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Abstract: Gyroscope devices are primary units for navigation and control systems in 
aviation and space engineering. The main property of the gyroscope is maintaining 
the axis of a spinning rotor, based on the principles of the angular momentum of the 
spinning rotor. However, the nature of the gyroscope’s acting forces and motions 
is more complex. The torque applied to the gyroscope generates the internal resis-
tance and precession torques based on acting simultaneously and interdependently, 
namely, centrifugal, common inertial and Coriolis forces generated by the mass  
elements of the spinning rotor as well as changes in angular momentum. This 
system of internal torques based on new fundamental principles of the gyroscope 
theory that enabled deriving the mathematical model for the motions of a gyro-
scope suspended from the flexible cord, which was a most unsolvable problem. The 
test results of the gyroscope motions well validated the new analytical approach.
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1. Introduction
In 1765, L. Euler first laid the mathematical foundations for the gyroscope theory in his work on the 
dynamics of rigid bodies. Other brilliant scientists had investigated, developed and added new inter-
pretations for gyroscope effects, which are displayed in the rotor’s persistence of maintaining its 
plane of rotation. The applied theory of gyroscopes, i.e. the theory of devices and gyroscopic 
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systems, emerged mainly in the twentieth century (Cordeiro, 2015; Greenhill, 2015; Neil, 2014; 
Scarborough, 2014). Gyroscopic effects and properties are relayed in many engineering calculations 
for rotating parts that enable the function of numerous gyroscope devices in aviation and space, on 
ships and in other industries (Jonsson, 2007; Weinberg, 2011). All fundamental textbooks of classical 
mechanics contain chapters that represent the gyroscope theory (Aardema, 2005; Gregory, 2006). 
However, the studies of physical effects that regard the behavior of gyroscopes still remain inade-
quately explained (Liang & Lee, 2013).

There are many publications and a great number of mathematical solutions that describe spin-
ning rotor properties (Crassidis & Markley, 2016; Zhang, Ren & Li, 2012). All publications contain nu-
merous assumptions and simplifications and explain gyroscope effects in terms of the conservation 
of kinetic energy, as well as by the action of the internal moments (Doupe & Swenson, 2016; 
Stevenson & Schaub, 2012). Some researchers have intuitively pointed to the action on the gyro-
scope of other inertial forces that also take part in the manifestation of gyroscope effects (Braun, 
Putnam, Steinfeldt, Grant, & Barton, 2013). This is, therefore, the deficiency of all previous studies of 
gyroscope properties that are based only on one principle of the change in the angular momentum. 
Due to this, all mathematical models for the gyroscope effects do not match practical applications 
for gyroscopic devices. Experts in the area of the gyroscope theories confirmed this statement. This 
is why the gyroscope problems still attract many researchers to seek and discover new properties for 
these devices (Inampudi & Gordeuk, 2016).

The nature of gyroscope effects is more complex than those represented in the known theories. 
Researchers did not pay attention to the action of the inertial forces generated by the mass ele-
ments of the spinning rotor, and they considered the action of the gyroscope center-mass only. 
Recent investigations of the physical principles of gyroscope motions demonstrate that the four 
classical inertial forces generated by the mass elements are acting upon a spinning rotor and result-
ing in all gyroscope motions. Research shows that centrifugal, common inertial and Coriolis forces 
produced by the mass elements as well as the change in the angular momentum of the spinning 
rotor are the basis of all gyroscopic effects and properties. New studies demonstrate that the exter-
nal torque applied to the gyroscope generates several internal torques based on the action of the 
forces mentioned. In turn, the centrifugal and Coriolis forces generate a resistance torque that coun-
teracts the inclination of the rotor’s location. Other than that, common inertial forces and change in 
the angular momentum of a spinning rotor generate a precession torque. All torques are interrelat-
ed, occur simultaneously and can be combined to depend on the action of the external torques ap-
plied to the gyroscope. These gyroscope internal torques are real active physical components, and 
the well-known change in the angular momentum, that is, the non-primary acting component, 
which does not play the first role in gyroscope properties. The results of new studies make it clear 
why the gyroscope theory is far from perfection (Usubamatov, 2014, 2015, 2016).

New mathematical model for gyroscope motions demonstrates the interdependent action of 
eight internal torques around two axes. Moreover, this model manifests new gyroscope properties, 
interprets known unexplainable ones and is validated by tests conducted on the precision gyro-
scope. These new fundamental principles for gyroscope theory represent new challenges for future 
studies of gyroscopic devices.

