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Abstract

We look at the fundamental equations of analytical dynamics from a different per-
spective. We discuss an additional way of evaluating the approaches for deriving the
equations of motion, and we show that all of the fundamental equations can be viewed
as projections of the force and moment balances onto directions affected by the velocity
variables. We re-classify the existing approaches into two parts: Those based on vector
variational principles, and those based on scalar variational principles. We discuss the
relative merits and disadvantages of these approaches.

1 Introduction

During the 20th century, as the interest in complex dynamical systems has increased, re-
searchers have looked into additional methods of describing their motion. Much of the
research along these lines has been reported very subjectively. Further, as the need to deal
with nonholonomic systems has increased, and the usefulness of quasi-velocities and methods
that employ them has been recognized more and more, there has been a lot of debate on
how best to make use of these variables.

The first use of quasi-coordinates when deriving equations of motion can be attributed to
Heun, Hamel and Appell [1]. The resulting equations are called the Gibbs-Appell equations
[2]. These equations are dated to the beginning of the 20th century, after developments in
the late 19th century inspired research on handling nonholonomic systems. The drawback of
the Gibbs-Appell equations is that a scalar function of accelerations needs to be calculated
and then differentiated, which makes the approach cumbersome.

Another approach that makes use of quasi-velocities to derive equations of motion is
Kane’s equations [3], which refers to quasi-velocities as generalized speeds.1 It has been
shown in the literature that the Gibbs-Appell and Kane’s equations are equivalent (e.g., [2]).

∗Associate Professor
1The term quasi-velocity precedes the term generalized speed by 50 years.
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An issue of contention is whether Kane’s equations were inspired from the Gibbs-Appell
equations, or developed independently.

Another approach that makes use of quasi-velocities is Lagrange’s equations for quasi-
coordinates [4]. Here, one has the advantage of dealing only with velocity expressions. In
addition, because Lagrange’s equations are derivable from Hamilton’s principle, Lagrange’s
equations are applicable to continuous (in space) systems. This property is valid whether
generalized velocities or quasi-velocities are used.

The different approaches have their own advantages and disadvantages. On the other
hand, certain arguments that were valid only a few years ago have become outdated. For
example, Lagrange’s equations deal with a lot of algebra, and they become cumbersome for
large-order systems, which is why analytical techniques based on vector approaches began
to enjoy more popularity in the second half of the 20th century. However, in the last few
years there has been tremendous advances in symbolic manipulation software. We now have
the capability of calculating complicated derivatives and equations of motion on personal
computers (e.g., [5]).

In this paper, we discuss similarities and differences of the methods of analytical dy-
namics. We look at the physical interpretation of these equations. We provide a different
classification of the describing equations. The goal in this exercise is to not be critical, but
to provide additional perspective.

2 D’Alembert’s Principle

Let us begin with a system of N particles. Particle i has mass mi and its position, velocity
and acceleration are described by the vectors ri,vi, and ai (i = 1, 2, ..., N), respectively.
Denoting the first variation (hold time fixed, vary position) of the particle by δri, the Ex-
tended D’Alembert’s principle is written as

N∑
i=1

miai · δri =
N∑
i=1

Fi · δri i = 1, 2, ... (1)

in which Fi denotes the sum of all impressed (or external) forces acting on the i-th particle.
The forces that the particles exert on each other cancel.

Let the system under consideration have n degrees of freedom. It is then possible to
express the motion of the i-th particle in terms as n independent generalized coordinates
q1, q2, ..., qn as

ri = ri(q1, q2, ..., qn, t) (2)

One can express the first variation of ri in terms of the generalized coordinates as

δri =
n∑
k=1

∂ri
∂qk

δqk (3)
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where ∂ri
∂qk

are known as kinematic variables or kinematic coefficients. Let us investigate
the properties of the kinematic coefficients. We note that they represent vectors, and if qk
is a position coordinate, the kinematic coefficient associated with it is dimensionless. In
essence, the kinematic coefficient ∂ri

∂qk
represents the direction in which ri is affected by qk.

