS in biology from Hangzhou University in 1982, an MS in botany from University of South Florida in 1990, and a PhD in plant molecular and cellular biology from University of Florida in 1994. After a postdoctoral position in Waksman Institute at Rutgers University, he became an assistant and associate professor at the University of Arkansas. He joined the faculty at Penn State

in 2006 and has been working in the areas of molecular plant-microbe interactions and functional genomics. His recent studies focus on improving CRISPR/Cas genome editing technology and its broad applications in genome engineering and precision breeding of agricultural crops.

SUMÁRIO

ASSESSING THE POTENTIAL OF DEEP LEARNING FOR SUGARCANE YELLOW LEAF SYMPTOM SEVERITY PHENOTYPING
COMPATIBILITY OF INTER-SPECIFIC CROSSINGS IN PHYSALIS SPECIES
<i>DE NOVO</i> ASSEMBLY OF CONTRASTING SOYBEAN GENOMES FOR THE STUDY OF RESISTANCE TO THE STINK BUG COMPLEX
EFFECT OF THE HETEROTIC GROUP ON THE HAPLOID INDUCTION RATE IN TROPICAL MAIZE
FROM <i>IN SILICO</i> DATA TO GENOME EDITING: IDENTIFYING RESISTANCE GENES AGAINST <i>Sporisorium scitamineum</i> IN ENERGY CANE
GENOMIC REGIONS ASSOCIATED WITH FUSARIUM WILT RESISTANCE IN COMMON BEANS11
GENETIC DIVERSITY AND POPULATION STRUCTURE IN COMMON BEAN GERMPLASM FROM AGRONOMIC INSTITUTE (IAC)
GNOTOBIOTIC SYSTEM AS AN EARLY INDICATOR OF MAIZE GROWTH PROMOTION15
SELEÇÃO DE GENÓTIPOS DE TOMATEIRO F2RC1 COM CARACTERÍSTICAS PARA PROCESSAMENTO INDUSTRIAL TOLERANTES AO DÉFICIT HÍDRICO INDUZIDO POR MANITOL17
MAJOR LOCUS FOR SPONTANEOUS HAPLOID GENOME OUBLING IN EXOTIC MAIZE GERMPLASM DETECTED BY A CASE-CONTROL GWAS
ANÁLISE MULTIVARIADA PARA ESTUDOS DE ATRIBUTOS EDAFOCLIMÁTICOS INFLUENTES NA CULTURA DA SOJA
NEW ANGULAR LEAF SPOT RESISTANCE QTLs FOR CARIOCA COMMON BEAN
PR-1 GENES COULD PLAY AN IMPORTANT ROLE IN THE RESPONSE MECHANISM TO HYDRIC STRESS IN TOMATO cv. MICRO-TOM25
PROTEIN INTERACTION BETWEEN TRANSCRIPTION FACTORS OF Arabidopsis thaliana AND EFFECTORS OF Sporisorium scitamineum
SELECTION OF EXPERIMENTAL PURPLE-FLESHED SWEET-POTATO GENOTYPES
SELECTION OF TOLERANT TOMATOES GENOTYPES F2 FOR HIGH AIR TEMPERATURES
THE SMUT PATHOGEN <i>Sporisorium Scitamineum</i> USES DIFFERENT STRATEGIES TO INFECT RESISTANT AND SUSCEPTIBLE SUGARCANE GENOTYPES
TOLERANCE OF PROCESSING TOMATOES BC3F2 GENOTYPES TO WATER DEFICIT
VARIANCE COMPONENTS AND ADAPTABILITY AND STABILITY OF COTTON GENOTYPES USING GGE BIPLOT ANALYSIS

INFLUÊNCIA DA HETEROSE NA PRODUTIVIDADE DE GRÃOS EM	
POPULAÇÕES TROPICAIS E TEMPERADAS DE MILHO-PIPOCA	39

ASSESSING THE POTENTIAL OF DEEP LEARNING FOR SUGARCANE YELLOW LEAF SYMPTOM SEVERITY PHENOTYPING

<u>Alexandre H. Aono</u>¹; Ricardo J. G. Pimenta¹; Roberto C. B. Villavicencio²; Ivan A. Anjos³, Marcos C. Gonçalves⁴; Luciana R. Pinto³; Ana C. Lorena⁵; Marcos G. Quiles⁶; Anete P. Souza^{1,*}

¹Centro de Biologia Molecular e Engenharia Genética, UNICAMP; ²Campus Gustavo Galindo Velazco, ESPOL; ³Centro Avançado da Pesquisa Tecnológica do Agronegócio de Cana, IAC/APTA; ⁴Centro de Sanidade Vegetal, IB/APTA; ⁵Instituto Tecnológico de Aeronáutica; ⁶Instituto de Ciência e Tecnologia, UNIFESP. *anete@unicamp.br.

The proper identification of plant disease symptoms is crucial to avoid associated crop losses. Sugarcane yellow leaf (SCYL), caused by the SCYL virus (SCYLV), is a major disease of sugarcane. Its symptoms are easily mistaken for other stresses, and grading SCYL severity is troublesome. We present a novel, image-based proposal for automating the assessment of SCYL severity, using a panel of 97 sugarcane genotypes planted in a randomized complete block design with three replicates and infected with SCYLV. Plants were assessed for SCYL severity by three evaluators using a four-level scale, and one top visible dewlap leaf per row was collected and had its abaxial and adaxial surfaces photographed on a black background with a Nikon D3100 camera. 48 additional leaves representing severity levels were randomly collected among different plants and photographed the same way. All the images were preprocessed with the following steps using OpenCV library: median blur and Otsu's binarization; identification of connected components and selection of the region of interest; image segmentation; abaxial and adaxial surfaces' joining. Using Python sklearn and keras libraries, we compared six state-of-the-art convolutional neural network architectures for feature extraction (ResNet50, MobileNet, InceptionV3, VGG16, VGG19 and InceptionResNetV2), coupled with eight machine learning classification models (K-nearest neighbors, support vector machine, Gaussian process, decision tree, random forest, multilayer perceptron neural network, adaptive boosting and Gaussian naive Bayes) and three feature selection (FS) strategies (gradient tree boosting, L1-based FS through a linear support vector classification system and univariate FS using ANOVA) for predicting SCYL symptom severity. Predictive accuracies were assessed using leave-one-out and 10-fold cross validation strategies. We found ResNet-50 as the most promising deep learning strategy for feature extraction, and coupled with gradient tree boosting for FS and Gaussian naive Bayes algorithm enabled the achievement of accuracies up to 90%. This represents the first attempt of predicting SCYL symptom severity based on images and has a high potential to be expanded to other diseases that severely affect sugarcane.

Keywords: Image processing; machine learning; SCYLV.

UA MODIFICATIONS ANE YELLOW LEAF ANE YELLOW LEAF LONICAMP Io dos Anjos ² , Marcos tereira de Souza ^{1,1} Agroregocio de Cana, MCMPTA, "Centro de Sanidade Vegetal, teamp.br	15	COMPUTER BASED CLASSIFICATION	ResNet50, MobileNet, InceptionV3, VGG16, VGG19, InceptionRNv2	Machine learning (ML) classification	K-nearest neighbors (KNN), Gaussian process (GP), random forest (HF), AdaBoost (AD), support vector machine (SVM), decision tree	(DT), multilayer perceptron (MLP), Gaussian nave Bayes (GMB)	Feature selection techniques Gradient tree boosting (FS1), L1-SVM based (FS2), ANOVA (FS3)	Python keras and scikit-learn libraries		Proposed phenotyping system	ing feature selection REDUCED DATASET	Image: State of the state
LIMETING ON UNCOVERING THE POWER AND THE SECRETS BEHIND DNA MODIFICATIONS Na POTENTIAL OF DEEP LEARNING FOR SUGARCANE YELLOW LEAF SYMPTOM SEVERITY PHENOTYPING I. Ricardo José Gonzaga Pimenta ¹ , Roberto Carlos Burbano Vilavicendo ² , Ivan Antônio dos Anjos ² , Marcos I. Ricardo José Gonzaga Pimenta ¹ , Roberto Carlos Burbano Vilavicendo ² , Ivan Antônio dos Anjos ² , Marcos I. Ricardo José Gonzaga Pimenta ¹ , Roberto Carlos Burbano Vilavicendo ² , Ivan Antônio dos Anjos ² , Marcos I. Ricardo José Gonzaga Pimenta ¹ , Roberto Carlos Burbano Vilavicendo ² , Ivan Antônio dos Anjos ² , Marcos I. Ricardo José Gonzaga Pimenta ¹ , Roberto Carlos Burbano Vilavicendo ² , Ivan Antônio dos Anjos ² , Marcos I. Ricardo José Gonzaga Pimenta ¹ , Roberto Carlos Burbano Vilavicendo ² , Ivan Antônio dos Anjos ² , Marcos I. Ricardo José Gonzaga Pimenta ¹ , Roberto Carlos Burbano Vilavicendo ² , Ivan Antônio dos Anjos ² , Marcos I. Ricardo José Gonzaga Pimenta ¹ , Roberto Carlos Burbano Vilavicendo ² , Ivan Antônio dos Anjos ² , Marcos I. Ricardo José Gonzaga Pimenta ¹ , Roberto Carlos Burbano Vilavicendo ² , Ivan Antônio dos Anjos ² , Marcos I. Roberto Carlos Burbano Vilavicendo ² , Ivan Antônio dos Anjos ² , Marcos I. Roberto Carlos Burbano Vilavicendo ² , Ivan Antônio dos Anjos ² , Marcos I. Roberto Carlos Burbano Vilavicendo ² , Ivan Antônio dos Anjos ² , Marcos I. Roberto Carlos Burbano Vilavicendo ² , Ivan Antônio dos Anjos ² , Marcos	MATERIAL AND METHODS	PLANT MATERIAL IMAGE PROCESSING 97 eenotropes w/ SCYLV	andomized complete block design	Plots with 3 rows, 3 replicates	TRADITIONAL PHENOTYPING			July 2019 (1 ^d ratoon) Python OpenCV library	RESULTS	10-fold cross validation separated according to groups	GP, DT and AD presented inferior performances and were discarded, as well as not using feature selection	ALL CUIS ALL CU
Centro de Blologa Molecular e Engenharia Genderal Genderal Genderal Constante en Conception SYM	INTRODUCTION	Plant diseases are a major threat in agriculture. Sugarcane yellow leaf (SCYL), caused by the	sugarcane yellow leaf virus (SCYLV), is an important disease leading to considerable yield	2	their severity is traublesome and requires trained personnel.	ACKNOWLEDGMENTS	Trineen O OCNP			Leave-one-out cross validation	ResNet50 established as the most promising strategy	INTIAL DATASET NI 12 images N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2

COMPATIBILITY OF INTER-SPECIFIC CROSSINGS IN *PHYSALIS* SPECIES

<u>Silva Junior, A.D</u>; Zeist, A.R¹; Leal, M.H¹; Rodrigues Júnior¹; Pieri, J. R. S¹; Silva, D. F¹; Perrud, A.C¹; Arantes, J.H.V¹

¹Universidade do Oeste Paulista, Presidente Prudente-SP, Brazil. E-mail: andrejunior018@gmail.com.

The Physalis L. (Solanaceae) is a fruit plant that contains more than 100 species with high added value fruits, which have relevant physicochemical properties. Species of this genus have so far been little explored in studies aimed at the development of superior genotypes. Thus, it is necessary to start breeding programs that aim in the near future to develop more productive and competitive genotypes. In view of the aforementioned information and in order to provide technical and scientific bases for breeding programs, the objective was to determine the rate of artificial crossbreeding fixings between seven species of Physalis. All species were crossed with each other acting as pollen donors and receivers, thus carrying out bidirectional crossings. In addition to the crossings, a self-pollination of the parents was also performed, totaling 49 combinations. An accession of each species was used: Physalis peruviana, Physalis ixocarpa, Physalis minima, Physalis pubescens, Physalis angulata, Physalis pruinosa and Physalis daturaefolia. Ten plants from each accession were conducted in a greenhouse and in pots with a volume of 08 dm³. From the beginning of the reproductive stage, for the plants that acted as receptors, emasculation was carried out before the dehiscence of the anthers, avoiding self-pollination. For the pollen collection, freshly opened flowers were used and the artificial crossing was performed immediately, identifying each crossing with line marking and covering with paper. The fixation of artificial crosses was determined by counting the fruits formed from pollination. There was fruit fixation in most interspecific combinations. The greatest highlights were for the species P. peruviana and P. pubescens, as pollen receptors, showed high rates of fruit fixation in combination with all other species, except when they received pollen from P. minimum and P. daturaefolia. When the species P. ixocarpa and P. angulata were used as female parents, there was compatibility to fix fruits with all the other species, however, the fruit fixation index was mostly less than 40%. The P. daturaefolia as a pollen donor in combination with P. minimum and P. pubescens, did not provide fruit fixation. The same aspect occurs when pollen from *P. peruviana* was combined with *P. pruinosa* is also the combination of pollen from P. pruinosa in P. daturaefolia. And finally, it had self-compatibility for all Physalis species explored, with highlights for *P. peruviana* and *P. pubescens*, which obtained 100 and 94% of fruit fixation, respectively. The biggest problems of incompatibility between Physalis species are related to P. daturaefolia as a pollen donor, which had fruit fixation in only a few combinations. All Physalis species explored were self-compatible and there was fixation fruits for most interspecific combinations.