This proposed paper presents a mathematical model for the motions of a gyroscope with one side 
suspended from the flexible cord under the action of the load and internal torques. The load torque 
is represented by the action of the gyroscope weight and internal gyroscope torques by resistance 
and precession torques. Furthermore, the new mathematical model describes the gyroscope mo-
tions accurately and its results match practical tests. The model for the gyroscope motions was 
tested on the Super Precision Gyroscope (Brightfusion Ltd, Abbeymead, UK) with measurements of 
the times of motions.
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2. Methodology
New studies into the physical principles of gyroscopic motions have presented mathematical models 
for the so-called gyroscopic resistance and precession torques, whose equations are shown in Table 1. 
The resistance torque is generated by the action of the centrifugal and Coriolis forces of the gyro-
scope’s mass elements. The action of the common inertial forces of mass elements and the well-
known change in the angular momentum of the spinning rotor produce the precession torques. These 
resistance and precession torques are interrelated, act at the same time and are strictly perpendicular 
to each other around their axes.

The equations of acting torques (Table 1) contain the following symbols: J is the rotor’s mass mo-
ment of inertia around its own axis; ωi is the angular velocity of the precession of a spinning rotor 
around axis i and ω is the angular velocity of a spinning rotor. For clarity in the following analyses of 
the actions of several torques and motions around axes, all components of the equations are marked 
by subscript signs that indicate the axis of action. For example, Trx is the resistance torque acting 
around axis ox, ωy is the angular velocity of precession around axis oy, etc.

The equations of the load and internal torques acting on the gyroscope are used to formulate the 
mathematical model for the motions around two axes of a gyroscope suspended from the flexible 
cord. This example represents the most unsolvable problem in the gyroscope theory. Furthermore, 
the analytical model for the motions is considered in the Super Precision Gyroscope by Brightfusion 
Ltd. Figure 1(a) demonstrates the running gyroscope suspended from the flexible cord. The gyro-
scope was assembled with the ability to freely rotate around axes ox and oy of the cord. A detailed 
picture of the gyroscope’s geometrical and computed technical parameters is shown in Figure 1(b) 
and in Table 2, respectively.

Tables 2 and 3 contain the following symbols: Jx and Jy are the mass moment of the gyroscope’s in-
ertia around axes ox and oy, respectively; l is the overhang of the centre of gravity of the gyroscope from 
the support o, while m is the mass of the gyroscope components; R is the radius of the rotor’s disc.

The mathematical model of motions for the gyroscope suspended from the flexible cord is formu-
lated for the common case when its axle is inclined at the angle γ. Besides that, the analysis of the 
torques and motions acting in the gyroscope is conducted on the basis of several rules and regula-
tions. The external load torque T that is produced by the gyroscope weight W generates the follow-
ing internal resistance and precession torques, which are interrelated and act at the same time 
around axes ox and oy.

(a) �The resistance torques are generated by the action of centrifugal Tct·x and Coriolis forces Tcr·x of 
mass elements acting around axis ox.

(b) �The precession torques are generated by common inertial forces Tin·x of mass elements and the 
rate change in the angular momentum of spinning rotor Tam·x acting around axis oy.

Table 1. Internal torques acting on a gyroscope
Type of torque generated by Equation (N.m)
Centrifugal forces (Tct) Tct = Tin = 2

(
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3

)2

J��i
Inertial forces (Tin)

Coriolis forces (Tcr) Tcr = (8/9)Jωωi

Change in angular momentum (Tam) Tam = Jωωi

Resistance torque (Tr = Tct + Tcr) Tr =
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(c) �The precession torques Tin·x and Tam·x, in turn, generate the precession torques of inertial forces 
Tin·y of mass elements and the rate change in angular momentum Tam·y acting around axis ox, 
and the resistance torques of centrifugal forces Tct·y and Coriolis forces Tcr·y of mass elements 
acting around axis oy.

(d) �The rotating gyroscope centre-mass around axis oy generates the centrifugal force that pro-
duces the torque Tct·my acting around axis ox.

The action of the external and internal torques is represented graphically in Figure 2.

