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Abstract— The Cubli is a 15 x 15 x 15 cm cube with reaction
wheels mounted on three of its faces. By applying controlled
torques to the reaction wheels the Cubli is able to balance
on its corner or edge. This paper presents the development
of the Cubli. First, the mechatronic design of the Cubli is
presented. Then the multi-body system dynamics are derived.
The parameters of the nonlinear system are identified using a
frequency domain based approach while the Cubli is balancing
on its edge with a nominal controller. Finally, the corner
balancing using a linear feedback controller is presented along
with experimental results.

I. INTRODUCTION

For slightly more than a century, inverted pendulum
systems have been an indispensable part of the controls
community [1]. They have been widely used to test, demon-
strate and benchmark new control concepts and theories [2].
Algorithms for controlling pendulum systems are an active
area of research today [3]-[5].

Compared to other 3D inverted pendulum test-beds [6],
[7] the Cubli has two unique features. One is its relatively
small footprint, (hence the name Cubli, which is derived
from the Swiss German diminutive for “cube”). The other
feature, demonstrated in Fig. 2, is the Cubli’s ability to jump
up from a resting position without any external support, by
suddenly braking its reaction wheels rotating at high speeds.
The concept of jumping up is covered in [8], while this paper
focuses on the balancing aspect.

The remainder of this paper is structured as follows:
Sec. II presents a brief overview of the Cubli’s mechanical
and electronic design. This is followed by the derivations
of the system dynamics in III and system identification in
Sec. IV. Sec. V covers the state estimation algorithm. Finally,
the controller and the experimental results are presented in
Sec. VL.

II. MECHATRONIC DESIGN

Fig. 3 shows the CAD model of the Cubli, which consists
of an aluminium housing holding three reaction wheels
through the motors. Although a light weight housing would
result in high recovery angles, it must be strong enough to
withstand the impact-based braking during jump-up [8].

With respect to electronics, everything except the power
source is mounted in the Cubli. A simplified diagram of
the electronics is presented in Fig. 4. The STM32 discovery
board (ARM7 Cortex-M4, 168MHz) from STMicroelectron-
ics is used as the Cubli’s main controller. Six IMUs (MPU-
6050, InvenSense), one on each face of the Cubli, are used
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Fig. 1. Cubli balancing on the corner. In the current version, the Cubli
(controller) must be started while holding the Cubli near the equilibrium
position. Power is provided from an external constant voltage supply.
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Fig. 2. The Cubli jump-up strategy: (a) Flat to Edge: Initially lying flat
on its face, the Cubli jumps up to stand on its edge. (b) Edge to Corner:
The Cubli goes from balancing on an edge to balancing on a corner.

for tilt estimation. Each IMU consists of a rate gyro and
an accelerometer, and is connected to the main controller
through the I12C bus. A 50 W brushless DC motor, EC-45-
flat, from Maxon Motor AG is used to drive the reaction
wheels. The three brushless DC motors are controlled by
three DEC 36/2 modules, digital four quadrant brushless DC
motor controllers. The motor controller and main controller
communicate over the CANopen protocol.

Finally on the software side, The STM32 port of the
FreeRTOS scheduler is used for the multitasking of the
estimation and control algorithms and an Eclipse based tool
chain is used for development.



Fig. 3. The CAD drawing of the Cubli with one of the acrylic glass covers
removed.
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Fig. 4. The Cubli electronics schematic: Six IMUs (rate-gyro and
accelerometer) are connected to the ARM7 microcontroller with three 12C
buses. The three motor controllers communicate with the microcontroller
over the CAN bus.

ITII. SYSTEM DYNAMICS

In this section the nonlinear dynamics of the Cubli are de-
rived using Kane’s equations and the dynamics are linearized
around the upright equilibrium position. The linearized dy-
namics will be used for system identification and corner
balancing in the following sections.

With respect to the notations of this paper, let R, C and
N denote the set of real, complex, and natural numbers. For
attitude representations we adopt [9], where 4R € SO(3)
describes the rotation of frame {B} relative to frame {A}.
Note that the column vectors of 4R are the unit vectors
of {B} expressed in {A}. Furthermore, ¢; denotes the unit
vector with a single non zero element at i and ¥; € R3*3
is the skew symmetric matrix of the vector v; € R where
D109 = U1 X v, for all vy € R3. Unless otherwise noted by
a proceeding superscript all quantities are represented in the
Cubli body fixed frame {B}.