Keywords: Solanaceae; artificial crosses; interspecific hybrids; genetic pre-breeding.

Acknowledgments: FAPESP- (process number 2019/15378-5).

INTERNATIONA MEETING ON PL BREEDING	
IMPB	
4th	

ANT

UNCOVERING THE POWER ANT THE SECRETS BEHIND DNA MODIFICATIONS

E C C

COMPATIBILITY OF INTER-SPECIFIC CROSSINGS IN PHYSALIS SPECIES Silva Junior, A.D¹; Zeist, A.R¹; Leal, M.H¹; Rodrigues Júnior¹; Pieri, J. R. S¹; Silva, D. F¹; Perrud, A.C¹; Arantes, J.H.V¹

Materials and methods

contains more than 100 species with high added value Species of this genus have so far been little explored in

fruits, which have relevant physicochemical properties.

at the development of superior

studies aimed genotypes.

The Physalis L. (Solanaceae) is a fruit plant that

Introduction

All species were crossed with each other acting as a self-pollination of the parents was also performed. An P. ixocarpa, P. minima, P. pubescens, P. angulata, P. pruinosa e P. daturaefolia. Since the beginning of the reproductive phase, emasculation was performed before the pollen collection, freshly opened flowers were used and the artificial crossing was performed immediately. The fixation of artificial crosses was determined by counting pollen donors and recipients. In addition to the crossings, accession of each species was used: Physalis peruviana, dehiscence of the anthers, avoiding self-pollination. For the fruits formed from pollination.

Figure 1. Physalis plants kept in a greenhouse (A), collecting pollen from flowers (B), emasculation of flower buds (C), fruit of interspecific crossings successfully fixed (D) and counting and separating the fruits of the cross (E and F).

Table 1. Fruit!	fixation index to	o interspecific	Table 1. Fruit fixation index to interspecific crosses of Physalis sp.	alīs sp.				č
Male				Female paren	ent			£ 8
parent	P. peruviana	P. ixocarpa	P. mínima	P. pubescens	P. angulata	P. pruinosa	P. daturaefolia	J
				FI (%)				
P. peruviana	94.00	48.00	24.00	64.00	72.00	0.00	16.00	
P. ixocarpa	80.00	70.00	24.00	100.00	28.00	16.00	4.00	4
P. minima	8.00	12.00	58.00	16.00	28.00	8.00	8.00	5
P. pubescens	76.00	12.00	8.00	100.00	20.00	10.00	8.00	
P. angulata	76.00	40.00	12.00	84.00	64.00	32.00	12.00	J
P. pruinosa	76.00	4.00	4.00	72.00	24.00	68.00	0.00	
P. daturaefolia	4.00	8.00	0.00	00.0	8.00	4.00	76.00	

hysalis species are related to P daturaefolia as a pollen pror, which obtained fruit fixation in only a few combinations. between incompatibility The biggest problems of

Results and discussion

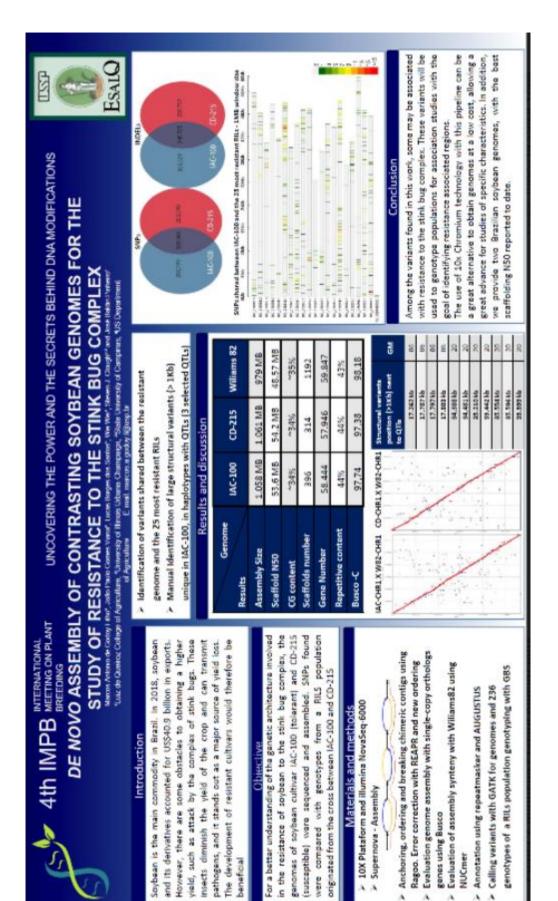
crossbreeding fixings between seven species of

Physalis.

The objective was to determine the rate of artificial

Objective

FAPESP- (process number 2019/15378-5) 0.00


DE NOVO ASSEMBLY OF CONTRASTING SOYBEAN GENOMES FOR THE STUDY OF RESISTANCE TO THE STINK BUG COMPLEX

<u>Marcos Antonio de Godoy Filho</u>¹; João Paulo Gomes Viana²; Lucas Borges dos Santos³; Wei Wei²; Steven J. Clough^{2,4} and José Baldin Pinheiro¹

¹Luiz de Queiroz College of Agriculture, Brazil. ²University of Illinois Urbana-Champaign, USA. ³State University of Campinas, Brazil. ⁴US Department of Agriculture. E-mail: marcos.a.godoy.f@usp.br.

Soybean is an important commodity in Brazil. In 2019, the soybean and its derivatives accounted for \$ 34,78 billion in exports. However, there are some obstacles to achieving greater soybean yield. Insect infestation in soybean fields, particularly by stink bug complexes, reduces crop yield and can transmit pathogens. An alternative to the use of insecticides is the development of resistant cultivars. For a better understanding of the sovbean resistance to the stink bug complex, the genomes of sovbean cultivar IAC-100 (tolerant) and cultivar CD-215 (susceptible) were sequenced and de novo assembled. Additionally, a genotyping-by-sequencing (GBS) analysis was conducted of a soybean population of 236 recombinant inbred lines derived from the crossing of the two cultivars (CD-215 x IAC-100). Together, we used these sequence data to identify variants in the population that were associated with the inheritance of resistance. For the genome sequencing, we used the 10X Genomics' Chromium technology. The de novo genome assemblies were accomplished using the software Supernova 2.1.1, 1.0.17, Ragoo 1.1, and REAPR. It was possible to generate assemblies with N50 scaffolds near 54 MB for both genomes, and account or approximately 1 GB of the genomes. Using NUCmer, we could see that our genomes have high synteny with the soybean reference Williams 82 and that our genomes also have gene numbers and repetitive elements very close to these numbers found in Wiliams 82 (approximately 58 thousand genes and 44% repetitive elements). To identify polymorphisms, we used GATK, found 290.189 unique SNPs in IAC-100 when compared to CD-215 and 335.229 unique INDELs. Analyzing the GBS data for the 25 most resistant genotypes, selected from past experiments involving resistance to the stink bug complex, we found 852 SNPs, shared between the selected genotypes and with the IAC-100. Several SNPs putative associated with resistance were found, revealing haplotypes with QTLs reported in studies not yet published by our group. We analyzed 3 haplotypes with QTLs, where we found large structural variants (>1Kb) putative, present only in the resistant cultivar, next to these variants we find candidate genes that are part of the route of resistance related compounds, such as phenylpropanoid/lignin and terpenes, we also found R genes and a possible gene related to a number of pods in resistant genotypes. In addition to providing two Brazilian soybean genomes with the best N50 scaffolds reported to date, these results open the door to several other studies and applications in plant breeding, such as fine mapping, marker-assisted selection, genome selection, expression of candidate genes, and genetic modifications using methods such as CRISPR/Cas9 technology.

Keywords: 10x chromium; variants; recombinant inbred lines; Supernova; linked-reads.

EFFECT OF THE HETEROTIC GROUP ON THE HAPLOID INDUCTION RATE IN TROPICAL MAIZE

<u>Gabriela Romêro Campos</u>; Pedro Henrique de Souza; José Felipe Gonzaga Sabadin; Roberto Fritsche Neto

¹Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, SP, Brazil. E-mail: campos.gab@usp.br.

The double haploid (DH) technology can significantly reduce the time and cost of obtaining maize lines, which in vivo haploid inducers being the principal method in this context. The identification of haploids occurs mainly through morphological markers, with R1-Navajo (R1n) being the most used, responsible for the expression of anthocyanin in the endosperm and embryo of the seeds. So far, there are no inductors adapted to tropical climatic conditions and open to the scientific community and small companies. Besides, significant differences in induction rates between the flint and dent groups are reported in the literature. Therefore, we aimed to verify haploidy induction differences by the LI-ESALQ population in the flint and dent heterotic groups. We evaluated individuals from two cycles of intrapopulation recurrent selection between the LI-ESALQ inducer, which has the R1nj gene. As external testers, we used two simple-crosses, those from different heterotic groups. The selection was made using an index, considering the putative and real haploid induction rate and the expressiveness of the R1-ni marker, where the phenotypic values of each characteristic were standardized and weighted according to their importance (0.25, 0.5, and 0.25 respectively). There were differences in the expressiveness of R1-ni and the induction of haploid regarding the dent and flint groups. The dent group obtained a higher average rate of putative haploid seeds in cycles 0 and 1 (5.59% to 0.71% and 3.86% to 1.16%, respectively), as well as greater expressiveness of R1-nj (98.25% compared to 50.15% in cycle 0 and 99.04% compared to 54.52% in cycle 1). However, the flint group obtained a higher average rate of real haploid seeds (0.67% to 0.38% in cycle 0 and 2.79 to 1.10% in cycle 1). Because of these variations, differences may also occur in selecting the best inducing genotypes, if targeted to a specific heterotic group. As the inducer's demand is not straightforward, the improvement must be carried out considering both groups into account, avoiding distortions in the efficiency of the inducing materials, which can occur in segregating populations from crosses between lines from different groups.

Keywords: Double haploid; *R1-navajo*; recurrent selection; heterotic group.

4th IMPB INTERNATIONAL BREEDING

UNCOVERING THE POWER AND THE SECRETS BEHIND DNA MODIFICATIONS

EFFECT OF THE HETEROTIC GROUP ON THE HAPLOID INDUCTION RATE IN TROPICAL MAIZE <u>Gabriela Roméro Campos'i</u>, Pedro Henrique Souzat; José Felipe Gonzaga Sabadin 1; Roberto Fritsche Neto¹

¹Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz"

campos gab@usp.br

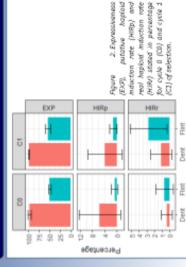
Introduction

The doubled haploid (DH) technology can significantly reduce the time and cost of obtaining maize lines, which in wivo haploid inducers being the principal method in this context. The identification of haploids occurs mainly through morphological markers, with RT-Mavojo (RT-n) being the most used, responsible for the expression of anthocyanin in the endosperm and embryo of the sceds when fertilization is complete (diploid seed). However, when it is haploid, anthocyanin production occurs only in the endosperm which allows identifying among the progeny seeds which are haploid (putative). So far, there are no inductors adapted to tropical climatic conditions and open to the scientific community and small companies. Besides, significant differences in haploidy induction rates between the filint and dent groups are reported in the literature.

Objective

Aimed to verify haploid induction differences by the LI-ESALQ population in the filint and dent heterotic groups.

Materials and methods


We evaluated individuals from two cycles of intrapopulation recurrent selection between the LI-ESALQ inducer. As external testers, we used two single-crosses, those from different heterotic groups. Seeds were classified by an expert researcher according to K1-nJ (Figure 1), and the seeds classified as putative haploids were taken to the field for validation.

Then we calculated the putative haploid induction rate (HIRp), the expressiveness of R1-n/ [EXP) and the real haploid induction rate (HIRU). The selection was made using a selection index (I) (equation 1), where the phenotypic values of each trait were standardized and weighted according to their importance.