Table 2. Technical data of the test stand with Super Precision Gyroscope, “Brightfusion LTD”
Weight Total rotating components 0.1159 kg

Frame with bearings and screws 0.0294 kg

Gyroscope (W) 0.1453 kg

Total gyroscope with screw (W) 0.146 kg

Mass moment of inertia (J, kgm2) Around axis oz Rotating components 0.5726674 × 10−4 

Around axis ox and oy Total 1.9974649 × 10−4

Table 3. Mass moments of inertia for the gyroscope components
Title Equation
Gyroscope mass moment of inertia around axis ox and oy Jx = Jy = (mR2/4) + ml2

Rotor’s mass moment of inertia around axis ox and oy Jx = Jy = (mR2/4)

Rotor’s mass moment of inertia around axis oz J = (mR2/2)

Figure 1. The gyroscope 
suspended from the flexible 
cord.
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Figure 3 depicts the location of the vectors of the internal torques at the system of coordinate 
Σoxoz for the Figure 2. Where oz* is the axis of the spinning rotor, Tpi = Tin·i  +Tam·i and Tri = Tct·i + Tcr·i is 
the vectors of precession and resistance torques acting around axis ox and oy*, respectively, γ is the 
angle of the inclination of the spin axis. In space, the vectors of internal torques are always perpen-
dicular between each other and to the axis of the spinning rotor oz*.

All internal torques represented the internal kinetic energies of the spinning rotor generated by 
the external torque. The internal kinetic energy of each axis originated only by resistance and pre-
cession torques that are equal to the internal kinetic energy of the other axis. This statement is 
proved by the equation that obtained from Figure 3. The resistance torques of one axis are combined 
with precession torques of the other axis. The actions of these internal torques can be contradicted 
in a gyroscope that depends on the types of the external loads. However, each axis contains resist-
ance and precession torques that originated in different axes. These combinations of internal tor-
ques can change the magnitudes of the angular velocities of the gyroscope around axes, but kinetic 
energies of each axis in absolute values remain constant.

The gyroscope properties, obtained through practical tests, are used for the mathematical models 
of the gyroscope motions (Usubamatov, 2014, 2016). The tests of the gyroscope were conducted in 
conditions of the action of all torques on the gyroscope’s support. The objective of the tests is to vali-
date the mathematical model for the action of the external and internal torques and motions of the 
gyroscope. Thus, the test results recorded the time of the gyroscope rotating around axes ox and oy. 

Figure 2. The torques and 
motions acting on the 
gyroscope suspended from the 
flexible cord.

Figure 3. Vectors of gyroscope 
internal torques acting around 
two axes.
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The technical data of the gyroscope stand (Table 2 and Figures 1 and 2) enable the following infor-
mation to be used for mathematical modelling of the gyroscope motions.

The action of load torque T around axis ox is represented by the following equation:

where g is the gravity acceleration, γ is the angle of the gyroscope’s axle inclination and other com-
ponents are as specified above.

The weight of the gyroscope acts positively in a counter-clockwise direction. The other torques 
acting in the gyroscope are represented by the several components whose directions are opposite 
and aside from the action of the load torque. Furthermore, the load torque T produces the several 
resistance and precession torques acting around axes ox and oy. The tests for the motion of the 
gyroscope demonstrated that its rotation around axis oy was carried out with a high angular veloc-
ity, faster than around axis ox. At first sight, this gyroscope property contradicts the rules of classical 
mechanics. However, analyses of the acting torques and motions in the gyroscope enable this prop-
erty to be explained by the new mathematical model.

The mathematical model for the motions of the gyroscope suspended from flexible cord around 
axes ox and oy is represented by Euler’s differential equations as follows:

 

where ωx and ωy are the angular velocity of the gyroscope around axes ox and oy, respectively; Tct·x, 
Tct·y, Tcr·x, Tcr·y, Tin·x, Tin·y, Tam·x and Tam·y are internal torques generated by the centrifugal, Coriolis, com-
mon inertial forces and by the change in the angular momentum, and acting around axes ox and oy, 
respectively, Tct·my is the torque generated by the centrifugal force of the rotating gyroscope centre-
mass around axis oy that acts around axis ox (Table 1 and Figure 2).

The centrifugal force of the rotating gyroscope centre-mass around axis oy produces the torque 
acting around axis ox and is defined by the following equation:

where Fct·my = Wl cos γ ωy
2 is the centrifugal force of the gyroscope centre-mass rotating around axis 

oy and other components are as specified above.