The kinematic coefficients have the important property of

∂ri
∂qk

=
∂vi
∂q̇k

=
∂ai
∂q̈k

k = 1, 2, ..., n (4)

Hence, the kinematic coefficients can be calculated by using expressions for either one of
position, velocity, or acceleration. The term to use is selected based on convenience.

To derive the equations of motion directly from D’Alembert’s principle, we introduce Eq.
(3) to Eq. (1), with the result

n∑
k=1

N∑
i=1

miai ·
∂ri
∂qk

δqk =
n∑
k=1

N∑
i=1

Fi ·
∂ri
∂qk

δqk (5)

We denote the generalized forces by Qk and define them as

Qk =
N∑
i=1

Fi ·
∂ri
∂qk

(6)

and we make use of the property that the variations of the generalized coordinates are
independent themselves. Hence, Eqs. (5) can be written as n independent equations of
motion in the form

N∑
i=1

miai ·
∂ri
∂qk

= Qk k = 1, 2, ..., n (7)

Let us analyze the form of the resulting equations. We began with the individual force
balance equation for each particle (miai = Fi). Then, we took the dot product of these force
balance equations with the kinematic coefficients and summed the resulting expressions over
all the particles. Therefore, the k-th differential equation is the sum of the components
of all force balances along the direction along the k-th kinematic coefficients. We have
taken the individual force balances and projected them along the directions of the kinematic
coefficients. Equations (6) - (7) are also known as projection equations [6].

Let us now extend the formulation above to rigid bodies. For simplicity, we initially
consider a single rigid body. We denote the center of mass of the rigid body by G and write
the position, velocity, and acceleration of a point on the body by

r = rG + ρ v = vG + ω × ρ a = aG + α× ρ + ω × ω × ρ (8)

in which ω and α are the angular velocity and angular acceleration of the body. By virtue
of the definition of the center of mass

∫
ρdm = 0. To write the virtual displacement of a
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point on the body, we recall that for general three dimensional motion angular velocity is
not the derivative of a quantity, but a defined one. Hence, we denote the variation of an
angular displacement by δθ noting that the boldface extends over the entire term. We can
write the variation of r directly from the velocity term, by replacing the time derivative with
variations

δr = δrG + δθ × ρ (9)

Replacing mi and Fi in Eq. (1) with dm and dF, and the summation with integration
over the body, we obtain∫

body
(aG +α× ρ+ ω × ω × ρ) · (δrG + δθ × ρ)dm =

∫
body

dF · (δrG + δθ × ρ) (10)

After a few manipulations, we obtain the D’Alembert’s principle for a rigid body as [2]

maG · δrG + ḢG · δθ = F · δrG + MG · δθ (11)

in which HG is the angular momentum about the center of mass

HG =
∫
body

(ρ× ω × ρ)dm (12)

with F and MG denoting the resultant force and resultant moment about the center of mass.
For a system of N rigid bodies, D’Alembert’s principle can be expressed as

N∑
i=1

(
miaGi · δrGi + ḢGi · δθi

)
=

N∑
i=1

(
Fi · δrGi + MGi · δθi

)
(13)

where the notation is obvious.
As we did with particles, we can write the equations of motion for rigid bodies by direct

use of D’Alembert’s principle. Before we do this, we recall that the Newton-Euler formulation
for a rigid body consists of the basic describing equations

ṗ = maG = F ḢG = MG (14)

in which p = mvG is the linear momentum of the body. These equations were stated by
Euler, in 1775, as the basic equations governing the motion of a rigid body.

