

Programa de Pós-Graduação em Bioquímica e Biologia Molecular

BBM5002 - Bioquímica e Biologia Molecular

Docente: Prof. Dr. Felipe S. Chambergo – <u>fscha@usp.br</u> https://sites.usp.br/lbbp/

Data: Segunda-feira 14 – 16 h / Sexta-feira 8 - 12 h.

USP-2021-1S

Controle da Expressão Gênica em Eucariotes

- 1
- Transcrição: Expressão/Ativação do gene
- 2
- **Processamento Pós-transcrição:** Remoção de introns/poliadenilação, Caping, Transporte
- **Degradação mRNA:** Estabilidade e tempo de vida
- 4
 - Tradução: Leitura correta
- 5
- **Processamento Pós-tradução:** Formação de enlaces, adição de outras moléculas.
- 6
- **Degradação de proteínas:** Proteínas inativa ou desenoveladas
- **Endereçamento e Transporte: Destino** da proteína

Organização e estrutura dos genes em procariotos

Disposição dos genes no genoma eucariótico

(Takai et al., 2004)

Estrutura do gene eucariótico

Organização e estrutura de um gene eucariótico

Transcrição: Expressão/Ativação do gene

Expressão gênica constitutiva: Vias metabólicas centrais
Expressão gênica regulada: Indução/Repressão, em resposta ao estado metabólico ou sinais.

Interação Proteínas : DNA

Mecanismos de regulação da iniciação da transcrição

Regulação negativa (Repressor ligado inibe a transcrição)

Regulação negativa (Repressor ligado inibe a transcrição)

The sense (nontemplate) strand sequences of selected *E. coli* promoters.

Operon	-35 region	-10 region	Initiation
		(Pribnow box)	site (+1)
lac	ACCCCAGGCTTTACACTTTATGCTTCCGGCT	CG <mark>TATGTT</mark> GTGT	TGGAATTGTGAGCGG
lacI	CCATCGAATGGCGCAAAACCTTTCGCGGTATC	GG <mark>CATGAT</mark> AGCO	GCCCGGAAGAGAGTC
galP2	ATTTATTCCATGTCACACTTTTCGCATCTTTC	GT <mark>TATGCT</mark> ATG(GTTATTTCATACCAT
araBAD	GGATCCTACCTGACGCTTTTTTATCGCAACTC	ГС <mark>ТАСТGТ</mark> ТТСТ	TCCATACCCGTTTTT
araC	GCCGTGATTATAGACACTTTTGTTACGCGTT	FT <mark>TGTCAT</mark> GGC1	TTTGGTCCCGCTTTG
trp	AAATGAGCTG <mark>TTGACA</mark> ATTAATCATCGAACTA	AG <mark>TTAACT</mark> AGTA	ACGCAAGTTCACGTA
bioA	TTCCAAAACGTGTTTTTTTGTTGTTAATTCGG	ГG <mark>TAGACT</mark> TGTA	AACCTAAATCTTTT
bioB	CATAATCGACTTGTAAACCAAATTGAAAAGA	ГТ <mark>ТАGGTТ</mark> ТАСА	AGTCTACACCGAAT
$t \mathbf{RNA}^{Tyr}$	CAACGTAACACTTTACAGCGGCGCGCGTCATTTC	GA <mark>TATGAT</mark> GCG(CCCCGCTTCCCGATA
rrnD1	CAAAAAAATACTTGTGCAAAAAATTGGGATCO	CC <mark>TATAAT</mark> GCG(CCTCCGTTGAGACGA
rrnE1	CAATTTTTCTATTGCGGCCTGCGGAGAACTCC	CC <mark>TATAAT</mark> GCG(CCTCCATCGACACGG
rrnA1	AAAATAAATGCTTGACTCTGTAGCGGGAAGGG	CG <mark>TATTAT</mark> GCA(CACCCCGCGCCGCTG

Promoter structure in prokaryotes

consensus sequences

The base sequence of the *lac* operator.

The nucleotide sequence of the *E. coli lac* promoter– operator region.