Substituting the defined equations of the internal torques of the gyroscope (Table 1) as well as 
Equations (1) and (3) into Equation (2) enables the representing of the following system of differen-
tial equations:

 

where all the components are as specified above.

The two equations (Equation (4)) represent the system with two variables and demonstrate the 
following properties. The load torque T acting around axis ox produces two precession torques: Tin·x 
generated by the common inertial forces of mass elements, and torques Tam·x generated by the 

(1)T =Wglcos�
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dt
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change in the angular momentum. These torques are acting around axis oy while the actions of load 
T and precession torques Tin·x and Tam·x around the axes do not coincide. In turn, the precession tor-
ques Tin·x and Tam·x that act around axis oy demonstrate the same property of the action by the tor-
ques Tin·y and Tam·y but around axis ox (Figure 2). The rotating gyroscope centre-mass around axis oy 
produces the centrifugal force that acts as the torque Tct·my around axis ox in the same direction as 
load torque T.

These interrelations of the torques acting around the two axes represent the gyroscope properties 
that cannot be formulated by a single mathematical equation. Hence, it can be stated that Equation (4) 
represents one specific equation with two components and two variables, which are the precession 
angular velocities around axes ox and oy. These gyroscope angular velocities are produced by the 
action of one load torque T and nine internal torques. The second equation of Equation (4) is part of 
one system that cannot be considered separately. This equation does not contain the load torque T 
and cannot be used for solving variables. Besides that, the solution of Equation (4) is possible by a 
third equation that can be formulated on the basis of the gyroscope’s internal kinetic energy.

The system of Equation (4) contains eight internal torques generated by rotating mass elements, 
which are the internal kinetic energy of the spinning rotor (Table 1) and represent one system. The 
internal torque Tct·my generated by the centrifugal force of rotating gyroscope centre-mass around 
axis oy has a different nature. This torque is separated from the system of torques generated by 
spinning mass elements of the gyroscope rotor. Hence, the equality of internal kinetic energies of 
the system of torques acting around axes ox and oy (Figure 2) formulated the following equation:

 

where the left equation contains the torques Tct·x, Tcr·x, while Tin·y, and Tam·y are acting around axis ox 
and represent the resistance torques with the minus sign (−). Other than that, the right equation 
contains the precession torques Tin·x and Tam·x that are positive acting and the resistance torques Tct·y, 
and Tcr·y that are negative acting around axis oy. Other components are as specified above.

Equation (4) enables the dependency between the angular velocities of gyroscope precessions 
around axes ox and oy to be defined. Substituting the expressions of torques (Table 1) into Equation (5) 
and transforming them yield the following equation:

 

Simplification and transformation of Equation (6) yield the following result:

 

�y = −(4�
2
+ 17)�x for the horizontal location of the gyroscope axis (γ = 0)

where the sign (−) means that the direction of the resistance torque is negative and can be omitted 
from the following discussions.

Analysis of Equation (6) demonstrates the following algebraic peculiarities. The angular velocities 
of precessions ωy and ωx are variable and depend on the angular location γ of the spinning axis. The 
left component of Equation (6) contains the torque generated by common inertial forces acting 
around axis ox Tinr⋅y = 2
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transformation. This peculiarity means the considered internal torques should also be removed from 
the system of internal kinetic energy generated by rotor’s mass elements (Equation (4)). Hence, 
transformation of Equation (6) yields the following system of equations:

 

The system of Equation (8) enables the gyroscope’s angular velocities around axes ox and oy to be 
defined. Substituting Equation (7) into the first Equation (8) and their transformation yield the fol-
lowing equation for the gyroscope’s motion around axis ox: 

where all components are as specified above.

3. Case study and practical tests
The mathematical model for the motions of the gyroscope suspended from the flexible cord is con-
sidered for the horizontal location of the gyroscope spinning axle (cos 0o = 1.0, Figure 1). Substituting 
the defined gyroscope parameters represented in Tables 2 and 3 as well as in Figure 1 into Equation (9) 
and their transformation yield the following differential equation:
 

Simplification of Equation (10) and its transformation yield the following expression:

 

Separating the variables for the differential Equation (11) yields the following equation:

 

Presentation of Equation (12) by the integral form at defined limits yields the following 
expression:

 

The left integral of Equation (13) is tabulated and represented the integral ∫ dx

a−x
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right integral is simple. Solving the integrals yields the following expression:
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giving