It is convenient to write the variation of displacements in terms of generalized velocities
as

δrGi =
n∑
k=1

∂rGi
∂qk

δqk =
n∑
k=1

∂vGi
∂q̇k

δqk δθi =
n∑
k=1

∂ωi
∂q̇k

δqk (15)

where we recognize ∂ωi

∂q̇k
as the kinematic coefficients associated with the angular velocity of

the i-th body, ωi. Introducing Eqs. (15) into Eq. (13) and considering the case when the
generalized coordinates are independent, we obtain the equations of motion as
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N∑
i=1

(
miaGi ·

∂vGi
∂q̇k

+ ḢGi ·
∂ωi
∂q̇k

)
= Qk k = 1, 2, ..., n (16)

in which Qk (k = 1, 2, ..., n) are the generalized forces in the form

Qk =
N∑
i=1

(
Fi ·

∂vGi
∂q̇k

+ MGi ·
∂ωi
∂q̇k

)
(17)

We can summarize the process involved in deriving the equations of motion directly by
means of the D’Alembert’s principle as

1) Obtain expressions for the change in the angular momentum and linear momentum, as
well as resultant forces and moments;
2) Calculate the kinematic coefficients;
3) Take the force balance equation for the i-th mass (miaGi = Fi) and dot it to the kinematic
coefficient associated with the translation of the center of mass, (∂vGi

∂q̇k
);

4) Take the moment balance equation for the i-th mass (ḢGi = MGi) and dot it with the
kinematic coefficient associated with the rotation of the body, (∂ωi

∂q̇k
);

5) Add the two expressions and sum over all the bodies.

Hence, we can view the equation of motion associated with the k-th general-
ized coordinate as the sum of the projections of the individual force and moment
balances along the directions of the k-th kinematic coefficients. This observation
is valid for D’Alembert’s principle as well Lagrange’s equations.

Let us now analyze this result more explicitly. Consider a rigid body and a set of unit
vectors e1, e2, e3 along a set of orthogonal coordinates attached to the body, so that ω =
ω1e1 + ω2e2 + ω3e3. For example, using a 3-2-1 Euler angle transformation and the rotation
angles ψ, θ, and φ, the angular velocity components along the body axes are

ω1 = −ψ̇ sin θ + φ̇ ω2 = ψ̇ cos θ sinφ+ θ̇ cosφ ω3 = ψ̇ cos θ cosφ− θ̇ sinφ (18)

and, if we begin with the unit vectors a1a2a3 and rotate them by ψ to get a′1a
′
2a
′
3, rotate the

resulting set by θ to get a′′1a
′′
2a
′′
3 and rotate this set to get by φ to get e1e2e3, we have

∂ω

∂ψ̇
= a3 = a′3

∂ω

∂θ̇
= a′2 = a′′2

∂ω

∂φ̇
= a′′1 = e1 (19)

It follows from the above discussion that the equations of motion have the form

for ψ ḢG · a3 = MG · a3

for θ ḢG · a′2 = MG · a′2 (20)

for φ ḢG · e1 = MG · e1
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This result can also be obtained independently of D’Alembert’s principle, when one wants
to develop a relationship between Lagrange’s equations and Euler’s equations [2].

Let us now compare the above equations with Euler’s equations of motion for a rigid
body

ḢG · ek = MG · ek k = 1, 2, 3 (21)

We cannot express the unit vectors e1, e2, e3 as kinematic coefficients, as we cannot
write them as partial derivatives of the angular velocity vector with respect to generalized
velocities. However, we can express e1, e2, e3 as ek = ∂ω/∂ωk (k = 1, 2, 3).

The angular velocity components are not direct derivatives of rotational variables, but
defined quantities. They are, in essence, quasi-velocities (generalized speeds) and are hence
referred to as nonholonomic. Quasi-velocities are variables that are not necessarily the
derivatives of the generalized coordinates, but combinations of the generalized velocities.
This raises the question whether one can obtain the equations of motion directly from
D’Alembert’s principle in terms of quasi-velocities.