 $I = 0.5 \text{ x HIRr} + 0.25 \text{ x HIRp} + 0.25 \text{ x EXP} \quad (1)$

Results and discussion

index must select genotypes with good performance in both R1-nj inhibition genes present in the flint group, had already reported in the literature, which decreases the marker's existing in the LI-ESALQ population. As a consequence of these variations, there are differences in the selection of the group, the genotypes selected to compose the next cycle are not the same as those selected for the dent group. So, the There were differences in the expressiveness of R1-nj and the induction of haploid regarding the dent and flint groups (Figure 2). The expressiveness of R1-nj is mainly due to the genetic differences between the two germplasms, mainly, expressiveness. There was also a large variation in the rates of haploid induction between and within the different germplasms, as a consequence of the genetic variability most suited inducing genotypes. Admitting only the flint termpia:

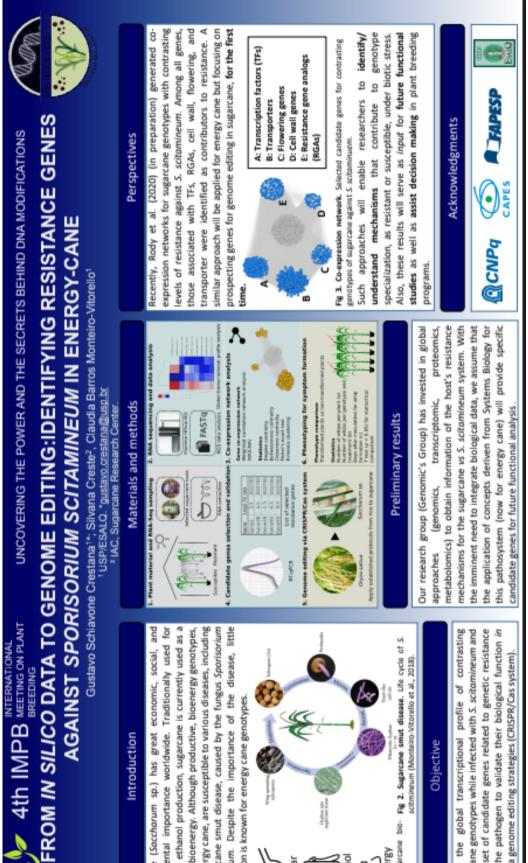
Conclusion

As the inducer's demand is not straightforward, the improvement must be carried out considering both groups into account, avoiding distortions in the efficiency of the inducing materials, which can occur in segregating populations from crosses between lines from different groups.

Acknowledgments

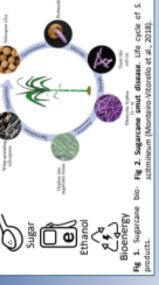
To all from the Laboratory of Allogamous Plant Breeding who participated and assisted in the development of the project.

FROM IN SILICO DATA TO GENOME EDITING: IDENTIFYING RESISTANCE GENES AGAINST Sporisorium scitamineum IN ENERGY CANE


Gustavo Schiavone Crestana¹; Silvana Creste²; Claudia Barros Monteiro-Vitorello¹

¹USP/ESALQ, Piracicaba - SP, Brazil.²IAC, Sugarcane Research Center, Ribeirão Preto - SP, Brazil. E-mail: gustavo.crestana@usp.br.

Sugarcane (Saccharum sp.) present great economic, environmental, and social importance in the worldwide scenario. Brazil is the largest producer and exporter of the crop. Traditionally used for sugar and ethanol (1^a Generation) production, this scenario has been changing with the diversity of novel applications of its bio-products, such as a source for renewable bioenergy. New genotypes, called energy cane, have been developed by plant breeding programs focused on cellulosic ethanol (2ª Generation). Although productive, such genotypes are susceptible to various diseases and pests, generating yield losses depending on the variety and environmental conditions. Among the diseases that most affect sugarcane, sugarcane smut, caused by the biotrophic fungus Sporisorium scitamineum, is considered one of the most relevant and devastating currently. The disease's primarily characteristic symptom is the formation and emergence of a black apical structure covered with fungal spores, called smut-whip. Little information on the genetic resistance basis is available concerning this pathogen for energy cane genotypes, considered all moderately susceptible to the disease. This project aims to evaluate the global transcriptional profile of contrasting energy cane genotypes while infected with S. scitamineum and select a set of candidate genes related to genetic resistance against the pathogen to validate their biological function in planta via gene editing strategies. Using energy cane genotypes with contrasting levels of smut resistance. RNA-Seg libraries will be built and sequenced. Coexpression networks will be created to select a set of candidate genes related to host resistance against the disease. The expression profile of these genes will be validated using RT-qPCR, and they will be used for genome editing of energy cane plants via CRISPR system, for the first time in sugarcane. Genetically edited plants will be compared and phenotyped with non-transformed plants regarding the number of whips per plant (a), per treatment (b) and time of symptom development (whip emergence) (c). These results will serve as potential input for future functional studies on host resistance mechanisms and assist decision-making in plant breeding programs. Such approaches will enable identification and the understanding of mechanisms contributing to resistance in energy cane.


Keywords: Plant pathogen-interaction; Sugarcane; Genome editing; Smut disease.

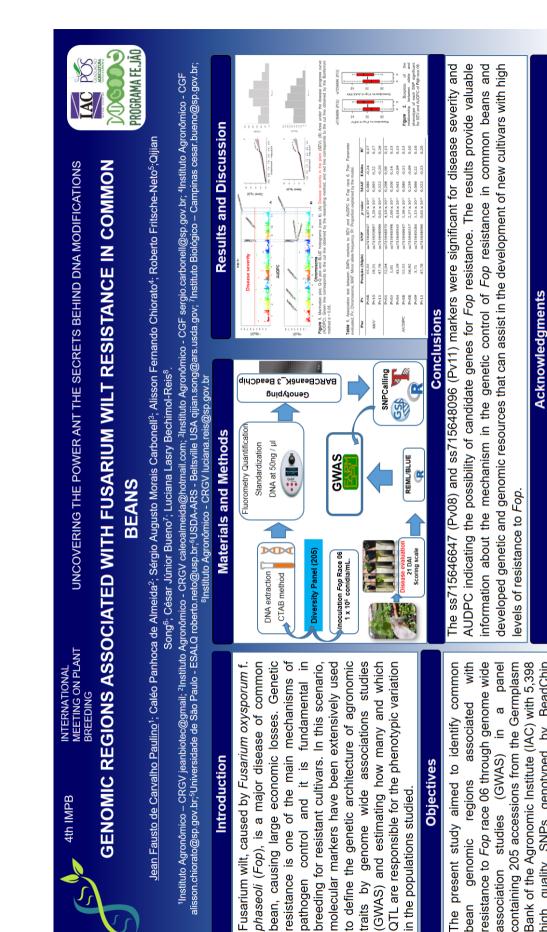
Acknowledgements: CNPq (142289/2020-5); CAPES (88887.480825/2020-00); FAPESP.

UNCOVERING THE POWER AND THE SECRETS BEHIND DNA MODIFICATIONS

sugar and ethanol production, sugarcane is currently used as a Sugarcane (Socchorum sp.) has great economic, social, and environmental importance worldwide. Traditionally used for scitamineum. Despite the importance of the disease, little source of bioenergy. Although productive, bioenergy genotypes, called energy cane, are susceptible to various diseases, including the sugarcane smut disease, caused by the fungus Sporisorium information is known for energy cane genotypes.

select a set of candidate genes related to genetic resistance against the pathogen to validate their biological function in Evaluate the global transcriptional profile of contrasting energy cane genotypes while infected with S. scitamineum and planta via genome editing strategies (CRISPR/Cas system).

GENOMIC REGIONS ASSOCIATED WITH FUSARIUM WILT RESISTANCE IN COMMON BEANS


<u>Jean Fausto de Carvalho Paulino</u>¹; Caléo Panhoca de Almeida¹; Sérgio Augusto Morais Carbonell²; Alisson Fernando Chiorato²; Roberto Fritsche-Neto³, Qijian Song⁴; César Júnior Bueno⁴; Luciana Lasry Bechimol-Reis¹.

¹Instituto Agronômico – CRGV. ²Instituto Agronômico – CGF. ³Universidade de São Paulo – ESALQ. ⁴USDA-ARS - Beltsville USA. ⁴Instituto Biológico – Campinas. E-mail: jeanbiotec@gmail.com.

Fusarium wilt, caused by Fusarium oxysporum f. sp. phaseoli (Fop), is considered the main fungal soil disease in beans. The most economical and efficient method to control this disease is the use of resistant cultivars. The present study aimed to identify common bean genomic regions associated with resistance to Fop race 06 through genome wide association studies (GWAS) in a panel containing 205 accessions from the Germplasm Bank of the Agronomic Institute (IAC). The experiment was performed with a randomized block design of 6 replications. The accessions were genotyped with 5,398 high quality SNPs from the BeadChip BARCBean6K_3. The low quality and monomorphic SNPs were filtered with a Minimum Allele Frequency (MAF) of 0.05 (MAF> 0.05), and for the phenotypic analysis, the plants were inoculated by the root-dip method, evaluated after 21 days of inoculation on a scoring scale from 1 to 9 to disease severity and the area under the disease progress curve (AUDPC), and the average of the values obtained implemented in the mixed model REML/BLUE. The genotypic and phenotypic data were analyzed for genome-wide association using the FarmCPU model. The results demonstrated seven significant SNPs on chromosomes Pv01, Pv03, Pv04, Pv08, Pv09 and Pv11 were associated with AUDPC and three significant SNPs severity on chromosomes Pv08, Pv10 and Pv11 with disease severity. These SNPs explained between 10% to 26% of the phenotypic variation associated with AUDPC and disease severity. The markers ss715646647 (Pv08) and ss715648096 (Pv11) were significant for disease severity and AUDPC indicating the possibility of candidate genes for Fop resistance. Subsequently, gene annotation will be performed based on the reference genome of *P. vulgaris*, to identify regions containing candidate genes resistance to fusarium wilt in common beans.

Key Words: *Phaseolus vulgaris* L; *Fusarium oxysporum* f. sp. *phaseoli*; Disease resistance; SNPs; GWAS.

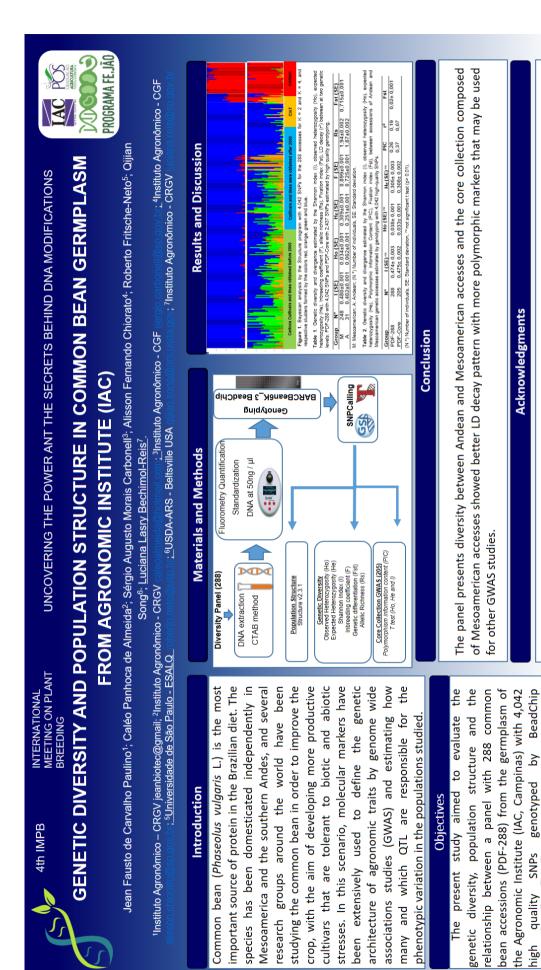
Acknowledgements: FAPESP (Grant 2017/24711-4) and CAPES (Grant 88882.444193/2019-01).

FAPESP (Grant 2017/24711-4) and CAPES (Grant 88882.444193/2019-01).

high quality SNPs genotyped by BeadChip

(BARCBean6K 3-Illumina).

GENETIC DIVERSITY AND POPULATION STRUCTURE IN COMMON BEAN GERMPLASM FROM AGRONOMIC INSTITUTE (IAC)


Jean Fausto de Carvalho Paulino¹; Caléo Panhoca de Almeida¹; Sérgio Augusto Morais Carbonell¹; Alisson Fernando Chiorato¹; Roberto Fritsche-Neto⁵; Qijian Song⁶; Luciana Lasry Bechimol-Reis¹

¹Instituto Agronômico – CRGV. ²Universidade de São Paulo – ESALQ^{. 3}USDA-ARS - Beltsville USA. E-mail: luciana.reis@sp.gov.br.

The present study aimed to evaluate the genetic diversity, population structure and the relationship among a panel with 288 common bean accessions (PDF-288) from the germplasm of the Agronomic Institute (IAC, Campinas). The panel was genotyped by BeadChip (BARCBean6K 3-Illumina) with 4,042 high guality SNPs. The diversity was evaluated with genetic distance, and population structure was estimated with the STRUCTURE software. The results demonstrated the distinction of Mesoamerican and Andean accessions and evidenced the majority presence of Mesoamerican accessions in the evaluated group, with greater genetic variability. The structuring by gene pool (K = 2) was predominant and the high value obtained by the fixation index (Fst), demonstrating that there is genetic structuring between the accessions from different gene pools, followed by another subdivision (K = 4) which was divided according to the type of grain, origin and time of release. To obtain a core collection for association mapping from PDF-288, a low level of genetic differentiation was observed by the fixation index (Fst). Similar values without significant differences were also observed by the t test for the Shannon Diversity Index, observed heterozygosity (Ho), expected heterozygosity (He) and inbreeding coefficient (F). The evaluated panel (PDF-288) maybe represented in terms of diversity through a smaller set, constituting a core collection (PDF-Core) of 205 Mesoamerican genotypes based on desirable agronomic traits for Brazilian breeding programs. Analyzes were also carried out based on the linkage disequilibrium (LD), where better LD decay was observed based on the r² value observed for the PDF-Core demonstrating the possibility of future use of this panel in other genome wide association studies (GWAS).