 

It is necessary to underline the one notable result of the analytical approach. For instance, 
Equation (14) demonstrates that the angular velocity of precession ωx is variable with time t, i.e. with 
acceleration. Hence, the angular velocity ωy of the gyroscope around axis oy is also variable (third 
Equation (8)). This equation is validation that the gyroscope is an inertial system. Moreover, the right 
component of Equation (14) contains the expression e−17.075837ωt that has a small value of a high order 
for the angular velocity ω of the spinning rotor, which is about n = 10,000 – 30,000 rpm. Hence, this 
expression can be neglected and the angular velocities of the gyroscope precessions accepted as 
constant for the common solutions. However, for the low angular velocity of the spinning rotor, the 
accelerated motion of the gyroscope can be considerable.

Meanwhile, the analysis of Equation (14) demonstrates that the angular velocity of the precession 
is always decreased with a change of the time t, which is a new property of the gyroscope. The an-
gular acceleration of gyroscope precession around axis ox is defined by the first derivative of 
Equation (14) with respect to variable time t that has the following expression:

 

Obviously, the gyroscope’s angular acceleration around axis oy is represented by the following 
equation: εy = (4π2 + 17)εx.

Equation (15) shows that the gyroscope acceleration is decreasing with time asymptotically to an 
infinitely small magnitude. The limit of Equation (15) as t → ∞ yields the following result:

 

The conditions of the gyroscope tests are accepted as follows. The rotor speed is n = 10,000 rpm 
or ω = 10,000 (2π/60) rad/s. The drop of the rotor speed due to the action of the friction forces in the 
gyroscope bearings and by the air viscosity is 67 rev/s. The velocity of the spinning rotor was meas-
ured by the Optical Multimeter Tachoprobe Model 2108/LSR Compact Instrument Ltd with a range of 
measurement of 0–60,000.00 rpm. The time of the gyroscope motions around the axes was meas-
ured by a stopwatch model SKU SW01 with a resolution of 1/100 s. The angular measurements of 
the location for the gyroscope axis were conducted optically by the angular template with an accu-
racy of ±1.00.

The obtained results of the tests are as follows. The angular velocity of the gyroscope precession 
around axis oy is ωy = 42.188o/s and around axis ox is ωx = 0.746o/s. Moreover, the time spent on one 
revolution around axis oy is t = 2π/ωy = 360o/42.188o/s = 8.533 s, and the time spent on the turn of 
20o around axis ox (±10o around the horizontal location) is t = 2π/ωx = 20o/0.746o/s = 26.809 s. The 
theoretical angular velocity and acceleration of the gyroscope’s precession around axes ox and oy 
computed by Equations 13, 14 and 7 yield the following result:
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The magnitudes of the angular accelerations around axes ox and oy are very small of a high order 
that cannot be measured by high-tech instrumentation. However, the values of the acceleration are 
very important for the explanation of the gyroscope’s angular velocities, which are accepted as con-
stant by researchers. This wrong conclusion results in the wrong statement that the gyroscope man-
ifests non-inertial property.

The experimental and theoretical results of the gyroscope precessions around two axes are pre-
sented in Table 4.

Analysis of the tests and theoretical results for the gyroscope time motions around the axes dem-
onstrates that test time is less than theoretical. Explanation of this difference is as follows. The 
mathematical model of the angular velocities (Equation (17)) does not contain the drop of the angu-
lar velocity of the spinning rotor ω, whose decrease leads to increases in the angular velocities of the 
gyroscope around the axes. Hence, it leads to a decrease in the time of the motions.

The recorded results of the theoretical calculations and practical tests of the gyroscope preces-
sions (Table 4) are well matched in spite of some differences. These differences can be explained by 
simplifications in the computing of the geometrical parameters for the gyroscope stand and hence 
in its mechanical properties. Furthermore, the results of the theoretical and practical studies are in-
fluenced by the following factors:

• � The accuracy level of the computation of the gyroscope’s technical data

• � The accuracy level of the measurement

• � The drop of the spinning rotor velocity and angular precession velocities of the gyroscope

• � Variability of the angular velocity of the precession around axes ox and oy

• � Variability of the values of the frictional forces in the supports

All these factors have a definite influence on the computation of gyroscope angular velocities, and 
in this case the theoretical and practical results will always be different. Generally, the differences in 
results depend on the quality of the mathematical model and the quality of the practical tests for 
the process.