Consider an unconstrained system first. Denoting the quasi-velocities by u1, u2, ..., un,
we express them as

uk =
n∑
j=1

Ykj q̇j + Zk k = 1, 2, ..., n (22)

where Ykj and Zk are functions of the generalized coordinates only. We can invert the above
relationship as

q̇k =
n∑
j=1

Wkjuj +Xk k = 1, 2, ..., n (23)

in which Wkj and Xk are functions of the generalized coordinates only. It is clear that the
square matrices [Y ] and [Z], whose elements are Ykj and Zkj are the inverses of each other,
and that this is the requirement for having a set of independent generalized speeds. Hence,
a partial derivative (say, of vG with respect to q̇k) can be expressed as

∂rG
∂qk

=
∂vG
∂q̇k

=
n∑
j=1

∂vG
∂uj

∂uj
∂q̇k

=
n∑
j=1

∂vG
∂uj

Yjk (24)

Similarly, we can express the inverse relationship as

∂vG
∂uk

=
n∑
j=1

∂vG
∂q̇j

∂q̇j
∂uk

=
n∑
j=1

∂vG
∂q̇j

Wjk (25)

The partial derivatives of vG and ω with respect to the generalized speeds uk are called
partial velocities [3], and they are defined as
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vkG =
∂vG
∂uk

ωk =
∂ω

∂uk
(26)

Hence, similar to kinematic coefficients, we can ascribe a physical description to the
partial velocities. The k-th partial velocity represents the direction that is affected by the
k-th generalized speed. Note that the notation used here is slightly different than in [3]
(subscript and superscript are reversed). We can express a time derivative (say, of rG) in
terms of partial velocities as

drG
dt

= vG =
n∑
k=1

∂rG
∂qk

q̇k +
∂rG
∂t

=
n∑
k=1

∂vG
∂q̇k

q̇k +
∂rG
∂t

vG =
n∑
k=1

vkGuk + vtG (27)

where vtG is the time partial velocity. Let us now consider writing D’Alembert’s principle
in terms of partial velocities. We take Eqs. (16) - (17), multiply with Wkj and sum over j,
which gives

n∑
j=1

N∑
i=1

(
miaGi ·

∂vGi
∂q̇k

+ ḢGi ·
∂ωi
∂q̇k

)
Wjk =

n∑
j=1

N∑
i=1

(
Fi ·

∂vGi
∂q̇k

+ MGi ·
∂ωi
∂q̇k

)
Wjk (28)

Introducing Eq. (25) and its extension to angular velocities into the above equation, we
obtain

N∑
i=1

(
miaGi · vkGi + ḢGi · ωki

)
= Uk k = 1, 2, ..., n (29)

where Uk are the generalized forces associated with the generalized speeds in the form

Uk =
N∑
i=1

(
Fi · vkGi + MGi · ωki

)
(30)

Equations (29)-(30) are the most general way of obtaining equations of motion by the
direct application of D’Alembert’s principle, as generalized velocities constitute a subset of
generalized speeds. These equations are also known as Kane’s equations, projection equa-
tions, or fundamental equations [2]. The formulation in Eq. (29) is slightly different than
Kane’s, in that the equations are expressed in terms of the linear and angular momenta. The
advantage here is that the moment balance expressions, which are written above about the
center of mass, can be replaced with moment balance equations about an arbitrary point,
making the formulation more versatile.
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The fundamental equations can be physically explained, the same way we explained Eqs.
(16)-(17), as the sums of the projections of the force and moment balance equations along
the directions of the k-th partial velocities. This, in essence, is the result obtained by Lesser
[7], though through a different approach.

One advantage of using quasi-velocities is the additional freedom in selecting velocity
variables. This is particularly evident when dealing with angular velocities. In many cases,
the equations of motion can be considerably simplified by a judicious selection of the quasi-
velocities. Another advantage is that for systems subjected to nonholonomic constraints one
can find a set of independent generalized speeds and write the equations of motion directly
in unconstrained form.