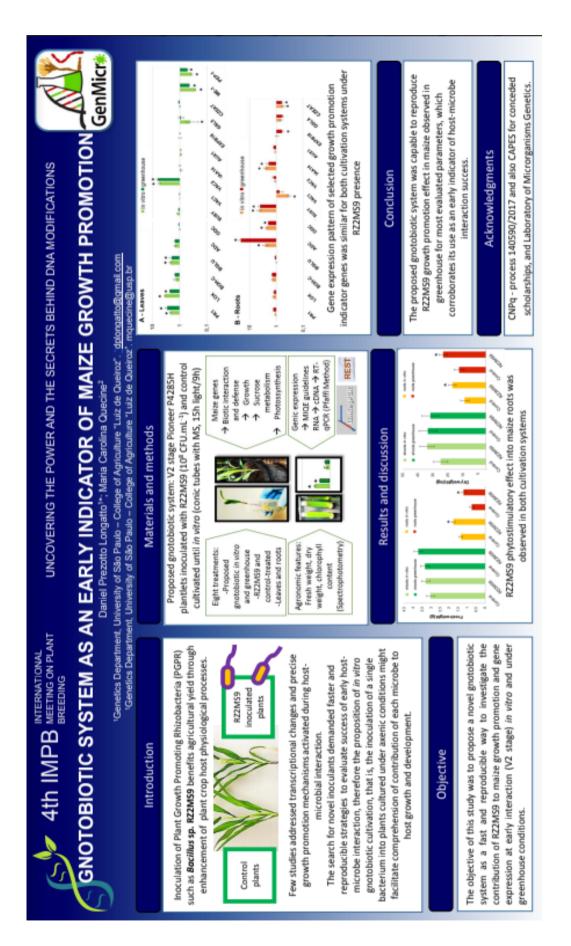
Key Words: Phaseolus vulgaris L; Variability; SNPs; Linkage Disequilibrium; GWAS.

Acknowledgements: FAPESP (Grant n° 2017/24711-4) and CAPES (Scholarship n° 88882.444193/2019-01).

FAPESP (Grant no 2017/24711-4) and CAPES (Scholarship no 88882.444193/2019-01)

(BARCBeanGK 3-Illumina).

GNOTOBIOTIC SYSTEM AS AN EARLY INDICATOR OF MAIZE GROWTH PROMOTION


D. P. Longatto; M. C. Quecine

¹University of São Paulo – College of Agriculture "Luiz de Queiroz" Avenue Pádua Dias, 11. Piracicaba SP, Brazil. E-mail: dplongatto@gmail.com.

The use of Plant Growth Promoting Rhizobacteria (PGPR) into crop field application is increasing due to microbial contributions to host sanity, plant architecture and resources usage. The search for novel inoculants demanded faster means to evaluate success of hostmicrobe interaction, therefore the *in vitro* cultivation of the plant harboring a single bacterium, might facilitate comprehension of its contribution to host physiology and yield. PGPR Bacillus thuringiensis RZ2MS9 isolated from guarana plant Paullinia cupanea promoted maize and soybeans growth under greenhouse conditions, however the knowledge of such benefic interaction at a molecular level is scarce. In this work, we proposed a maize-PGPR anotobiotic system settled in vitro to access host-microbial transcriptional changes using RT-gPCR expression according to MIQE guidelines toward understanding of RZ2MS9 contribution to maize agronomic parameters quantified in vitro and greenhouse cultivation conditions. Remarkably, in vitro maize leaves and roots gene expression profile reproduced greenhouse counterpart results for most of analyzed genes, and phytostimulatory effect in roots of bacterized plants was observed for both cultivation systems, validating proposed in vitro system for further studies. Higher chlorophyll contents were observed in leaves of bacterized maize seedlings cultivated in greenhouse collected at V2 stage. RZ2MS9 favored roots higher sink strength and growth at early V2 stage expressed by increase of fresh matter, dry matter and soluble sugars and higher expression of auxin-responsive gene iaa14, sucrose synthase susy than control. RZ2MS9 contribution to increased chlorophyll content in leaves of greenhouse cultivated maize seedlings might be related to interference into host hormonal balance in which release of hormone bound forms in roots and leaves by the host, shown for the first time in this work might participate. The proposed anotobiotic system was capable to reproduce RZ2MS9 growth promotion effect in maize observed in greenhouse for most evaluated parameters, which corroborates its use as an early indicator of host-microbe interaction success.

Keywords: Host-microbe interaction; phytostimulation; tropical rhizobacteria; invertases; sink strength.

Acknowledgments: To CNPq - process 140590/2017 and also to CAPES for conceded scholarships.

SELEÇÃO DE GENÓTIPOS DE TOMATEIRO F2RC1 COM CARACTERÍSTICAS PARA PROCESSAMENTO INDUSTRIAL TOLERANTES AO DÉFICIT HÍDRICO INDUZIDO POR MANITOL

<u>Jair Garcia Neto</u>¹; Heloisa de Souza Voltare¹; André Ricardo Zeist¹; Alessandra Ferreira Ribas¹; Nilson Rodrigues Júnior¹; Daniel Fernandes da Silva¹; Murilo Henrique Souza Leal¹; André Dutra Silva Júnior¹

¹UNOESTE – Universidade do Oeste Paulista. Presidente Prudente – SP. E-mail: jairgarcianeto@gmail.com.

O tomateiro (Solanum lycopersicum L.) é considerado uma das hortaliças de maior importância econômica em escala mundial. No entanto, as atuais cultivares comerciais não são tolerantes a estresses abióticos e constantemente são acometidas por déficits hídricos. O manejo do déficit hídrico, especialmente quando se refere ao tomateiro de indústria é de difícil manejo a nível de campo. Com isso, torna-se relevante a introgressão de genes de tolerância/resistência. Para isso, o acesso LA 716 pertencente a espécie Solanum pennellii é uma importante fonte de resistência. Objetivou-se selecionar in vitro genótipos da segunda geração do primeiro retrocruzamento (F₂RC₁) obtidos a partir do cruzamento interespecífico da linhagem BRS Tospodoro com o acesso LA-716 (genitor doador), com tolerância ao déficit hídrico. Utilizou-se 20 sementes tolerantes ao déficit hídrico do genitor doador acesso LA-716, 20 sementes do genitor recorrente 'BRS tospodoro' e 500 sementes dos genótipos segregantes F₂RC₁. As sementes foram colocadas para germinar em meio de cultura MS, o qual foi adicionado 22,29 g.L⁻¹ de manitol P.A (C₆H₁₄O₆) caracterizado como álcool hexanídrico que quando em solução com água é absorvido e proporciona diferença aos níveis hídricos disponíveis à embebição das sementes. Na distribuição do material experimental foi adotada uma derivação do delineamento de blocos aumentados, denominado de delineamento experimental de testemunhas intercaladas, em que as testemunhas se equivaleram aos tratamentos comuns e os genótipos segregantes aos tratamentos regulares. Avaliou-se porcentagem, tempo médio de germinação, comprimento da maior raiz, altura e número de folhas das plântulas. Os dados foram submetidos à análise de variância, utilizando-se a matriz de variância e covariância residual para a realização do teste de comparação de médias de Dunett ($p \le 0.05$ e ≤ 0.01). Em condições de estresse hídrico induzido por manitol, nenhuma semente de 'BRS Tospodoro' germinou. As sementes da espécie S. pennellii germinaram 74% em 7 dias, resultando em 10,9 mm no comprimento de raiz, 22,1 mm na altura da planta e 6 folhas. Os genótipos F₂RC₁ que germinaram e se destacaram foram UZTI-80, UZTI-72, UZTI-149, UZTI-92, UZTI-14, UZTI-192, UZTI-51, UZTI-55, UZTI-98, UZTI-44, UZTI-157, UZTI-169 e UZTI-76. Esses genótipos tiveram maior comprimento raiz e número de folhas guando comparados ao acesso LA-716 (padrão de tolerância ao déficit hídrico). Adicionalmente esses genótipos, exceto UZTI-80, tiveram número de folhas igual ou superior a LA-716. Os genótipos F₂RC₁UZTI-80, UZTI-72, UZTI-149, UZTI-92, UZTI-14, UZTI-192, UZTI-51, UZTI-55, UZTI-98, UZTI-44, UZTI-157, UZTI-169 e UZTI-76 demostraram boa tolerância ao déficit hídrico e que podem contribuir para o desenvolvimento de cultivares de tomateiro com característica para processamento industrial.

Palavras-chave: Solanum lycopersicum; Solanum pennellii; estresse hídrico; tolerância à seca.

Agradecimentos: FAPESP (Processo 2019/05829-0).

CENDUSTRIAL PROCESSING TOLERANT TO WATER STRESS INDUCED BY MANITOL INTERNATIONAL MEETING ON PLANT BREEDING

Garcia Neto, J.* Voltare, H.S.* Zeist, A.R.* Ribas, A.F.* Rodrigues Junior, N.* Silva, D.F.* Leal, M.H.S.* Silva Junior, A.D.*

"UNDESTE - Universidade do Oeste Paulista, jaiggerdanelp@gmail.com".

noeste

Introduction

The tomato (Solanum lycopersicum) is considered one of the most economically important vegetables on a world scale. However, current commercial cultivars are generally tolerant to abiotic stresses and are constantly affected by water deficit. Thus, the introgression of tolerance / resistance mes relevant. enes beco

Objective

Ë second generation of the first backcrossing (BC,F.) from the interspecific cross between BRS Tospodoro strain with the LA-716 accession (donor parent), with tolerance to water The objective was to select in vitro, genotypes of

Materials and methods

the recurrent parent 'BRS Tospodoro' and 500 seeds of the segregating genotypes BC1F2. The seeds were placed to mannitol P.A ($C_{\sigma}H_{34}O_{\sigma}$) was added. A derivation of the augmented block design was adopted, called the experimental design of interleaved controls, in which the controls were Percentage, average water stress of the donor parent access LA-716, 20 seeds of germinate in MS culture medium, where 22.29 g.L⁻¹ of to common treatments and the segregating number of seedling leaves were evaluated. The data were The reasearch compared 20 seeds tolerant to the germination time, length of the largest root, height and to regular treatments. submitted to analysis of variance. equivalent genotypes

Results and discussion

he 1. Length of the largest root (LR), height (HT) and

number of leaves (NL).

LR - (mm)

species S. pennellii germinated 74% in 7 days, resulting in 10.9 Under conditions of water stress induced by mannitol, 'BRS Tospodoro' seeds germinated. The seeds of the mm in root length, 22.1 mm in plant height and 6 leaves. The BC,F, genotypes that germinated and stood out were UZTI-80, UZĤ-72, UZTI-149, UZTI-92, UZTI-14, UZTI-192, UZTI-51, UZTI-55, UZTI-98, UZTI-44, UZTI -157, UZTI-169 and UZTI-76. 2

40.

22,0* 48,0* 48,0* 57,0 52.0* 20,02 56,5* 53,0* 55,0" 58,0*

24,0*

JZTI-80 (BC, F.)

BRS Tospodoro' (P2)

99 3 3 3 20 9 22 3 3 22

> 24,0" 25,0* 24,0"

LZTD-149 (BC,F_)

JZTI-92 (BC,F,)

23,0"

JZT1-72 (BC, F,)

3

27,1

6'01

LA-716' (P1) Genotypes

z

HT -(mm)

Condusion

UZTI-44, UZTI-157, UZTI-169 and UZTI-76 demonstrated good tolerance to water stress and could contribute to the UZTI-72, UZTI-149, UZTI-92, UZTI-14, UZTI-192, UZTI-51, UZTI-55, UZTI-98, ģ development of tomato cultivars with characteristics UZTI-80, The genotypes BC,F industrial

Figure 2. Tomato seedlings from access LA-716 in vitro Figure 1. Selection process of tolerant genotypes submitted to water stress induced by mannitol.