The new mathematical model of gyroscope motions enables the explaining of the physics of sev-
eral gyroscope properties. The small value of the gyroscope accelerations around the axes results in 
a small value of reactive forces on the supports. Analytically, this is confirmed by the following solu-
tion, as the total torque acting around axes ox and oy on the gyroscope suspended from the flexible 
cord is defined by the equation Tt·i = Jεi. Then, the reactive force acting on the cord is defined by the 
following equation:
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y
= (4�
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+ 17)�
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2
+ 17) × 0.0130387 = 0.736405 rad∕s = 42.188
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(18)Fi =
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l

=
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l

Table 4. Experimental and theoretical results of the gyroscope precession
Gyroscope average parameters Tests Theoretical Difference
Time of precession (one revolution) around axis oy 8.2 s 8.533 s 3.90%

Time of precession around axis ox on 20o of the turn about horizontal 
location

25.1 s 26.809 s 6.37%

Angular velocity of precession around axis ox ≈1.0o/s 0.746o/s –
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where Tt·i is the total torque acting around axis i, Fi is the reactive force acting on the cord along the 
axis, and all other components are as specified above.

Substituting the defined components (Table 2, Figure 2, Equations (17) into Equation (18) and their 
transformation yield the magnitude of the reactive force of torques acting on the cord along axes oy 
and ox: 

where the reactive force Fy acting on the cord along axes oy does not affect an angular location of 
the gyroscope and has the small value that can be neglected.

The obtained theoretical results validated by practical tests enable the formulating of the follow-
ing expression: the internal torques acting on the gyroscope do not produce a sensitive reactive 
force on the supports. The described gyroscope’s property is new and should be taken into account 
for the computation of forces and motions in different gyroscopic mechanisms and devices.

The gyroscope weight W gives the reactive force FW acting along the flexible cord, which is consid-
ered with other forces generated by the gyroscope’s internal torques for computing the angles of the 
location of the gyroscope in space relatively to the point of suspension B (Figure 4). The centrifugal 
force acting along horizontal axis oz is represented by the sum of the centrifugal forces generated 
by rotating gyroscope centre-mass around axes ox and oy as follows:

  

The suspended gyroscope represents a movable system, which has a free motion on the horizon-
tal plane xoz (Figure 4). The weight of the running gyroscope and the action of internal torques shift 
the cord along axes ox, oy and oz relative to the centre axes system Σoxyz. The new location of the 
end of the gyroscope shaft is o1 defined by the angles β, φ and ψ, and by the linear distance a and b. 
The angle ψ is calculated by the formula: sin ψ = a/d.

The internal torques acting around axis oy turn the gyroscope through an angle β in a counter-
clockwise direction relative to its centre of gravity A. The end of the flexible cord o is shifted on the 
distance b on the plane xoy. However, the angle β is restricted by the balancing of the force Fx of the 
torques and by the force of the gyroscope’s weight component F1 acting along axis ox. The centrifu-
gal force Fz acting along axis oz turns the gyroscope through an angle ψ around the point of suspen-
sion B at the plane zoy. The end of the flexible cord o is shifted on the distance a. However, the angle 
ψ is restricted by the balancing of the force Fz of the torques and by the force of the gyroscope’s 
weight component F2 acting along axis oz.

Figure 4 enables the value of the reactive forces to be defined by the following formulas: Fx = Tty/l, 
where Tty is the total torque acting around the cord (axis oy); F2 = Wlωy

2, where ωy is the angular veloc-
ity of precession around axis oy and other parameters are as specified above. In this circumstance, the 
end of the cord o turns around the point of suspension B on the angles φ and ψ. Figure 4 enables the 
angles φ, β and ψ to be defined by the following formulas: sinφ = F1/FW, where FW is the force of gyro-
scope weight; sinβ = b/l, where b = dsinφ; d is the length of the cord; sin ψ = F2/FW and other parameters 
are as specified above. Thus, the balance of the action of the forces (F1 = Fx) and (F2 = Fz) enables the 
angular location φ and ψ about the vertical of the cord to be defined by the following solutions:
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giving φ ≈ 0o and ψ = 0.102o Then, the distance b = φd = 0 × 250 ≈ 0 mm, which gives the value of the 
angle sinβ = b/l = 0/32.5, hence β = 0o. The distance a = ψd = (0.102o × π/180o) × 250 = 0.449 mm. The 
end of the cord is shifted on a very small distance at the plane xoz that can be neglected. Apart from 
that, the vertical location of the cord with the suspended gyroscope is validated by the tests and 
demonstrate no appreciable decline of the cord from the vertical.