The fundamental equations can also be obtained from a scalar variational principle. This
variational principle is the Gauss’ principle of least constraint [2]. Related to the Gauss’
principle are the Gibbs-Appell equations. To derive these equations, one begins with a
quantity S, similar to kinetic energy, called by some energy of acceleration, having the form

S =
N∑
i=1

1

2
miai · ai (31)

and the resulting Gibbs-Appell equations of motion are

∂S

∂u̇k
= Uk =

N∑
i=1

Fi · vki k = 1, 2, ..., n (32)

which can be shown to be the same as Kane’s equations, both for particles as well as rigid
bodies.

In between the D’Alembert’s and Gauss’ principles is the Jourdain’s Variational Principle,
which acts on the second variation (hold time and position fixed, vary velocity) [8]. For a
system of particles, the principle has the form

N∑
i=1

miai · δ1vi =
N∑
i=1

Fi · δ1vi (33)

and for rigid bodies the principle can be shown to be

N∑
i=1

(
miaGi · δ1vGi + ḢGi · δ1ωi

)
=

N∑
i=1

(
Fi · δ1vGi + MGi · δ1ωi

)
(34)

Derivation of the fundamental equations from this principle is straightforward.

3 Quasi-Velocities and Lagrangian Mechanics

The previous section discussed how one can derive the equations of motion of a rigid body
by direct use of D’Alembert’s and Jourdain’s principles. This is accomplished using either
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generalized velocities or generalized speeds. We will refer to this way of obtaining the
equations of motion as a vector approach.2 Let us next analyze scalar approaches, namely
Lagrange’s equations.

Derivation of Lagrange’s equations in terms of generalized coordinates and generalized
velocities is well-known. In column vector format, and in terms of the kinetic and potential
energies T and V , we can write Lagrange’s equations as

d

dt

∂T
∂{q̇} −

∂T
∂{q} +

∂V
∂{q} = {Q}T (35)

where {q} = [q1 q2 ... qn]
T and {Q} = [Q1 Q2 ... Qn]

T . To express Lagrange’s equations in
terms of generalized speeds, we need to manipulate the terms in the above equation. We
first express the kinetic energy in terms of {q} and {u} and denote the new expression by
T̄ . We then have

∂T
∂{q̇} =

∂T̄
∂{u}

∂{u}
∂{q̇} =

∂T̄
∂{u} [Y ]

∂T
∂{q} =

∂T̄
∂{q} +

∂T̄
∂{u}

∂{u}
∂{q} (36)

We express the relationship between the generalized velocities and generalized speeds as

{q̇} = [W ]{u}+ {X} {u} = [Y ]{q̇}+ {Z} (37)

and recognize that the generalized force vectors are related by

{U} = [W ]T{Q} (38)

Introducing Eqs. (36) to Eq. (35), right multiplying the resulting equation by [W ]T and
considering Eq. (38) we write the Lagrange’s equations in terms of quasi-velocities as

d

dt

∂T̄
∂{u} +

∂T̄
∂{u} [Z]− ∂T̄

∂{q} [W ] = {U}T (39)

in which

[Z] =

(
d

dt

∂{u}
∂{q̇} −

∂{u}
∂{q}

)
(40)

Hence, the equations of motion can be obtained starting from a scalar quantity, and they
can be obtained in terms of the generalized coordinates or generalized speeds. We will refer
to this way of obtaining the equations of motion as a scalar approach. Also included in this

2Actually, one can consider Gauss’ principle as a vector principle also, because it can be written as a
third variation (hold time, position, and velocity fixed, vary acceleration).
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category is, of course, the Gibbs-Appell equations. A variant of this Gibbs-Appell equations
is the Central Equation [6].