A. Nonlinear System Dynamics

Consider the Cubli balancing on its corner, as shown in
Fig. 5. Let w, € R3 denote the angular velocity of the
Cubli relative to the inertial frame {I} expressed in the
Cubli’s body fixed frame {B}, wy; € R, i = 1,2,3 denote

the angular velocities of the wheels around the rotational
axis pe;, and LR € SO(3) denote the attitude of the
Cubli relative to the inertial frame {I}. Note that attitude of
the Cubli can also be represented by the zyx-Euler angles
¢ = (yaw(a), pitch(8), roll(v)). The relationship between
the rotation matrix and Euler angle representation is given
by

?R = ¢%30f2B817, (1)

where e is the matrix exponential. The nonlinear system
dynamics are derived using Kane’s equation [10] for multi
bodies given by

for all v # 0, where
v = (Wh, Wwi, Ww2, Ww3) € RS (3)

denotes generalized velocity, 7 denotes a particular rigid
body of the multi-body system, p; the linear momentum
of the rigid body j, n; the angular momentum, F}' the
external active force, ijl the external active torque, and J,;
the Jacobian matrix. Geometrically, Kane’s equation can be
interpreted as the projection of the Newton-Euler equation
on to the configuration manifold’s tangent space [11].

Fig. 5. Cubli balancing on the corner. ge, and e, denote the principle
axis of the body fixed frame {B} and inertial frame {I}. The pivot point
O is the common origin of coordinate frames {I} and {B}.

Consider the Cubli as a multi-body system consisting of
four rigid bodies: The Cubli housing h and three reaction
wheels wl, w2, and w3.

First, consider the Cubli housing h and let r, denote the
position of the center of mass of the Cubli frame expressed
in Cubli body fixed frame {B}. Now, using

and €]

Wh X Th + wp X (wh X ’I“h) (@)

’/"h = Wph X T

i =



the time derivative of the housing’s linear momentum is given
by
Ph = My (d}h X Ty + wh X (wh X rh)) . (6)
Similarly, the time derivative of the housing’s angular mo-
mentum ny, := Ouwy is given by
= Ontbh — (Onwh) X Wh, @)
where O € R3*3 is the inertia tensor of the Cubli housing
h.

Next, consider the i*" wheel, i = 1,2,3, with angular
velocity given by wy;e; + wy. The time derivative of the
wheel’s linear momentum is given by

Pwi = My (W X Twi + wWh X (Wh X Twi)) s (®)
where ry,; is the position of wheel center of mass. The
angular momentum of the wheel and its time derivative are
given by

Nwi = ®wiwh + @wi (27 Z')Wwiei
®wiwh -
+Owi (i, 1)dwie; —

hwi = (ewiwh) X Wh

(Owi(i, 1) wwiei) X wh, (9)

where O, € R3*3 is the inertia tensor of the reaction wheel
wi.

The Jacobian matrices related to the Cubli housing h are
given by

Jp, = %rh (—74,0,0,0) € R3*6 (10)
Jr, = %wh =(I,0,0,0) € R3*® (11)
and Jacobian matrices related to the wheels are given by
Jp,, = %m = (—w;,0,0,0) € R3O (12)
Tra = gy (wwici ton) = (1,6) € R¥*0 (13)

where 6; € R3*3 has all zero elements except for the ith
diagonal element, which is one.

The active torque on the Cubli housing and the wheels are
given by

—Th (Tw1, T2, Tiws)
== KTYLU - Cw(ww17ww27ww3)7 (14)
where K, is the motor constant, u := (uy,us,us3) € R3

is the current input of each motor driving the wheels, and
Cy is the damping constant. Finally, gravity ¢ leads to an
active force on all bodies. Note that g is expressed in the
body fixed frame {B} and given by

9(#) = g0(s(8), =s(7)c(B), —c(v)e(B)),

-2

5)

where go = 9.81 m - s
Now, inserting (6) to (14) into (2) yields the following
equations of motion

éd]h = Ouwp X wp+ Mg+ Ogwy X wy
—(Kpnu — Cywy)
Owwyw = Kpu— Cywy —Ogwn, i=1,2,3, (16)

where
3
M = mhfh + mei’lzwi
i=1
3
0 = mhrﬁ—&—z — My Ty ]
=1
On = diag(Owi1(1,1), Ow2(2,2),Ow3(3,3)),
© = 0-0,.