The lactose operon in E. coli

- promoter binds CAP and RNA polymerase
- operator binds the lac repressor

• the function of the lactose (lac) operon is to produce the enzymes required to metabolize lactose for energy when it is required by the cell

Regulation of the lactose operon - negative control

Alleviation of negative control - action of the inducer of the lac operon

- when lactose becomes available, it is taken up by the cell
- allolactose (an intermediate in the hydrolysis of lactose) is produced
- one molecule of allolactose binds to each of the repressor subunits
- binding of allolactose results in a conformational change in the repressor
- the conformational change results in decreased affinity of the repressor for the operator and dissociation of the repressor from the DNA

NO TRANSCRIPTION

• IPTG (isopropyl thiogalactoside) is also used as a (non-physiological) inducer

- repressor (with bound allolactose) dissociates from the operator
- negative control (repression) is alleviated, however...

• RNA polymerase cannot form a stable complex with the promoter

Regulation of the lactose operon - positive control

- in the presence of <u>both</u> lactose and glucose it is not necessary for the cell to metabolize lactose for energy
- in the <u>absence</u> of glucose and in the <u>presence</u> of lactose it becomes advantageous to make use of the available lactose for energy
- in the absence of glucose cells synthesize cyclic AMP(cAMP)
- cAMP¹ serves as a positive regulator of catabolite operons (lacoperon)
- cAMP binds the dimeric cAMP binding protein(CAP)²
- binding of cAMP increases the affinity of CAP for the promoter
- binding of CAP to the promoter facilitates the binding of RNApolymerase

 1 cAMP = 3', 5' cyclic adenosine monophosphate

NO TRANSCRIPTION

² also termed catabolite activator protein

Activation of lac operon transcription

inactive repressor

• the function of the lactose (lac) operon is to produce the enzymes required to metabolize lactose for energy when it is <u>required</u> by the cell

A genetic map of the *E. coli araC* and *araBAD* operons.

In the absence of arabinose, the araC protein inhibits the expression of the *ara* operon.

(a) Operon inhibited in the absence of arabinose

With arabinose, the araC protein activates transcription.

(b) Operon activated in the presence of arabinose

The base sequence of the *trp* operator. The nearly palindromic sequence is boxed and its –10 region is overscored.

CGAACTAGTTAACTAGTAGGCAAGGCTTGATCAATTGATCATGCGTTC-20-10+1

A genetic map of the *E*. *coli trp* operon indicating the enzymes it specifies and the reactions they catalyze.

Prokaryotic RNA Polymerase: Holoenzyme Enzyme

	Subunit	Size	#/Molec	<u>Function</u>
	ţα	36.5 kD	2	chain initiation and interaction with regulatory proteins
\bigcirc	β	151 kD	1	chain initiation and elongation
	-β'	155 kD	1	DNA binding
	σ	70 kD	1	promoter recognition

E. coli RNA polymerase

2α , 1β , 1β ', 1ω and σ factor

The function of sigma factor

- the sigma subunit of RNA polymerase is an "initiation factor"
- there are several different sigma factors in E. coli that are specific for different sets of genes
- sigma factor functions to ensure that RNA polymerase binds stably to DNA only at promoters
- sigma destablizes nonspecific binding to non-promoter DNA, sigma stabilizes specific binding to promoter DNA, this accelerates the search for promoter DNA

The sigma cycle

- closed promoter complex (moderately stable)
- the sigma subunit binds to the -10 region

- RNA polymerase holoenzyme (+ σ factor)

- open promoter complex (highly stable)
- the holoenzyme has very high affinity for
- promoter regions because of sigma factor

- once initiation takes place, RNA polymerase does not need very high affinity for the promoter
- sigma factor dissociates from the core polymerase after a few elongation reactions

• elongation takes place with the core RNA polymerase

• sigma can re-bind other core enzymes

Sítio de ligação ao Ribossomo

Transcription initiation in prokaryotes:

sigma factor binds to the -35 and -10 regions and then the RNA polymerase subunits bind and begin transcription

(b) Initiation (a) RNA polymerase binding to promoter σ70 β β α α DNA α β' σ70 ω (1) -10-35

Mechanism of RNA synthesis

- RNA synthesis usually initiated with ATP or GTP (the first nucleotide)
- RNA chains are synthesized in a 5' to 3' direction
- Termination of some transcripts makes use of the <u>Rho protein</u>, which is a termination factor that catalyzes the dissociation of the RNA and polymerase

RNA chain elongation by RNA polymerase.