Yet another combination of Lagrange’s equations and generalized speeds is obtained when
one makes use of Jourdain’s variational principle. One can show that this principle can be
written in scalar form as(

d

dt

∂T
∂{q̇} −

∂T
∂{q} +

∂V
∂{q} − {Q}

T

)
δ1{q̇} = 0 (41)

Now, expressing the variation of the generalized velocities as

δ1{q̇} =
∂{q̇}
∂{u}δ1{u} = [W ]δ1{u} (42)

Introducing the above equation into Eq. (41) and considering independent generalized speeds
(whose Jourdain variations are also independent) we obtain

(
d

dt

∂T
∂{q̇} −

∂T
∂{q} +

∂V
∂{q} − {Q}

T

)
[W ] = {0}T (43)

The above equation is known as Maggi’s equation [6] and it is particularly useful when
dealing with constrained systems. For a constrained system, [W ] is a rectangular matrix
and one ends up with a set of independent equations. By contrast, Lagrange’s equations for
quasi-coordinates are for unconstrained systems and they require introduction of Lagrange
multipliers for constrained systems.

One can classify the different approaches for deriving the equations of motion as: 1)
Vector approaches based on the direct use of D’Alembert’s or Jourdain’s principles, and 2)
Scalar approaches based on Hamilton’s and Gauss’ principles, such as Lagrange’s equations
or Gibbs-Appell equations. In both approaches, one can use either generalized velocities, or
generalized speeds. Use of generalized speeds can make the derivation of the equations of
motion simpler in many cases.

It then becomes a matter of choice to select the approach to use when writing the equa-
tions of motion. Each approach has advantages and disadvantages. For example, when using
D’Alembert’s principle one calculates accelerations and derivatives of the angular momen-
tum, which involves a lot of algebra. By contrast, when using Lagrange’s equations, one
only deals with velocities and angular velocities. However, a time derivative is still taken,
and because the approach requires partial derivatives, the algebraic burden can become over-
whelming. These arguments have to be considered in light of the fact that there exist today
powerful symbolic manipulation software packages and a comparison of the algebra involved
in different approaches may be a moot point. Another issue that needs to be considered is the
ease with which the resulting equations of motion lend themselves to numerical integration.

Table 1 summarizes the choices for deriving equations of motion using analytical tech-
niques.
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Velocity Variables Used
Type of Approach Generalized velocities Generalized speeds
Vector approaches D’Alembert’s principle Fundamental equations
(D’Alembert, Eqs. (16), (17) Eqs. (29), (30)
Jourdain)
Scalar approaches Lagrange’s equations Gibbs-Appell equations, Eq. (32)
(Hamilton, Gauss) Eq. (35) Lagrange’s eqs. for quasi-coordinates

Eq. (39), Maggi (43)

Table 1. Summary of Analytical Techniques for Deriving Equations of Motion

An area where the direct use of D’Alembert’s principle with generalized speeds has a
distinct advantage over Lagrangian mechanics is with nonholonomic systems. When using
D’Alembert’s principle, one can select a set of independent generalized speeds and derive
the equations of motion directly. This is not the case with Lagrangian mechanics, where one
first needs to derive the equations of motion in terms of the Lagrange multipliers and then
eliminate the Lagrange multipliers.

An area where Lagrangian mechanics has superiority over the direct use of D’Alembert’s
principle is in continuous systems, as in flexible bodies. Here, one makes use of Hamilton’s
principle and derives Lagrange’s equations for continuous systems, in terms of partial dif-
ferential equations [4]. This is not possible with the direct use of D’Alembert’s principle, as
this principle is not an integral principle.