Finally, the kinematic equation of the Cubli is given by

—s(p) 0 1 o
wh= | s(v)e(B) cv) O g |- an
c(y)e(B) —s(y) 0 ¥

B. Linearized Dynamics

This subsection derives the linearized dynamics of Cubli
around the upright equilibrium position. The models derived
here will be used for the system identification in Sec. IV and
corner balancing in Sec. VI

The Cubli’s equilibrium attitude ¢q is the solution of

(18)

and all angular velocities at equilibrium are zero, wpg = 0,
wwi =0,7=1,2,3.

Inverting (17) and inserting the equilibrium attitude ¢q
yields the first part of the linearized system equation:

A s(70) c(70)
< 0 &) (Bo) ) )
B = 0 C("}/O) 78("}/0) W = Fay,
A 1 $00)s(Bo)  e(r0)s(bo)
v c(Bo) <(Bo)
(19)
where © denotes the deviations from their equilibrium values.

Since the terms Ouwy X wy and Oywy X wy vanish in the
linearization around wyg, leading to

G = 61 (M2 5 ce, - K
90 |4,
i . 1 ag(¢) 2
by = —67'M 96 ¢0¢
(671 + 0, + (07 + O3 ) K
(20)
where
0 c(bo) 0
0
%((f) =1 0 s(Bo)s(v) —c(Bo)c(yo)
$o 0 s(Bo)c(yo)  ¢(Bo)s(vo)
Now, putting (19) and (20) together results in
¢f ) Osx3
G| =Aal o |+  —O07 'Ky u,
Sy Oy O 1+ 06,H)Ky
(2D



where
03x3 F 03x3
(:)71M 9g(¢) ’ 0 CW(:)71
A= ) ¢ ) 3x3 ]
~6-1M 22 ,, Osx —Cu(671 4031
0

IV. SYSTEM IDENTIFICATION

This section describes an offline frequency domain based
approach for estimating the parameters

n:= (K, Cy,0,0y,m) (22)

of (16) that can not be directly measured. As the first
step of parameter estimation, the Cubli is made to balance
on its edge, as shown in Fig. 6, using a linear feedback
controller K derived from nominal model parameters (See
Fig. 7). The equations of motion can be obtained by setting
wh = (6n,0,0), wy = (6y,0,0) in (16). Hence, inserting this
into equation (21) yields the linearized dynamics around the
upright position, when the Cubli is balancing on its edge.

Taking 2., = (5 — 7o, 0, fy) results in
jjel (t) = Ael (W)Iel (t) + Bel (77)U1 (t) (23)
Now, let
Gl(S, 77)
G(s,m) o= (I = sAc, ()™ Bey = | Gals,m) | (24)
GS(‘S? 77)

denote the transfer function of (23) where G;, G2 and G
are the transfer functions from input current u; to 0y, 6y and
O, respectively.
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Fig. 6. Cubli balancing on an edge. 6}, denotes the tilt angle of the Cubli
housing and 6y, denotes rotational displacement of the reaction wheel.

While balancing on its edge, the Cubli was excited by the
following random phase multisine signal,

=Y Apsin@nfkt +1by), Ay € RT,

(25)

where the sampling frequency f; = 50 Hz and 9 is
randomly distributed in [0,27). Note that, due to its peri-
odicity, the above random phase multisine signal prevents
spectral leakage. Also, due to its randomness, the impact of
the nonlinearities can be estimated by comparing averages
over consecutive periods and different realizations [12]. A
realization is defined by a set of { Ay, vx }, & € N. In our case
only a finite number of non zero Axs were used. The signal
that corresponds to the p*" period of a certain realization
is denoted by the superscript [r, p].

Now, consider the frequency response under the excitation
signal given in (25). Let y(¢) € R denote the output of the
Cubli disturbed with Gaussian white noise, r(¢) the reference
signal, u(t) the resulting input, and §(t) € R? the impulse
response of the underlying linear system. Next, let Y (w),
G(w), U(w), R(w) denote the Fourier transforms of y(t),

g(t), u(t), and r(t) respectively.
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Fig. 7. The block diagram of the system identification procedure: The edge
balancing system G is controlled by a nominal linear feedback controller
K and is excited by the random phase multisine signal 7. n; and n, denote
the Gaussian white noise on the input and output of the system.