Acknowledgments

FAPESP (Process 2019/05829-0)

3

.0'6E

25,0"

UZTI-76 (BC, F,)

Soldhum pennelillaccess LA-F16

ZU-100(RCE) differ from

40,0*

23,0"

JZTI-157 (BC,F,)

23,0"

23,0

21,0*

JZTI-51 (BC,F,) JZTI-55 (BC, F,) JZTI-98 (BC, F,) UZTI-44 (BC,F,)

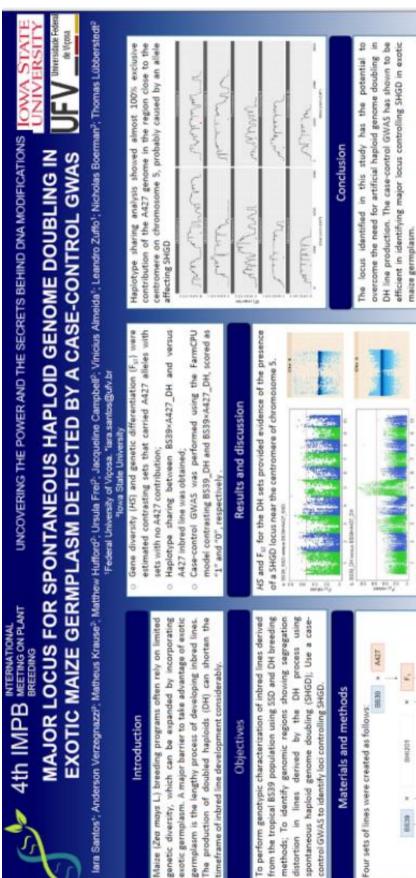
23,0*

23,0

IZTI-192 (BC,F_)

LZTI-14 (BC,F,)

MAJOR LOCUS FOR SPONTANEOUS HAPLOID GENOME OUBLING IN EXOTIC MAIZE GERMPLASM DETECTED BY A CASE-CONTROL GWAS


<u>Iara G Santos</u>¹; Anderson Verzegnazzi²; Matheus Krause²; Matthew Hufford²; Ursula Frei²; Jacqueline Campbell²; Vinicius Almeida¹; Leandro Zuffo¹; Nicholas Boerman²; Thomas Lübberstedt²

Federal University of Viçosa. ²Iowa State University. E-mail: iara.santos@ufv.br.

Maize (Zea mays L.) breeding programs often rely on limited genetic diversity, which can be expanded by incorporating exotic germplasm. A major barrier to take advantage of exotic germplasm is the lengthy process of developing inbred lines. The production of doubled haploids (DH) can shorten the timeframe of inbred line development considerably. The aims of this study were to perform genotypic characterization of inbred lines derived from the tropical BS39 population using different breeding methods, to identify genomic regions showing segregation distortion in inbred lines derived by the DH process using spontaneous haploid genome doubling (SHGD), and use case-control association mapping to identify loci controlling SHGD. Four different inbred line derivation processes were created: BS39 DH and BS39 SSD were derived from the BS39 population by doubled haploid (DH) and singleseed descent (SSD) methods, and BS39×A427 DH and BS39×A427 SSD from the cross between BS39 and A427, used as a SHGD donor. A total of 663 inbred lines were genotyped using Genotype-by-Sequencing (GBS) and Diversity Array Technology Sequencing (DArtSeq). Gene diversity (HS), genetic differentiation (Fst), haplotype sharing, and casecontrol GWAS analyses were performed. HS and F_{st} for the DH sets provided evidence of the presence of a SHGD locus near the centromere of chromosome 5. The case-control GWAS for the DH set pinpointed this locus more precisely. Our results further indicate that the DH process captures genetic variability from the source population comparable to the SSD process. Haplotype sharing analysis showed almost 100% exclusive contribution of the A427 genome in the region near the centromere on chromosome 5 of BS39×A427 DH, presumably due to an allele in this region affecting SHGD. This locus enables DH line production in exotic populations without artificial haploid genome doubling.

Keywords: maize; doubled haploid; exotic germplasm; single seed descent.

Acknowledgements: USDA's National Institute of Food and Agriculture, Plant Sciences Institute, Crop Bioengineering Center, R.F. Baker Center for Plant Breeding, K.J. Frey Chair in Agronomy at Iowa State University; CNPq, CAPES.

Acknowledgments s National Institute of Food and Agriculture

The case-control GWAS also pinpointed this evidence:

0639+AA27_690

B536-AL27_DH

0036_DH

8

8504_950 DAmeq (96)

(BR (318)

USDA's National Institute of Food and Agriculture, Plant Sciences Institute, R. F. Baker Center for Plant Breeding, K. J. Frey Chair in Agronomy at ISU, CNPQ, and CAPES.

ANÁLISE MULTIVARIADA PARA ESTUDOS DE ATRIBUTOS EDAFOCLIMÁTICOS INFLUENTES NA CULTURA DA SOJA

Bruno Grespan Leichtweis:; Felipe Lopes da Silva:; Leandro Augusto Andrade Fumes:

¹Universidade Federal de Viçosa. E-mail: bruno.leichtweis@ufv.br.

A ACP é uma técnica estatística de análise multivariada que transforma linearmente um conjunto original de variáveis, inicialmente correlacionadas entre si, num conjunto substancialmente menor de variáveis não correlacionadas que contém a maior parte da informação do conjunto original. A ACP é a técnica mais conhecida e está associada à ideia de redução de massa de dados, com menor perda possível da informação. Procura-se redistribuir a variação observada nos eixos originais de forma a se obter um conjunto de eixos ortogonais não correlacionados. A seleção de cultivares adaptadas a diferentes regiões dentro de um programa de melhoramento depende da compreensão dos efeitos ambientais que caracterizam cada região. Para isso é necessário compreender a estrutura da variância e covariância das variáveis influentes na cultura, e assim, conhecer a importância relativa de cada variável. Objetivou-se com este trabalho explicar a estrutura da variância e covariância de um conjunto de dados ambientais por meio de combinações lineares das variáveis originais. Foram avaliados dados edafoclimáticos de 11 cidades do Mato Grosso, dentre elas a temperatura (°C), umidade relativa média (%), pressão atmosférica (mbar), altitude (m), precipitação total (mm), classe de solo e classificação climática segundo Köppen, os dados climáticos foram obtidos através do Banco de Dados Meteorológicos para Ensino e Pesquisa (BDMEP). Foi avaliada uma série histórica de dez anos, de setembro de 2009 a fevereiro de 2019, fazendo uma média para cada mês. Os meses utilizados para o estudo foram de setembro a fevereiro. Todas as análises foram feitas no software Rstudio, utilizando o pacote "psych". Com base nos resultados obtidos pela técnica, os dois primeiros PCs foram responsáveis por 66,55% da variação total dos dados ambientais estudados, em que o PC1 foi responsável por 47,25% e o segundo, PC2, por 14.30% das variações dos dados. Portanto, dois primeiros componentes principais resumem efetivamente a variância amostral total e podem ser utilizados para o estudo do conjunto de dados. Com a seleção de dois componentes principais, a redução da dimensão de 12 variáveis originais para 2 componentes principais é eficiente.

Palavras-chave: Análise multivariada; Componentes Principais; edafoclima.

4th IMPB MEETING ON PLANT BREEDING

UNCOVERING THE POWER AND THE SECRETS BEHIND DNA MODIFICATIONS

MULTIVA RIATE ANALYSIS FOR EDAPHOCLIMATIC STUDIES IN SOYBEAN CROP

Bruno Grespan Leichtweis¹; Felipe Lopes da Silva?; Leandro Augusto Andrade Fumes³; Universitade Federal de Vigosa.³ puno elontrescurtur; ² elonescura duntur;³ leandro fumescur

Objective

Introduction

the original set. PCA is the best known technique and is associated with the idea variation observed in the original axes in order to obtain a set of unrelated orthogonal axes. The selection of cultivars adapted to different regions is a multivariate statistical analysis into a substantially smaller set of uncorrelated variables that contains most of the information in of reducing data mass, with the least possible loss of information. We seek to redistribute the within a breeding program depends on an understanding of the environmental effects that characterize each region. For this it is necessary to understand the structure of the variance and technique that linearly transforms an original set of variables, initially correlated with each other, covariance of the influential variables in the to know the relative importance of each variable. culture, and thus, PCA

The objective of this work was to explain the structure of the variance and covariance of a set of environmental data through linear combinations of the original variables.

Materials and methods

Edaphoclimatic data from 11 cities in Mato Grosso were evaluated, including temperature (° C), average relative humidity (%), atmospheric pressure (mbar), altitude (m), total precipitation (mm), soil class and climatic classification according to Köppen, the climatic data were obtained through the Meteorological Database for Teaching and Research (BDMEP). A ten-year historical series from September 2009 to February 2019 was evaluated, averaging for each month. The months used for the study were from September to February. All analyzes were performed using the Rstudio software, using the "psych" package.

Results and discussion

Genética e Melharaneno UFV Based on the results obtained by the technique, the first two PCs were responsible for 66.55% of the total variation of the studied environmental data, in which PC1 was responsible for 47.25% and the second, PC2, for 14.30% of variations of the data.

Condusion

Therefore, the first two main components effectively summarize the total sample variance and can be used to study the data set. With the selection of two main components, reducing the dimension from 12 original variables to 2 main components is efficient.

NEW ANGULAR LEAF SPOT RESISTANCE QTLs FOR CARIOCA COMMON BEAN

<u>Caléo Panhoca de Almeida</u>¹; Jean Fausto de Carvalho Paulino¹; Gabriel de Siqueira Gesteira²; Cristiane Hayumi Taniguti²; Alisson Fernando Chiorato¹; Sérgio Augusto Morais Carbonell¹; Antônio Augusto Franco Garcia²; Luciana Lasry Benchimol-Reis¹.

¹Instituto Agronômico – CRGV. ²Universidade de São Paulo – ESALQ. E-mail: caleoalmeida@hotmail.com.

The angular leaf spot (ALS), caused by the fungus Pseudocercospora griseola (Sacc.) Crous & U. Braun is one of the most important diseases of common bean (Phaseolus vulgaris L.), which may result in losses of up to 80% of production. Recent studies have demonstrated that bean cultivars show different degrees of resistance throughout plant development and due to the quantitative profile of the disease, several resistance loci are necessary to guarantee a lasting resistance. Associated molecular markers may be used as an important tool for the early selection of resistant genotypes. For this purpose, the AM genetic map estimated from 1.091 SNPs genotyped via GBS in a segregating inter-pool genetic population (IAC-Milênio x AND 277) composed of 91 BC₂F₃ carioca lines was used to identify markers linked to ALS resistance QTLs. The AM population was evaluated for resistance to ALS at three different phenological stages (PS), been PS V2 and V3 under controlled conditions of infection and PS R8 under natural conditions (field). Using the multiple interval mapping approach (MIM), four QTLs were identified, showing that in addition to the *Phg-1 locus*, identified on chromosome Pv01 (ALS1.1^{AM}) and associated with PS V3 in the current study, the AND 277 cultivar portrayed the QTL Phg-5 reported for the first time in the descending cultivar CAL143 as ALS10.1^{UC}. The QTL ALS10.1^{AM} associated with PS V2 was the one with the greatest effect (34%) and a new QTL named ALS11.1^{AM} was identified at the beginning of Pv11 associated with PS R8. A second QTL for PS R8 (ALS3.1^{AM}) was mapped on chromosome Pv03 and appears to be the same QTL ALS3.1^{UC} also identified in the cultivar CAL 143. Finally, several putative resistance genes involved in the ALS resistance response were identified, which have great potential to be used in development of molecular markers for marker-assisted selection.

Keywords: P. griseola; Linkage mapping; Carioca bean.

Acknowledgements: FAPESP (Grants 2017/01753-3; 2014/11145-2; 2019/19670-2).

Objective

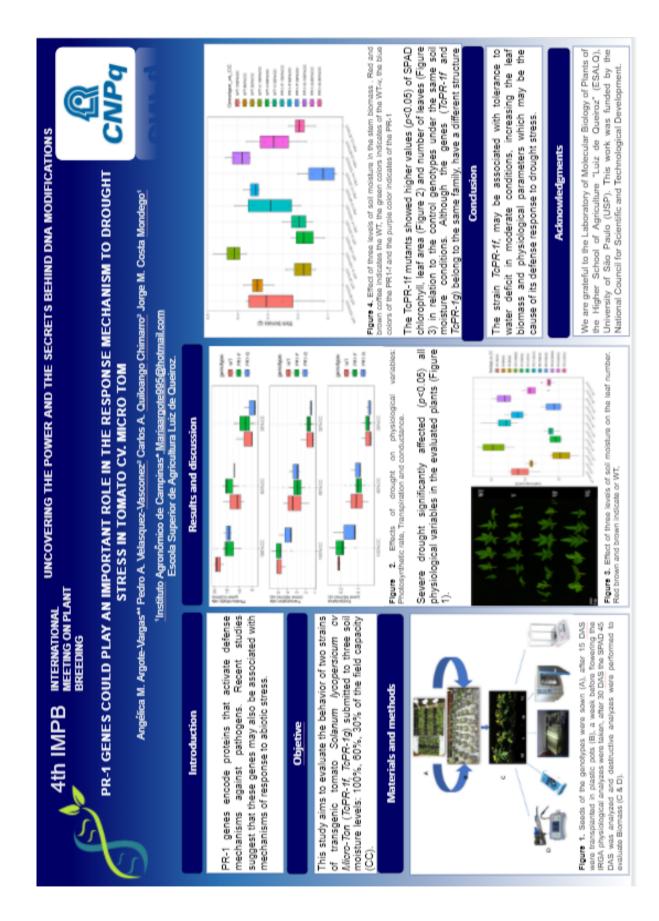
The aim of the present study was to identify QTLs associated with genetic resistance to ALS at different phenological stages of common bean through linkage mapping using a segregating inter-pool genic population.