A hypothetical strong (efficient) *E. coli* terminator.

Classes of eukaryotic cellular RNAs

- ribosomal RNA (rRNA)
 - 18S (small subunit)
 - 28S (large subunit)
 - 5.8S (large subunit)
 - 5S (large subunit)
- transfer RNA (tRNA)
- messenger RNA (mRNA)
- heterogeneous nuclear RNA (hnRNA) (precursors of mRNA)
- small nuclear RNA (snRNA)

<u>U1, U2, U3, U4, U5, U6, U7, U8, U9, U10...</u>

• small cytoplasmic RNA (scRNA) 7SL RNA

What are the enzymes responsible for the synthesis of these RNAs?

DNA dependent RNA polymerase

- Cells contain 3 DNA dependent RNA polymerases:
- RNA pol I: transcribes pre-rRNA; no known viral templates
- **RNA pol II:** transcribes pre-mRNA & snRNA: polymerase for most viral DNAs.
- **RNA pol III:** transcribes pre-tRNAs, 55 rRNA, U6 snRNA; polymerase for some viral DNAs.

- The transcriptional machinery must:
 - Be directed to *initiate* transcription at the correct location on a DNA template (the *transcriptional start site*).
 - elongate through the entire gene
 - Be directed to *terminate* transcription at the correct location.

All of these functions require the assistance of

- Cis-acting sequences along the DNA
- Trans-acting factors (accessory proteins)

The human RNA polymerases

Polymerase	Location	Product
RNA polymerase I	nucleolus	18S, 28S, 5.8S rRNA
RNA polymerase II	nucleoplasm	hnRNA/mRNA, U1, U2, U4, U5 snRNA
RNA polymerase III	nucleoplasm	tRNA, 5S RNA, U6 snRNA, 7SL RNA
mitochondrial RNA polymerase	mitochondrion	all mitochondrial RNA

Sensitivity of the nuclear RNA polymerases to α -amanitin¹

RNA pol I	resistant
RNA pol II	high sensitivity (binds with $K = 10^{-8} M$)
RNA pol III	low sensitivity (binds with $K = 10^{-6} M$)

¹ cyclic octapeptide from the poisonous mushroom *Amanita phalloides*

Transcription and promoter elements for RNA polymerase II

Promoter (DNA sequence upstream of a gene)

- determines start site (+1) for transcription initiation
- located immediately upstream of the start site
- allows basal (low level) transcription

Transcription element (DNA sequence that regulates the gene)

- determines frequency or efficiency of transcription
- located upstream, downstream, or within genes
- can be very close to or thousands of base pairs from a gene
- includes

enhancers (increase transcription rate)

silencers (decrease transcription rate)

- response elements (target sequences for signaling molecules)
- genes can have numerous transcription elements

Transcription by RNA Pol. II.

- At least 40 proteins required: Pol. II itself + accessory proteins.
- Accurate transcription initiated at the promoter.
- Promoter + additional DNA sequence that controls transcription = Transcriptional control region (TCR).
 - The adenovirus type 2 major late promoter was the first TCR ever recapitulated *in vitro*.
- Initiation is a multistep process:
 - Promoter *recognition* by RNA Pol. II
 - Formation of open initiation complex (unwinding)
 - Promoter *clearance*
 - 3' movement of complex away from promoter

Regulation of Pol. II transcription

- Transcription must be regulated: genes must be turned on and off in temporal patterns
- Viral gene expression: early and late genes
- Transcriptional regulation is controlled by:
 - Cis-acting sequences in DNA both local and distal
 - Trans-acting factors both protein and RNA
- Trans-acting factors specifically bind to cisacting sequences to either
 - activators stimulate transcription
 - repressors prevent transcription