Assuming Gaussian white noise disturbances on the input
and output signals gives the following maximum likelihood
estimate for the frequency response function (FRF):

- Yr(w % f; Y (w)l]
Gy = Yol) _ AT V) o6)
Ur(w) =D orey Uw)lr
where
P
vl ) ww
Y (w)! B Z_: Pl and
P
r _ - T, — z/)w
Uw)l = PZ w)lrPle=i

Note that in order to average over different realizations, the
phase of the measured quantities, U (w)[’"vp] and Y(w)["p],
was adjusted with respect to the reference signal.

Since the underlying system is nonlinear, different input
realizations will lead to different FRF estimates. Hence by
comparing the noise levels of the FRF estimates over differ-
ent realisations, the impact of nonlinearities can be evaluated.
The noise impact on one realization is approximated by

P
&izw (w) = P(Pll); [(X(w)[ﬂp} _ X(w)["])

(2(@)") = Z(@)) @)



where X and Z can be Y or U and * denotes the complex
conjugate. This in turn gives the noise impact on FRF

estimate
R

N 1 N
Jg{Z,n(w) = Rr2 Z 0 x 71 ().

r=1

(28)

Now, with sample (co)variances given by
1 R
- X - x
=T 2o (X)) = Xa(w)
(2@ = Zn(w))] @9)
the variance on the FRF containing the measurement noise
and nonlinear effects is calculated as

&E(RZR (w) =

rrel ) Ur(w)

0 (@) (@) — Gw)oR (@)

The experiments were repeated on all three edges of the
actuated face. While the Cubli was balancing, it was excited
by a flat (equal amplitude at each frequency component)
random phase multisine signal, with a frequency grid of
0.1 Hz ranging from 0.1 Hz to 5.0 Hz. Responses of four
different realisations (R = 4) for seven consecutive periods
(P =7) were recorded to evaluate G together with its total
variance 6 and noise variance 6ga,n.

Fig. 8 shows the frequency responses related to the transfer
function G5 in (24), when balancing on the edge that lies
along pej, which is the first principle axis of the body fixed
coordinate frame {B} (see Fig. 5). G is shown in green
along with 6g,¢, in red and 6¢,q,,» in light blue. Note
that the additional variance due to nonlinearities is clearly
visible (5 dB) and the signal to noise ratio is more than
15 dB. In the next step, the parametric estimate of G(s,7)
in (24) is found by minimizing the maximum likelihood cost
function given by
-1

Viur = Y W) (64cW)IUrW)?) ™ ew)
Vw:A,#0
e(w) = Ygrw)— G(w,n)Ug(w).

The frequency response of the transfer function G5 derived
from the above minimization is shown in Fig. 8 in blue, along
with the fitting error in purple. The uncorrelated fitting error
indicates a good approximation of the frequency response
measurement by the parametric model.

Note that the system identification procedure presented in
this section assumes that the inertia tensor of the full Cubli
has no cross couplings. To identify the cross coupling terms
the above procedure has to be repeated when the Cubli is
balancing on its corner.

V. STATE ESTIMATION

The angular velocity wy estimates are calculated by av-
eraging the six rate-gyro measurements. The wheel velocity
wWwi, © = 1,2,3, estimates come directly from the motor
controller. For tilt estimation, the multiple accelerometer
based algorithm presented in [7] was implemented.
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Fig. 8.  Frequency responses related to the transfer function G2 in (24):
Magnitude of the measured frequency response function G2 is shown is
green. The standard deviation 6, G, is shown in red. The noise standard

(30) deviation 6G,G,,n is shown in light blue. The blue markers show the

response of the estimated G2 by minimizing (31). Finally, the uncorrelated
purple markers show the absolute error between the parameter model and
and the experimental response.

For the tilt estimation the Cubli uses six accelerometers,
each attached to one of the Cubli’s faces and their positions
in the body fixed frame {B} is known and denoted by p;,
1=1,...,6.