FAPESP (Grants 2017/01753-3; 2014/11145-2; 2019/19670-2), CAPES and CNPQ.

Acknowledgments

different phenological phases and different environmental conditions. Besides the Phg-1 locus, the AND277 cultivar has the Phq-5 reported for the first time in the CAL143 cultivar (derived from AND 277) as ALS10.1^{uc} and

a new QTL named ALS11.1^{4M} was identified at the beginning of Pv11.


PR-1 GENES COULD PLAY AN IMPORTANT ROLE IN THE RESPONSE MECHANISM TO HYDRIC STRESS IN TOMATO cv. MICRO-TOM

<u>Angélica M. Argote-Vargas</u>¹; Pedro A. Velasquez-Vasconez;² Carlos A. Quiloango Chimarro;² Marcio de Castro Silva Filho;² Jorge M. Costa Mondego¹

¹Instituto Agronômico de Campinas. ² Escola Superior de Agricultura Luiz de Queiroz. Email: mariaargote995@hotmail.com_

The PR-1 genes encode proteins that activate defense mechanisms against pathogens. Recent studies suggest that these genes may also be associated with mechanisms of response to abiotic stress. This work aimed to evaluate the behavior of two transgenic lines of tomato Solanum lycopersicum cv Micro-Tom (TcPR-1f, TcPR-1g) submitted to three levels of soil moisture: 100%, 60%, 30% of the field capacity (CC). Physiological parameters such as stomatal conductance, photosynthetic rate, transpiration, chlorophyll content and biomass were evaluated. Severe drought significantly affected (p<0.05) all physiological variables in the evaluated plants. The TcPR-1f genotypes are able to overcome the moderate dryness level (60%) producing biomass values similar to the control treatment in 100% CC. In addition, the TcPR-1f mutants showed higher values (p<0.05) of chlorophyll SPAD, leaf area and number of leaves in comparison to the control genotypes under the same soil moisture conditions. Although the genes (TcPR-1f and TcPR-1g) belong to the same family, they have different structures. The *TcPR-1f* gene has an additional 110 base pair sequence located at the beginning of the 3' side of the sequence. This segment could encode a signal peptide or functional domain in proteins, contributing to the improved performance of transgenic TcPR-1f plants under water stress conditions, whose molecular bases are still unknown. Additional studies are being developed to decipher the role of TcPR1 genes and their structure in water stress response/tolerance.

Keywords: PR-1; Pathogenesis; climatic change; oxidative stress.

PROTEIN INTERACTION BETWEEN TRANSCRIPTION FACTORS OF Arabidopsis thaliana AND EFFECTORS OF Sporisorium scitamineum

Jéssica Fernanda Mendes¹; Claudia Barros Monteiro-Vitorello¹

¹University of São Paulo, "Luiz de Queiroz" College of Agriculture, Piracicaba-SP, Brazil. Email: jessica.mendes95@usp.br.

A common disease in sugarcane is smut, caused by the biotrophic fungus Sporisorium scitamineum. The susceptible plants infected by this pathogen show the formation of a whipshaped structure, which occupies the position of the host's reproductive organs. Smut disease can cause losses of up to 62% in sugarcane production and reduce the quality of the juice in susceptible varieties. However, the emergence of smut epidemics in resistant varieties can persist in stressful environmental conditions. Thus, it is necessary to investigate at a molecular level the interaction between this pathogen and its host, in order to understand the pathogenesis process, and establish more effective methods for controlling the disease. Studies of interaction between proteins can elucidate cellular functions that impact plant development and growth, such as the flowering pathway. Therefore, it is important to understand the biochemical mechanisms that occur during the sugarcane-smut interaction. Nevertheless, analysis using the hybrid sugarcane genome remain a challenge for the scientific community, due to its complex, extensive genome, with a high level of polyploidy and the presence of transposons. As an alternative, research with model plants is being applied in order to have a better understanding of this genome and the functioning of its genes, such as those involved in the process of defense. The Arabidopsis thaliana model has been used to study fungus pathosystems, such as Ustilago maydis and Ustilaginoidea virens, in corn and rice, respectively. The objective of this work is to establish bimolecular fluorescence (BiFC) complementation tests to analyze protein interactions between effectors of the fungus S. Scitamineum and transcription factors of the Squamosa family that are involved in the development of flowering of Arabidopsis thaliana. The BiFC assay is based on the presence of fluorescence signals when there is a protein interaction, which can facilitate the understanding of the modulation of the plant's physiology during infection of the pathogen. Thus, since knowledge of this scenario for the sugarcanesmut pathosystem is scarce, this project aims to investigate the protein interaction between transcription factors of the Squamosa family of Arabidopsis thaliana and candidates for effectors of S. scitamineum, with the purpose of generate data for future studies of the sugarcane pathosystem, as well as assist genetic improvement programs for varieties resistant to this disease in sugar cane.

Keywords: Sugarcane; Smut; Disease.

SELECTION OF EXPERIMENTAL PURPLE-FLESHED SWEET-POTATO GENOTYPES

Leal, M.H.S¹, Zeist, A.R¹, Silva Junior, A. D.¹, Rodrigues Júnior N.¹, Pieri, J. R. S^{1,} Arantes, J.H.V¹, Garcia Neto J.¹, Taroco B. R.¹

¹Universidade do Oeste Paulista, Presidente Prudente-SP, Brazil. E-mail: muriloleal8@gmail.com.

The sweet potato (Ipomoea batatas L.) is a vegetable belonging to the Convolvulaceae family. Its roots contain a high amount of carbohydrates, potassium and minerals, making it an excellent alternative against malnutrition and in favor of a healthy diet. The world population has increased in the same way as the demand for nutritious and healthy food. Considering the aforementioned information, the aim herein was to develop and select experimental purple sweet potato genotypes in terms of agronomic, physical root characteristics and resistance to Euscepes postfasciatus. Genotypes were obtained in polycross blocks. All related genotypes flourished and pollination was carried out at random by insects. For the scarification process, the seeds were dipped in Sulfuric Acid 98% for 50 min, washed in distilled water and sown in expanded 127-cell polystyrene trays containing substrate based on bio-stabilized pine bark and maintained in a greenhouse. The seedlings were cloned when reaching 5-6 true leaves. Then, the main branch of each genotype was used to conduct the field experiments. An experimental design comprising augmented blocks with interleaved controls was adopted. They were then evaluated regarding the number of commercial roots per plant and production of commercial roots, as g plant¹. The appearance of the tuberous roots was determined by means of a scale, where 1- nonstandard, with a very irregular shape, the presence of large veins and deep cracks, 2-very uneven, with the presence of large veins and cracks, 3- non-uniform, with large veins and cracks, 4- slightly non-uniform with the presence of veins, and 5- regular fusiform shape, without veins or cracks. Resistance to *E. postfasciatus* was also determined by a scale, where 5- roots free from damage, 4- roots with low damage, 3- few damaged commercial roots, 2-most damaged commercial roots and, 1- unacceptable commercial roots for human and animal consumption. The experimental genotypes obtained for the characteristics of number of commercial roots, production of commercial roots, root appearance and resistance to E. postfasciatus averaged 1.46, 0.72 kg, 2.79 and 2.92, respectively. Concerning the same parameters, 24.59, 24.59, 41.82 and 17.21% of the experimental genotypes presented a greater effect than the control. Of the 125 experimental purple pulp genotypes, a total of 28, 32, 28 and 31 were superior to the control commercial cultivar 'SCS 370 Luiza' for number of commercial roots, production of commercial roots, root appearance and resistance to E. postfasciatus, respectively. The genotypes UZBD-K-09, UZBD-K-56 and UZBD-K-78 were superior to 'SCS 370 Luiza' for all explored parameters. Among the parameters evaluated, the genotypes UZBD-K-09, UZBD-K-56 and UZBD-K-78 were superior.

Keywords: Ipomoea batatas, Euscepes postfasciatus, breeding, root appearance.

Acknowledgments: FAPESP (Process 2019/16730-4).

SEHIND DNA MODIFICATIONS UNDESCED SWEET POTATO a Neto J.1, Taroco B. R.1 Gunoeste.br			Figure 2. Purple-fleshed sweet potsto genotype	Conclusion	Among the parameters evaluated, the genotypes U28D-K-09, U28D-K-56 and U28D-K-78 were superior.	Acknowledgments	The authors thank the Foundation for Research Support of the State of São Paulo (FAPESP) for their support through a scholarship granted to the first author (Process 2019/16730-4).			
IMPB INTERNATIONAL INFORMATIONAL MEETING ON PLANT BREEDING SELECTION OF EXPERIMENTAL PURPLE-FLESHED SWEET POTATO GENOTYPES Leal, M.H.S. ¹ , Zeist, A.R. ¹ , Silva Junior, A. D. ¹ , Rodrigues Junior N. ¹ , Pieri, J. R. S ¹ , Arantes, J.H.V ¹ , Garcia Neto J. ¹ , Taroco B. R. ¹ ¹ Universidade do Oeste Paulista, Presidente Prudente-SP, Brazil, municleal@grmall.com, andrezeist@unoeste.br	An experimental design comprising augmented blocks with interleaved controls was adopted. They were then evaluated regarding	the number of commercial roots per plant and production of commercial roots, as g plant ¹ . The appearance of the tuberous roots was determined by means of a scale. Resistance to £, postfasciotus was also determined by a scale.	Results and discussion	Meetimen ILE PLR Assemblies Resigned	PCI America Control America Co			Later to Appearance and Resistance and R		
4th IMPB METING ON PLANT BREEDING SELECTION OF E Leal, M.H.S. ¹ , Zeist, A.R. ¹ , Silva Juni ¹ Universidade do Oester	Introduction	The sweet potato (<i>ipornoeu batatas</i>) is a vegetable belonging to the <i>convulvulaceoe</i> family. Its roots contain a high amount of carbohydrates, potassium and minerals.	Objective	100			Genotypes were obtained in polycross blocks. All related genotypes flourished and pollination was carried	the seeds were dipped in Suffuric Acid 93% for 50 min, weshed in distilled water and sown in expanded 127-cell polystyrene trays containing substrate based on bio- stabilized pine bark and maintained in a greenhouse. The seedlings were cloned when reaching 5-6 true	leaves. Then, the main branch of each genotype was Figure 1. Scheme illustrating the experimental genotypes of purple pulp sweet used to conduct the field experiments. potatoes with superior performance compared to the control commercial cultivar 'SCS 370 Luiza'	

SELECTION OF TOLERANT TOMATOES GENOTYPES F₂ FOR HIGH AIR TEMPERATURES

<u>Nilson Rodrigues Júnior 1</u>; André Ricardo Zeist 1; Murilo Henrique Souza Leal 1; André Dutra Silva Júnior 1; Jair Garcia Neto 1; José Henrique Verhalem Arantes 1; Julia Roberta Sanches De Pieri 1; Amanda Carvalho Perrud 1

¹Universidade do Oeste Paulista, Presidente Prudente-SP, Brazil. E-mail: nr_junior_07@hotmail.com.

Tomatoes (Solanum lycopersicum L.) are originally from the Andean region, encompassing Peru, Northern Chile and Ecuador. It is currently the second most economically important vegetable in agribusiness. It requires amount adequate light and temperature with averages close to 21 °C to obtain high productivity, and adverse climatic conditions significantly hinder plant processes such as flowering and fruiting. Climate change, especially with regard to rising temperatures in the medium to long term, threatens world agricultural production. The temperature is expected to increase between 1.4 and 5.8 °C over the next 100 years. This could cause a 30% drop in agricultural productivity by 2080. The objective of this work was to select F₂ tomato plants tolerant to high air temperatures. The segregating experimental genotypes F₂ were UZT 188, UZT 139, UZT 151, UZT 148, UZT 150 and UZT 145. Genotypes Santa Clara and Redenção (Solanum lycopersicum) and the wild acession S. habrochaites var. hirsutum PI-127826 were used as controls. An experimental design of augmented blocks with interleaved controls was adopted. Thirty seeds of each segregated population F₂ and controls were planted in expanded polystyrene trays, containing commercial substrate. The trays were placed in a humid chamber type floating. The chamber was placed exposed to sunlight during summer in the west region of Sao Paulo state, with daytime temperatures reaching above 50 °C and nighttime temperatures close to 35 °C. After three weeks of seedlings exposure to high temperatures, the evaluation was carried out based on seed germination percentage, number of leaves, seedlings height and leaf damage by using the scale of grades; 0 (no injuries); 1 (1-5% of lesions on the leaf surface); 2 (6-25%); 3 (26-50%); 4 (> 50%). The data were subjected to analysis of variance and means comparison using Dunnett's test (p > 0.05). The accession PI 127826 was the most tolerant to heat stress (grade 1), followed by genotypes UZT 150-1, UZT 150-2, UZT 150-3, UZT150-4, UZT 150-5, UZT 145-1, UZT 145-2 and UZT 145-3 (grade 2), while the control cultivars Redenção and Santa Clara did not tolerate high temperatures. The F₂ segregating genotypes UZT 150-1, UZT 150-2, UZT 150-3, UZT 150-4, UZT 150-5, UZT 145-1, UZT 145-2 and UZT 145-3 are the most relevant to continue the breeding process aiming at cultivation in adverse conditions provided by global warming.