Transcription and promoter elements for RNA polymerase II

Sequence elements within a typical eukaryotic gene¹

¹ based on the thymidine kinase gene

TATA box (<u>TATA</u>AAA)

- located approximately 25-30 bp upstream of the +1 start site
- determines the exact start site (not in all promoters)
- binds the TATA binding protein (TBP) which is a subunit of TFIID

GC box (CC<u>GC</u>CC)

- binds Sp1 (Specificity factor 1)
- CAAT box (GGC<u>CAAT</u>CT)
 - binds CTF (CAAT box transcription factor)

Octamer (ATTTGCAT)

• binds OTF (Octamer transcription factor)

Proteins regulating eukaryotic mRNA synthesis

General transcription factors

- TFIID (a multisubunit protein) binds to the TATA box to begin the assembly of the transcription apparatus
 - the TATA binding protein (TBP) directly binds the TATA box
 - TBP associated factors (TAFs) bind to TBP
- TFIIA, TFIIB, TFIIE, TFIIF, <u>TFIIH¹</u>, TFIIJ assemble with TFIID

RNA polymerase II binds the promoter region via the TFII's

Transcription factors binding to other **promoter elements** and **transcription elements** interact with proteins at the promoter and further stabilize (or inhibit) formation of a functional preinitiation complex

¹TFIIH is also involved in phosphorylation of RNA polymerase II.

TRANSCRIÇÃO Formação do complexo funcional de preiniciação

Inicio de Transcrição

Binding of the general transcription factors

• TFIID (a multisubunit protein) binds to the TATA box

to begin the assembly of the transcription apparatus

- the TATA binding protein (TBP) directly binds the TATA box
- TBP associated factors (TAFs) bind to TBP
- TFIIA, TFIIB, TFIIE, TFIIF, TFIIH, TFIIJ assemble with TFIID

Binding of RNA polymerase II

- RNA polymerase II (a multisubunit protein) binds to the promoter region by interacting with the TFII's
- TFs recruit histone acetylase to the promoter

• this process is called "transactivation"

Formation of a stable preinitiation complex

- the stability and frequency with which complexes are formed determines the rate of initation of transcription
- the rate of initiation of transcription is of major importance in determining the abundance of an mRNA species

Initiation of transcription and promoter clearance

• RNA pol II is **phosphorylated** by TFIIH on the carboxy terminal domain (CTD), releasing it from the preinitiation complex and allowing it to initiate RNA synthesis and move down the gene

RNA polymerase and associated proteins to start transcription.

Transcription factors (partial list)

Factor	Full name or function
CREB	Cyclic AMP response element binding protein
CTF	CAAT box transcription factor (=NF1) (binds $GGCCAATCT$)
NF1	Nuclear factor-1 (=CTF)
AP1	Activator protein-1 (dimer of the Fos-Jun proteins)
Sp1	Specificity factor-1 (binds CCGCCC)
OTF	Octamer transcription factor (binds ATTTGCAT)
NF-κB	Nuclear factor kB
HSTF	Heat shock transcription factor
MTF	Metal transcription factor
USF	Upstream factor
ATF	Activating transcription factor
HNF4	Hepatocyte nuclear factor-4 (nuclear receptor superfamily)
GR	Glucocorticoid receptor (nuclear receptor superfamily)
AR	Androgen receptor (nuclear receptor superfamily)
ER	Estrogen receptor (nuclear receptor superfamily)
TR	Thyroid hormone receptor (nuclear receptor superfamily)
C/EBP	CAAT/enhancer binding protein
E2F	E2 factor (named for the adenovirus E2 gene)
p53	p53 (tumor suppressor protein)
Мус	Product of the c-myc protooncogene (dimerizes with Max)

Putativos Sítios de ligação de fatores de Transcrição e TATA Box em promotores de genes de celulases e xilanases de *Trichoderma reesei*

Promotor para RNA pol II

(b) Core promoter elements for RNA polymerase II

Promotor para RNA pol I

(a) Promoter for RNA polymerase I

Promotor para RNA pol III

(c) Two types of promoters for RNA polymerase III

Assembly of the pre-initiation complex (PIC)