4 Illustrative Examples

The first example is from vehicle dynamics and it illustrates the advantages associated with
using a vector based approach. Consider Fig. 1, representative of a generic vehicle, driven
by forces at C and D. The XY frame is inertial and the xy frame is attached to the vehicle,
which moves according to the constraint

vA · j = 0 (44)

so that the velocity of point A is always along the x direction. Using the generalized coor-
dinates of X, Y and θ, where X and Y are the coordinates of the center of mass, we express
the velocity of A as

vA = (Ẋ cos θ + Ẏ sin θ)i + (−Ẋ sin θ + Ẏ cos θ − Lθ̇)j (45)

so that the constraint can be written as

−Ẋ sin θ + Ẏ cos θ − Lθ̇ = 0 (46)

We recognize this constraint to be nonholonomic. Let us first make use of the direct
application of D’Alembert’s principle and generalized speeds, which we select as u1 = vA ·
j, u2 = θ̇.
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We need to generate the partial velocities as well as the acceleration of the center of mass
and rate of change of angular velocity. We have

ω = u2k vG = vA + ω × rG/A = u1i + Lu2j

vC = vA + ω × rC/A = (u1 − hu2)i vD = vA + ω × rD/A = (u1 + hu2)i (47)

so that

v1
G = i v2

G = Lj v1
C = i v2

C = −hi v1
D = i v2

D = hi ω1 = 0 ω2 = k (48)

and the acceleration of G and the change in angular momentum are

aG = (u̇1 − Lu2
2)i + (Lu̇2 + u1u2)j ḢG = IGu̇2k (49)

Noting that the applied forces are FC = FCi and FD = FDi, the equations of motion
become

maG · v1
G + ḢG · ω1 = FC · v1

C + FD · v1
D → m(u̇1 − Lu2

2) = FC + FD

maG · v2
G + ḢG · ω2 = FC · v2

C + FD · v2
D → (IG +mL2)u̇2 +mLu1u2 = h(FD − FC) (50)

We can interpret these equations as the force balance along the x direction and moment
balance about point A. Next, let us solve this problem using scalar principles. The kinetic
energy, in terms of the generalized velocities, has the form

T =
1

2
m(Ẋ2 + Ẏ 2) +

1

2
IGθ̇

2 (51)

The potential energy is zero. Considering that the constraint is given by Eq. (46), the
virtual work can be written as

δŴ = FC · δrC + FD · δrD + λδf

= (FC + FD) cos θδX + (FC + FD) sin θδY + (FD − FC)hδθ

+λ(δX sin θ − δY cos θ + Lδθ) (52)

where λ is the Lagrange multiplier. The equations of motion are obtained as

mẌ = (FC + FD) cos θ + λ sin θ

mŸ = (FC + FD) sin θ − λ cos θ (53)

IGθ̈ = (FD − FC)h+ Lλ
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These equations can be manipulated to yield Eqs. (50), but it is clear that the effort
involved is much larger than the direct use of D’Alembert’s principle. This process can be
simplified by using Maggi’s equation. We relate the generalized coordinates and generalized
speeds by



Ẋ

Ẏ

θ̇


 =




cos θ − sin θ
sin θ cos θ

0 1




[
vA
θ̇

]
(54)

Combining Eqs. (43) and the coefficient matrix in the above equation, we obtain two
independent equations in the form

mẌ cos θ + mŸ sin θ = FC + FD

mẌ sin θ + mŸ cos θ + IGθ̈ = (FC + FD)h (55)

and by a proper substitution of the quasi-velocities, these equations can be shown to be the
same as the equations of motion derived earlier. Note that when using Maggi’s equation the
Lagrange multipliers need not be considered, which is an advantage of this approach over
the constrained coordinate approach. However, one still has to convert from the generalized
coordinates to the generalized speeds, once the independent equations of motion are obtained.

Next, let us use Lagrange’s equations for quasi-coordinates. We select the same gen-
eralized speeds as before. This procedure cannot be carried out for the general case of
constrained systems, as the effects of the constraints cannot be accounted for properly. The
kinetic energy has the form

T̄ =
1

2
mv2

G +
1

2
IGθ̇

2 =
1

2
mu2

1 +
1

2
(IG +mL2)u2

2 (56)

We note that the kinetic energy is not a function of the generalized coordinates, so that
∂T̄ /∂qk = 0 (k = 1, 2, 3). The first term in Eq. (39) yields the first terms in Eq. (50). We
now need to evaluate the second term in Eq. (39), namely ∂T̄