Keywords: Solanum lycopersicum; breeding; thermal stress.

Acknowledgments: FAPESP (Processo 2019/17804-1).

4th IMPB MEETING ON PLANT BREEDING

UNCOVERING THE POWER AND THE SECRETS BEHIND DNA MODIFICATIONS

SELECTION OF TOLERANT TOMATOES GENOTYPES F_3 AT HIGH AIR

TEMPERATURES Nison Rodrgues Junior¹: Ande Ricardo Zelst 1; Murto Henrique Souza Leal 1; Ande Dura Silva Junior 1; Juni Garcia Neto 1; Jusé Hemique Verhalem Arantes 1; Julia Roberta Sanches De Pient Amanda Carvaino Perrud 1. Universidade do Oeste Paulista, Presidente Prudente-SP, Brazil. nr_junior_07@hotmail.com

Introduction

agribusiness. It is a plant that needs good temperature and light conditions to obtain good with regard to rising temperatures in the medium to currently the second largest vegetable of importance in climatic conditions significantly hinder plant productivity, where adverse processes such as flowering and fruiting. Climate change, especially long term, threatens world agricultural production. The temperature is expected to increase between The tomato (Solanum lycopersicum) it is 1.4 and 5.8 °C over the next 100 years.

Objective

tomato objective was to select F₂ genotypes tolerant of high air temperatures 2

Materials and methods

UZT 145. How controls Santa Clara and Redenção The segregating experimental genotypes F₂ UZT 188; UZT 139; UZT 151; UZT 148; UZT 150; s habrochaites var. hirsutum accession PI-127826 (Solanum lycopersicum) and the wild were used.

percentage, number of leaves, height of the seedlings and using the scale of grades: 0 (no An experimental design of augmented blocks with interleaved controls was adopted. Thirty seeds chamber was placed exposed to the sun in the summer of west of São Paulo, reaching daytime nighttime temperatures close to 35°C. After three weeks of the seedlings exposed to high temperatures, the evaluation was carried out based on the germination injuries); 1 (1 to 5%); 2 (> 5-25%); 3 (> 25-50%); 4 (> of each population segregated F₂. The trays were placed in a humid chamber type floating. The and 50% of lesions on the leaf surface). above 50°C temperatures

Santa Clara

Figure 1. High temperature chamber exposed to the sun (A) and expanded polystyrene trays containing seeds and the sprouts of the wild S. habrochaites var. hirsutum accession PI-127826 (B).

Results and discussion

Table 1. Evaluation of tomato genotypes days under heat stress	aluation eat stres	of to 55	omato	genotypes	after	15
Genotypes	Live plants	lants	5	Injury	Height	
UZT 150	5			2	4	
UZT 145	ę			2	3.4	

The acess PI-127826 was the most tolerant to thermal stress (note 1), followed by the genotypes 150-5, UZT 145-1, UZT 145-2 and UZT 145-3 (note However, the controls Redenção and Santa Clara UZT 150-1, UZT 150-2, UZT 150-3, UZT150-4, UZT 3.4 00 0000 PI-127826 Redenção

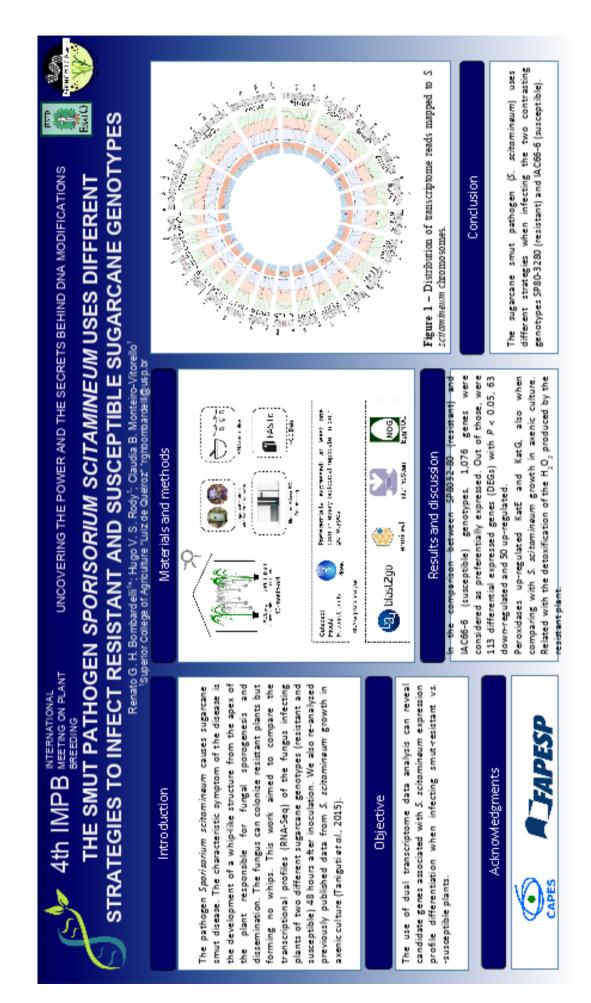
Conclusion

cultivars did not support the high temperatures.

relevant to continue the breeding process aiming at The segregating genotypes F₂ UZT 150-1, UZT 150-2, UZT 150-3, UZT150-4, UZT 150-5, UZT 145-1, UZT 145-2 and UZT 145-3 are the most cultivation in adverse conditions provided by global warming.

Acknowledgment

FAPESP (Processo 2019/17804-1)


THE SMUT PATHOGEN Sporisorium Scitamineum USES DIFFERENT STRATEGIES TO INFECT RESISTANT AND SUSCEPTIBLE SUGARCANE GENOTYPES

Renato G. H. Bombardelli¹; Hugo V. S. Rody¹; Claudia B. Monteiro-Vitorello¹

¹Superior College of Agriculture "Luiz de Queiroz". E-mail: rghbombardelli@usp.br.

The sugarcane smut pathogen Sporisorium scitamineum is a biotrophic fungus, hostdependent for sexual reproduction. The disease spreads across all the sugarcane producing countries, except in Fiji, the group of volcanic islands in the South Pacific in Oceania, causing economic losses and reducing the crop yield. During the later years, the Genomics Group at ESALQ/USP has been extensively studying the sugarcane-smut interaction, considering its various aspects, including the pathogen attack mechanisms and plant defense responses. The pathogens secrete molecules to modulate plant physiology, counterattack, and protect themselves against the plant host's defense barriers. In this work, we used the RNA-Seq technique to determine the expression profile and compare the colonization of two sugarcane genotypes with contrasting resistance levels (smut-resistant, SP80-3280, and susceptible, IAC66-6) at the early stage of infection, 48 hours after inoculation. Additionally, we re-analyzed previous data of the axenic growth of S. scitamineum. We found compelling results considering genes' expression profile of the fungus infecting resistant and susceptible sugarcane genotypes. The pathogen expressed more peroxidases, including the catalases KatE and KatG, when infecting the resistant genotype, consistent with the early defense response involving reactive oxygen species (ROS) production by the SP80-3280 genotype. Furthermore, we predicted the putative fungal secretome, including candidate effectors, secreted proteases, and hydrolases, revealing their expression patterns among the three treatments. Herein we provide insights into the differential infection of resistant and susceptible sugarcane genotypes infected with the pathogen, suggesting potential candidates for selecting resistant sugarcane genotypes that trigger the host immune system.

Keywords: RNA-Seq; Transcriptional profile; Saccharum spp.

TOLERANCE OF PROCESSING TOMATOES BC₃F₂GENOTYPES TO WATER DEFICIT

<u>Arantes, J.H.V</u>; Zeist, A.R¹; Resende, J.T.V²; Silva Júnior, A.D¹; Lima Filho, R.B³; Leal, M.HS¹; Rodrigues Júnior, N¹; Perrud, A.C.¹

¹Universidade do Oeste Paulista, Presidente Prudente-SP, Brazil. ²Universidade Estadual de Londrina, Londrina-PR, Brazil. ³Universidade Estadual de Maringá, Maringá-PR, Brazil. E-mail: jhverhalem@gmail.com.

Tomatoes are considered to be widespread, positioning themselves in the agro-industrial chain as one of the most important in the agribusiness complex, as it is one of the most consumed vegetables in the world, both fresh and processed. The water consumption by the tomato crop is quite high, standing at around 880 mm (or 8800 m³/ha) throughout the crop cycle. Aiming at the lack of water in the world, genotypes with greater efficiency in the use of water and/or with greater tolerance to drought may allow a substantial increase in the area planted with the crop, with less impact on the use of natural resources. The objective was to select genotypes of second-generation industrial tomato from the third backcross (BC_3F_2) with tolerance for water deficit. The genotypes of the second generation of the third backcross (BC₃F₂) were obtained by crossing the commercial cultivar Redenção with Solanum pennellii accession LA 716 (donor parent). The genotypes BC₃F₂RVTApl#138, RVTA pl#54, RVTA pl#248, RVTA pl#290, RVTA pl#138, RVTA pl#135, RVTA pl#301, RVTA pl#292, RVTA pl#133, RVTA pl#325, RVTA pl#59 and RVTA pl#291 were explored. These genotypes were initially selected for resistance to pest arthropods. As controls, the donor parent LA 716 (tolerant to water deficit) and the commercial cultivar Redenção (susceptible to water deficit) were used. The seedlings were transplanted into 10 dm³ pots after presenting 4-5 defined and fully expanded leaves. The pots contained commercial substrate based on bio-stabilized pine bark. The experimental design was in randomized blocks, containing three replications with eight plants each. The plants were irrigated without distinction until 30 days after transplantation, using micro-drippers to standardize the development of the plants. Since then, two levels of water supply have been adopted, 0% (water stress) and 100% (control) of water needs per 19 days. In the condition of 100% supply, a maximum water tension in the soil of 25 kPa was adopted. Plants were evaluated by means of a rating scale based on leaf wilt. The genotypes RVTA pl#290, RVTA pl#291, RVTApl#301, RVTApl#325, RVTApl#54, RVTApl#135, RVTApl#138 e Redencão were the most affected by the water deficit. The genotypes RVTApl#291, RVTApl#59, RVTApl#248, RVTApl#133 and accession LA-716 stood out in relation to the other genotypes in conditions of water deficit. RVTA pl#292, RVTA pl#59, RVTA pl#248 and RVTA pl#133 BC $_3F_2$ genotypes are promising for the development of cultivars for industrial processing tolerant to water deficit.

Keywords: Solanum pennellii; breeding; drought tolerance; water stress.

4th IMPB MEETING ON PLANT

UNCOVERING THE POWER AND THE SECRETS BEHIND DNA MODIFICATIONS

TOLERANCE OF PROCESSING TOMATOES BC3F2 GENOTYPES TO WATER

DEFICIT

Arantes. J.H.V.; Zeist, A.R.; Resende, J.T.V?, Silva Júnior, A.D.'; Lima Filho, R.B.; Leal, M.HS'; Rodrigues Júnior, N'; Perrud, A.C' ¹ Universidade do Oeste Paulista, Presidente Prudente-SP, Brazil. jhverhalem@gmail.com

• Universidade Estadual de Londrina, Londrina-PR, Brazil, jivesende@uel.br * Universidade Estadual de Londrina, Londrina-PR, Brazil, jivesende@uel.br * Universidade Estadual de Maringå, Maringå PR, Brazil, delimafiho.renato@yahoo.com

Introduction

Tomatoes are considered to be widespread, positioning themselves in the agro-industrial chain as one of the most important in the agribusiness complex, as it is one of the most consumed vegetables in the world, both fresh and processed. The water consumption by the tomato crop is quite high, standing at around 880 mm (or 8800 m³/ha) throughout the crop cycle. Aiming at the lack of water in the world, genotypes with greater tolerance to drought may allow a substantial increase in the area planted with the crop, with less impact on the use of natural resources.

Objective

The objective was to select genotypes of secondgeneration industrial tomato from the third backcross (BC_3F_3) with tolerance for water deficit.

Materials and methods

The BC₉F₂ genotypes RVTA pl # 138, RVTA pl # 54, RVTA pl # 248, RVTA pl # 248, RVTA pl # 290, RVTA pl # 138, RVTA pl # 301, RVTA pl # 292, RVTA pl # 133, RVTA pl # 325, RVTA pl # 59 and RVTA pl # 291 were explored.