- binding of upstream binding factor (UBF) to the upstream control elements (UCEs) and core element of the rDNA promoter, leading to the recruitment of the SL-1 initiation factor, which contains TATA-box-binding protein (TBP) and at least five TATA-box-associated factors (TAFs). The resultant stable UBF–SL-1 complex recruits an initiation-competent form of RNA Pol I, which contains RRN3 that mediates interactions between RNA Pol I and SL-1

- RNA Pol III-transcribed genes (for example, those that encode tRNAs) have internal promoters that comprise two sequence blocks (A and B) that are located in the transcribed region. The A and B blocks are recognized by TFIIIC that recruits TFIIIB, which is composed of the subunits B-related factor 1 (BRF1), BDP1 and TBP. Finally, TFIIIB recruits RNA Pol III.

- For 5S rDNA promoters the B block is replaced by a sequence, termed block C, to which TFIIIA binds and recruits and orientates TFIIIB, following which transcription initiation proceeds as for tRNA genes.

- For a small number of RNA Pol III-transcribed genes (for example, U6 snRNA (RNU6-1)) the promoters are located upstream of the gene and contain TATA boxes bound by TBP, and proximal sequence elements (PSEs) bound by a complex called small nuclear RNA-activating protein complex (SNAPC). These upstream promoters are bound by a different form of TFIIIB from tRNA genes, which is composed of BRF2, BDP1 and TBP9

tRNA- This RNA type is a small chain of about 80 nucleotides.

The tRNA has a clover leaf model with arms each with a specific function. The tRNA also has an anticodon region that can base pair with the codon region on the mRNA.

Pre-Processamento de rRNA

Pre-Processamento de rRNA em células humanas

rRNA- The rRNA is synthesized in the nucleolus. In the cytoplasm, ribosomal RNA and protein combine together to form a nucleoprotein called a ribosomes. The ribosomal RNAs form two subunits namely; the large subunit and small subunit. The Eukaryotic cells have 4 different types of rRNA namely; 28S rRNA, 18S rRNA, 5.8S rRNA and 5S rRNA.

Svedberg value = sedimentation coefficient, a measure of time (10⁻¹³ sec)

mRNA Structure

Bacterial mRNA only

Ribosome-binding sites; also called Shine-Dalgarno sequence
Eukaryotic mRNA only

- 5' Cap (methylated guanine)
- Poly A tail
- Kozak Sequence (sometimes present); enhances ribosome binding

a) Bacterial mRNA

(b) Eukaryotic mRNA

© 2012 Pearson Education, Inc.

RNA polII - Structure of eukaryotic mRNA

- all mRNAs have a 5' cap and all mRNAs (with the exception of the histone mRNAs) contain a poly(A) tail
- the 5' cap and 3' poly(A) tail prevent mRNA degradation
- loss of the cap and poly(A) tail results in mRNA degradation

© 2012 Pearson Education. Inc.

Post-transcriptional processing of eukaryotic mRNAs.

Types of Introns.

Intron Type	Where Found	
GU-AG introns	Eukaryotic nuclear pre-mRNA	
AU–AC introns	Eukaryotic nuclear pre-mRNA	
Group I	Eukaryotic nuclear pre-mRNA, organelle	
	RNAs, a few bacterial RNAs	
Group II	Organelle RNAs, a few prokaryotic RNAs	
Group III	Organelle RNAs	
Twintrons (composites of two and/or more group II or III introns)	Organelle RNAs	
Pre-tRNA introns	Eukaryotic nuclear pre-tRNAs	
Archaeal introns	Various RNAs	

The consensus sequence at the exon–intron junctions of vertebrate pre-mRNAs.

Numbers = Frequency (%)

Splicing Alternativo

The organization of the rat α -tropomyosin gene and the seven alternative splicing pathways that give rise to cell-specific α tropomyosin variants.

Expressão gênica tecido específica

Obrigado

fscha@usp.br

USP – 1° Semestre 2021