∂{u} [Z]. To evaluate [Z], we first

need to write {u} = [Y ]{q̇}. This expression can be written in many ways, as {u} = [u1 u2]
T

is a vector of order 2, while {q} = [q1 q2 q3]
T is of order 3. Recalling the definitions of the

generalized speeds

u1 = vA = (Ẋ cos θ + Ẏ sin θ) u2 = θ̇ (57)

so that if we write [Y ] as

[Y ] =

[
cos θ sin θ 0

0 0 1

]
(58)

it becomes clear after a few steps that the correct equations of motion are not reached. The
constraints were not properly accounted for. We need to write the expression for u2 in such
a way that we satisfy the relationship

∂T̄
∂{u} [Y ] =

∂T̄
∂{q̇} (59)
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with the second row of [Y ] being unknowns. This approach eventually leads to the correct
equations, but the procedure is cumbersome and it is not a valid approach for the general
case. Hence, we conclude that for nonholonomic constrained systems, the direct application
of D’Alembert’s principle is more suitable than Lagrange’s equations.

Next, let us consider a lightly flexible beam undergoing combined rigid and elastic motion.
The beam is free at one end and is attached to a ball and socket joint at the other, as shown
in Fig. 2. We will view the motion using the primary and secondary frame approaches [2].
We begin with an inertial XY Z frame, where the beam axis is the X axis and the flexibility
is along the Y direction. We rotate the beam to its new position and the local body axes are
now xyz with the x axis denoting the beam axis. The components of the angular velocity
of the reference frame are given by Eq. (18). The deformation of a point on the beam is
expressed by

r(x, t) = xi + v(x, t)j (60)

in which v(x, t) is the elastic deformation. The velocity of this point is obtained by simple
differentiation as

v(x, t) = v̇(x, t)j + ω × (xi + v(x, t)j)

= −ωzv(x, t)i + (xωz + v̇(x, t))j + (ωxv(x, t)− xωy)k (61)

A number issues are of interest: First, writing the velocity of a point using generalized
velocities would be very cumbersome, so that using quasi-velocities is preferable. Second,
the equations of motion cannot be obtained by direct use of D’Alembert’s principle, unless
the elastic motion is discretized beforehand. Finally, the above model contains substantial
simplification, as it ignores the axial deformation as well as the shortening of the projection.
A model that includes these effects is even more complicated. Hence, it is preferable to use a
scalar integral principle, as well as quasi-velocities. This principle is, of course, the Extended
Hamilton’s principle. The kinetic energy has the form

T =
∫ L

0
v(x, t) · v(x, t)dm

=
∫ L

0

(
v̇2 + v2(ω2

x + ω2
z) + x2(ω2

y + ω2
z) + 2x(ωzv̇ − ωxωyv)

)
dm (62)

By applying the Extended Hamilton’s principle and Lagrange’s equations for quasi-
coordinates, one can obtain the equations of motion in hybrid form. We get three differential
equations for the angular velocities, and a partial differential equation for the flexible motion.
The procedure is outlined in [9] and [10].

In [6] a procedure is outlined, based on the direct use of D’Alembert’s principle and
the projection equations, to derive the equations of motion and boundary conditions of a
deformable body in hybrid form. However, the procedure requires the use of potential energy,
which implies that some use has been made of Hamilton’s principle.
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5 Conclusions

We look at the describing equations of analytical dynamics from a different perspective. We
show that the equations of motion are basically the projection of the fundamental equations of
force and moment balances along directions affected by the kinematic coefficients. This holds
true for generalized velocities as well as for quasi-velocities. The equations of motion can
be classified as either being based on vector principles, primarily direct use of D’Alembert’s
or Jourdain’s principles, or on scalar principles, such as Hamilton’s and Gauss’. Advantages
and disadvantages of the various approaches are discussed.
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