A noise-free accelerometer measurement
celerometer ¢ is given by

Aim, of ac-

Aimy = 3R PR (LR Bpi+' g), 31
where {/L} denotes the local frame of the i'" sensor, g is
the gravity vector expressed in the inertial frame {I}, and
LR is the second derivative of L R satisfying
"pi = RPpi. (32)
Now, changing the reference frames to the body fixed frame
{B} in (31) by multiplying both sides by EAR gives
Pmi= R Ppi+"g, (33)
where R = BR IBR
Using all accelerometer measurements (33) can be ex-
pressed as a matrix equation of the following form

M = QP, (34)
where
M = [ Bm1 Bmg Bmg ] S RSXG,
Q [ Bg R ] c R3><47
= L € RS,
b1 P2 - DPe

The optimal estimate of () under noisy measurements,
while @ is restricted to linear combinations of measurements
M is given by [7]

Q=MX, X:=PYpPpPH L (35)



Finally, this gives the gravity vector estimate

By =MX(:1) (36)

as a linear combination of measurements M. Note that,
since X in (36) depends only the sensor positions, it can
be calculated offline to make the estimation process run
relatively fast. Although, 2§ gives the tilt angles /3,7, 2§
was fused with the rate-gyro measurements to reduce the
noise levels. See [7] for more details.

In contrast to many standard methods for state estimation,
the above tilt estimator does not require a model of the
systems dynamics; the only required information is the
location of the sensors on the rigid body. Since no near-
equilibrium assumption is made and the nonlinear estimator
yields a global tilt estimate, this method will function both
for balancing and during the jump-up motion of the Cubli
(state information during the jump up phase is needed in
order to trigger the switch to balancing mode). The latter
would be cumbersome to obtain with standard linear state
estimation methods.

VI. CONTROL

This section presents the design procedure of the corner
balancing controller, based on the linearized equations of
motion given in (21). In the first step, it is shown that the
dynamics of the yaw angle «, which is an unobservable
state, is decoupled from the rest. Then, the uncontrollable
parts of the remaining dynamics are identified. Finally, the
uncontrollable states are eliminated through an appropriate
coordinate transformation and an LQR based controller is
implemented.

Since g is independent of the yaw angle «, the first column
of %E;ﬂf is 031, which gives A(:,1) = Ogx1. As a result,
the sytem matrix A (21) can be split as

S0 0 F(L:)  Ouxg
A = 022 F(2:3,:) O2x3
Ogx11 - O3x3 :
! O3x3

This shows that the dynamics of the unobservable yaw angle
« 1s an open integrator given by

& = F(1,:)wp. (37)

Now, consider the remaining dynamics given by A €
R8>8, The observation

F Bes =(1,0,0) (38)

implies (02x1,7 €3,03x1) is an eigenvector of A with eigen-
value 0, giving an uncontrollable direction of A. Note
that Pes is the third principle axis of the inertial frame
expressed in the body fixed frame {B} coordinates. From
the mechanics perspective, this fact can be interpreted as
the conservation of angular momentum along res axis (see
Fig. 5). Since the Popov-Belevitch-Hautus (PBH) test for
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Fig. 9. Time traces of the Cubli’s roll(+y) and pitch(3) during a corner
balancing experiment.
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Fig. 10. Time traces of the input current {u1,u2,us} of each motor
during a corner balancing experiment.

s = 0 gives Rank[s] — A, B] < 8, it can be concluded that
the corresponding eigenvector is not controllable.

After eliminating the uncontrollable states by a cannoni-
cal coordinate transformation, a Linear Quadratic Regulator
(LQR) feedback controller was implemented. Figs. 9,10,11,
and 12 show the results of a corner balancing experiment
run with an integrator as in [8] to eliminate the constant bias
in the attitude measurements.

Furthermore, an additional identification of the parameters
of the Cubli, while balancing on its corner would certainly
help to get a more accurate model and reduce the oscillations
while balancing. Note that the model that is derived from
Sec. IV assumes an inertia tensor with no cross couplings.
Finally, an accurate model would also lay the foundation
for more sophisticated controller designs, e.g. nonlinear
controllers.
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Fig. 11. Time traces of the Cubli’s angular velocity wy during a corner
balancing experiment.
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during a corner balancing experiment.

VII. CONCLUSIONS

This paper tracked the development of the Cubli: a 3D
inverted pendulum with a relatively small footprint. First,
the mechatronic design was presented, along with a brief
reasoning on the design choices. Then the multi body
system dynamics were derived using Kane’s equation. To
estimate the system parameters, a frequency domain based
approach, which does not rely on any external apparatus or
measurements, was presented. Next the implementation of
the accelerometer based global tilt estimator was described.
Finally, the corner balancing controller was presented along
with experimental results.
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