As controls, the donor parent LA 716 (tolerant to water deficit) and the commercial cuttivar Redenção (susceptible to water deficit) were used. The experimental design was in randomized blocks, containing three replications with eight plants each. The plants were imgated without distinction until 30 days after transplantation, using micro-drippers to standardize the development of the plants. Since then, two levels of water supply have been adopted, 0% (water stress) and 100% (control) of water needs for 19 days. In the condition of 100% supply, a maximum water tension in the soil of 25 kPa was adopted. The plants were evaluated using a classification scale based on leaf with.

Figure 1. Conduction of tomatoes in pots

Results

ble 1. Comparison of tomato genotypes to wate

D'il (water stress)	4 00 B	4.00.8	4.33 B	4.33.8	4 55 A	4.65 A	4.33 B	4.65 A	5.00 A	4.33 B	3.66 B	3.33.8	5.00 A
100% (control)	5 00 A	5.00 A	5 00 A	S DO A	5.00 A	5.00 A	5.00 A	5.00 A	5.00 A	5.00 A	5.00 A	5.00 A	5.00 A
Genotypes	RVTA R9/290	RVTA apropt	RVTA #pi301	RVTA api325	RVTA #pl292	RVTA spi59	RVTA #954	RVTA #pl248	RVTA #pi133	RVTA #p1135	RVTA #pi138	Redenção	LA-716

RVTA pl # 292, RVTA pl # 59, RVTA pl # 248 and RVTA pl # 133, BC₃F₂ genotypes are promising for the development of cultivars for industrial processing tolerant to water deficit.

Conclusion

VARIANCE COMPONENTS AND ADAPTABILITY AND STABILITY OF COTTON GENOTYPES USING GGE BIPLOT ANALYSIS

<u>Emanuel Ferrari do Nascimento</u>¹; Marco Antônio Peixoto¹; Luiz Paulo Carvalho²; Paulo Eduardo Teodoro³; Leonardo Lopes Bhering¹

¹Universidade Federal de Viçosa (UFV), Departamento de Biologia Geral, Viçosa-MG, Brazil. ² Embrapa Algodão, Campina Grande, Paraíba, Brazil. ³ Universidade Federal de Mato Grosso do Sul (UFMT), Departamento de Estatística e Genética, Chapadão do Sul-MS, Brazil. E-mail: emanuel.ferrari.nascimento@hotmail.com.

The upland cotton (Gossypium hirsutum L.), originated at Central America, is considered one of greatest socioeconomic importance crops for Brazilian agricultural scenario. This study aimed to estimates the variance components and to apply the genotype + genotype-by-environment (GGE) biplot analyses in a multi-environmental trial (MET) data from cotton genotypes. Ten trials were conducted in the Midwest region of Brazil. The trials consisted of randomized complete block design with 12 cotton cultivars with four replicates each. The genotypes were evaluated for fiber yield (FY), fiber length (FL), fiber strength (FS), and micronaire (MIC). The estimation of variance components was made through restricted maximum likelihood (REML) and the prediction of genotypic values was made through best linear unbiased prediction (BLUP). The significance of the random effects of the model (genotypic and G×E interaction effects) were tested using the likelihood ratio test (LRT). The GGE biplot analysis was performed to find the best genotypes regarding adaptability and stability. The statistical analyses were performed using the following software: ASREML-R and Selegen-REML/BLUP; the GGE-biplot analysis were made at GGEBiplotGUI package in R. Significance of the genetic and G×E interaction effects (p < p0.05) were detected by the LRT for all traits. The variance components were significantly different from zero as well as from the coefficients of determination. The LRT values demonstrate the existence of genetic variability for all traits among the 12 cotton genotypes under study, which implies the possibility of selecting superior genotypes from the pool. The values of heritability were classified as low (hg2 < 0.29) in FY (for all ten environments) and for MIC traits, and moderate (0.30 < hg2 < 0.50) in FL and FS. The FY trait had the lowest estimated value of heritability, showing to be strongly affected by GxE interaction. Conversely, while FY and MIC had high ($0.70 < r_{ss} < 0.89$) values for selective accuracy, FS and FL values were higher (0.90 $< r_{\odot}$). The values higher than 0.70 revealed the strong genetic control of the traits under study. The GGE-biplot indicated the formation of two mega-environment (ME) for FY trait and one ME for the traits FL, FS and MIC. For FY, the genotype G3 and G7 were the most adapted for each ME, while G5, G1 and G3 were the most adapted for ME formed for the traits FL, FS and MIC, respectively. Regarding stability, the genotypes G3, G12, G1, and G5 were the most stable ones, for the traits FY, MIC, FS, and FL, respectively. The GGE biplot indicated that the genotypes G3 and G5 were highly adaptable and stable for the main traits in cotton (FY and FL). Therefore, the GGE Biplot methodology proves to be an important tool for the identification of genotypes with high adaptability and stability in cotton breeding.

Keywords: Fiber quality; genotype-by-environment interaction; *Gossypium hirsutum*; principal component analysis.

Acknowledgements: CAPES, CNPq and FAPEMIG.

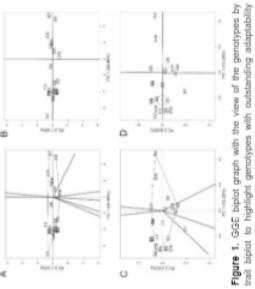
UNCOVERING THE POWER AND THE SECRETS BEHIND DNA MODIFICATIONS

4th IMPB MERINATIONAL UNCOVERING THE POWER AND THE SECRETS BEHIND DNA MODIFICATION MEREDING ARIANCE COMPONENTS AND ADAPTABILITY AND STABILITY OF COTTON GENOTYPES USING GGE BIPLOT ANALYSIS

Emanuel Ferrari do Nascimento**; Marco Antônio Peixoto*; Luiz Paulo Carvalho?: Paulo Eduardo Teodoro*; Leonardo Lopes Bhering¹. 'Universidade Federal de Viçosa (UPV), Departamento de Biología Geral, Viçosa-MG, Brazil. *emanuel ferrari.nascimento@hotmail.com

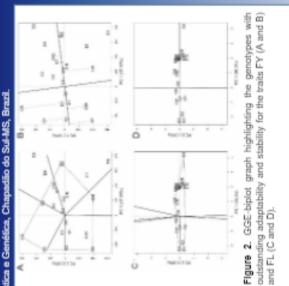
dão do Sul-MS, Brazil élica. Char tística e Gen to de Esta ral de Mato Grosso do Sul (UFMT), Depar sidade Fede Tembrapa Algodão, Campina Grande, Paralba, Brazil. ³Univers

Introduction and Objective


socioeconomic importance crops for Brazilian agricultural The upland cotton (Gossypium hirsutum L.), originated at greatest This study aimed to estimates the variance multi-environmental trial (MET) data from cotton genotypes. biplot analyses in genotype đ one ţ considered apply (90E) 음 genotype-by-environment <u>.</u>0 and America, components scenario. Central

Materials and methods

Ten trials were valuated for fiber yield (FY), fiber length (FL), fiber strength (FS), and micronaire (MIC). The estimation of variance components was made through REML and the prediction of genotypic values BLUP. The GGE biplot analysis was performed to find the best genotypes regarding adaptability and stability. The statistical analyses were performed using ASREML-R, Selegen-REML/BLUP and GGEBiplotGUI package in R.


Results and discussion

the lowest estimated value of heritability, showing to be and MIC had high (0.70 < r_ <0.89) values for selective accuracy, FS and FL values were higher (0.90 <r.). The values higher than 0.70 revealed the strong genetic "control in FY (for all ten environments) and for MIC traits, and strongly affected by GxE interaction. Conversely, while FY moderate (0.30< h²₂ < 0.50) in FL and FS. The FY trait had The values of heritability were classified as low of the traits under study.

ţ2 Ъ and stability for FS (A and B) and MIC (C and D) traits. indicated the formation GGE-biplot The

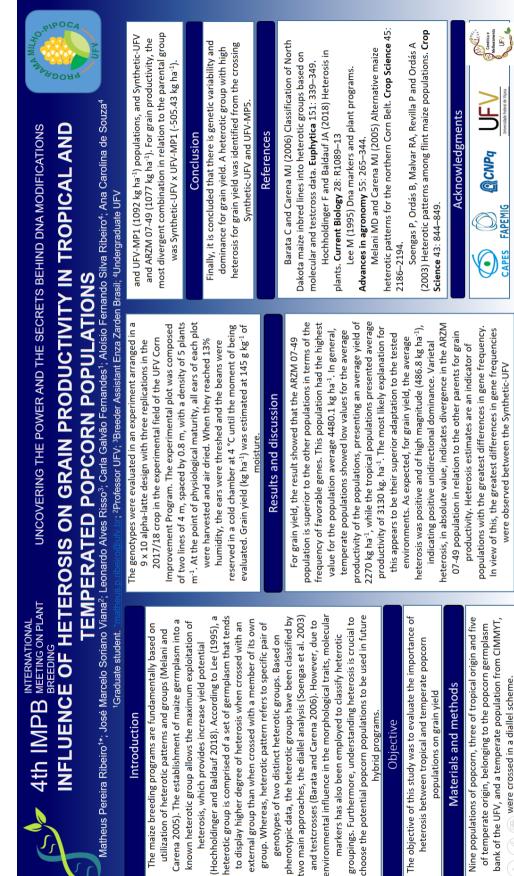
traits FL, FS and MIC. For FV, the genotype G3 and G7 were the most adapted for each ME, while G5, G1 and G3 mega-environment (ME) for FY trait and one ME for the and MIC, respectively. Regarding stability, the genotypes G12, G1, and G5 were the most stable ones, for the were the most adapted for ME formed for the traits FL, FS G3, G12, G1, and G5 were the most r traits FY, MIC, FS, and FL, respectively.

Conclusion

Therefore, the GGE Biplot methodology proves to be an important tool for the identification of genotypes with high adaptability and stability in cotton breeding.

Acknowledgments

CAPES, CNPq and FAPEMIG.


INFLUÊNCIA DA HETEROSE NA PRODUTIVIDADE DE GRÃOS EM POPULAÇÕES TROPICAIS E TEMPERADAS DE MILHO-PIPOCA

<u>Matheus Pereira Ribeiro¹</u>; José Marcelo Soriano Viana²; Leonardo Alves Risso³; Carla Galvão Fernandes¹; Aloísio Fernando Silva Ribeiro⁴; Ana Carolina de Souza⁴

¹Estudantes de Pós-Graduação em Genética e Melhoramento-UFV ²Professor do DBG/UFV. ³Breeder Assistant Enza Zarden Brasil. ⁴Estudantes de Agronomia-UFV Melhoramento Vegetal. E-mail: matheus.p.ribeiro@ufv.br.

Compreender a heterose é crucial para escolher populações potenciais de milho-pipoca (Zea mays everta) para serem utilizadas em programas de melhoramento. Com isso, o objetivo deste estudo foi avaliar a importância da heterose entre populações tropicais e temperadas de milho-pipoca sobre a produtividade de grãos. Nove populações de milhopipoca sendo 3 tropicais e 6 temperadas, foram cruzadas em esquema dialélico. Os genótipos foram avaliados em um experimento disposto no delineamento alfa-lattes 9 x 10 com três repetições na safra 2017/18. A parcela experimental foi composta de duas linhas de 4 m, espacadas por 0.8 m, com densidade de 5 plantas m⁻¹. No ponto de maturidade fisiológica todas as espigas de cada parcela foram colhidas e secas ao ar. O rendimento de grãos (kg ha⁻¹) foi estimado em 145 g kg⁻¹ de umidade. Para a produtividade de grãos, o resultado mostrou que a população ARZM 07-49 é superior às demais populações em termos de frequência de genes favoráveis. Essa população apresentou o maior valor para a média populacional 4480,1 kg ha⁻¹. Em geral, as populações temperadas apresentaram valores baixos para a produtividade média das populações, apresentando um rendimento médio de 2270 kg ha⁻¹, enquanto as populações tropicais apresentaram produtividade média de 3130 kg. ha⁻¹. A explicação mais provável para isso parece ser a adaptação superior deles aos ambientes testados. Como esperado, para a produtividade de grãos, a heterose média foi positiva e de alta magnitude (486,8 kg ha-1), indicando dominância unidirecional positiva. A heterose varietal, em valor absoluto, indica divergência da população ARZM 07-49 em relação aos demais genitores para produtividade de grãos. As estimativas de heterose são um indicador das populações com maiores diferenças de frequência gênica. Visto isso, as maiores diferenças de frequências gênicas foram observadas entre as populações Sintético-UFV e UFV-MP1 (1092 kg ha-1), e Sintético-UFV e ARZM 07-49 (1077 kg ha⁻¹). Para a produtividade de grãos, a combinação mais divergente entre si em relação ao grupo parental foi Sintético-UFV x UFV-MP1 (-505,43 kg ha⁻¹). Por fim, conclui-se que há variabilidade genética e dominância para produtividade de grãos. Um grupo heterótico com alta heterose para produtividade de grãos foi identificado a partir do cruzamento Sintético-UFV e UFV-MP5.

Palavras-chave: Grupo heterótico; melhoramento; população; dialelo; rendimento de grãos.

ORGANIZATION

SUPPORT