Practical tests of the suspended gyroscope with a high angular velocity of the rotor demonstrate 
that such a system does not manifest the motions of a swinging pendulum. This is because the ac-
tion of the internal torques presents the gyroscope as an over-damped or critically damped non-os-
cillating system. However, the low angular velocity of the rotor leads to the gyroscope oscillation.

4. Results and discussion
The analytical study of forces acting on the gyroscope suspended from the flexible cord formulated 
the mathematical model of its motions around two axes. These motions resulted from the acting of 
the centrifugal, common inertial, and Coriolis forces and the change in the angular momentum of 
the spinning rotor. For instance, acting forces generated the resistance and precession torques, 
which produce the different angular velocities of the gyroscope around the two axes. The angular 
velocities are variable, but their changes are insignificantly small and can be neglected for practical 
application. It is found that the acting torques do not generate the sensitive reactive force on the 
support that the new gyroscope property was proven analytically and practically, which should be 
taken into account for engineering computing. In addition, the mathematical models for the gyro-
scope motions suspended from the flexible cord, as well as the action of the external and internal 
torques, are validated by practical tests. The results of the gyroscope time motions around two axes 
and acting forces computed by mathematical models are well matched with the practical tests. 
Thus, the obtained results are the validations of the correctness of the new analytical approach.

(21)
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−7708

0.146 × 9.81
= 1.296232 × 10

−7708

sin� =

F
z

F
W

=
2.573178 × 10

−3

0.146 × 9.81
= 0.00179658.

Figure 4. Location of the 
gyroscope suspended from the 
flexible cord.
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5. Conclusion
The gyroscope theory in classical mechanics is one of the most complex and intricate in terms of 
analytical solutions. The known mathematical models for the gyroscope theory are mainly based on 
the action of the external torque applied and the change in the angular momentum of the spinning 
rotor. This approach involves many assumptions and simplifications of the unexplainable motions of 
gyroscopic devices. However, new studies demonstrate that the torques generated by the centrifu-
gal, common inertial and Coriolis forces of the mass elements of the spinning rotor play a critical role 
along with the change in the angular momentum. The action of each force is formulated by the 
mathematical model for the gyroscope motions suspended from the flexible cord that was most 
unsolvable. Other than that, the new analytical approach for the gyroscope effects clearly describes 
the known properties and reveals a new one. The experimental tests of the motions and forces act-
ing on the gyroscope are suspended from a flexible cord, which matches well the mathematical 
model. Thus, the new analytical approach represents the gyroscope properties in a new light and 
constitutes new challenges for future studies of gyroscopic devices.

Nomenclature

b 	 shift distance of the end of a gyroscope shaft relatively axis oy
d 	 length of a flexible cord
g 	 gravity acceleration
e 	 base of natural logarithm
Fi 	 reactive force of a support along axis i
Fct·my 	 centrifugal force of rotation gyroscope centre-mass around axis oy
W	  weight of a gyroscope
i 	 index for axis ox or oy
J 	 mass moment of inertia of a rotor’s disc
Ji 	 mass moment of inertia of a gyroscope around axis i
m	 mass of a rotor’s disc
l 	 distance between a gyroscope centre mass and a cord
R 	 external radius of a rotor
T 	 load torque
Tam·i 	 torque generated by a change in an angular momentum acting around axis i
Tcti, Tcr·i, Tin·i 	� torque generated by centrifugal, Coriolis and common inertial forces, 

respectively, and acting around axis i
Tct·my 	� torque generated by centrifugal force of a rotating gyroscope centre mass and 

acting around axis oy
Tp 	 precession torque acting around axis
Tr 	 resistance torque acting around axis
Tt·i 	 total torque acting around axis 
iT 	 time
Β 	 angle of gyroscope turn on a plane xoz
φ, ψ 	� angle of gyroscope turn around of a cord suspension along axis ox and oz, 

respectively
εi 	 angular acceleration of a gyroscope around axis i 
γ 	 angle of inclination of a rotor’s axle
ω 	 angular velocity of a rotor
ωi 	 angular velocity of precession around axis i
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