Jourdain’s variational equation and Appell’s equation of motion
for nonholonomic dynamical systems
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Based on Jourdain’s variational equation proposed in 1909, we deduce a minimal set of general
equations of motion for nonholomic dynamical systems of particles and rigid bodies. This equation
of motion for the system, which differs slightly from the Gibbs—Appell equation, appears to be the
same as the equation derived by Kane in 1961. Since the same equation was established by Appell
in 1903 on the basis of D'Alembert’s principle, the newly derived equation is named Appell’s
equation. ©2003 American Association of Physics Teachers.
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[. INTRODUCTION In this paper, we treat Jourdain’s variational equation as a
Analytical mechanics as embodied by Whittak&804* mathematical representation of a basic principle of mechan-

has long been regarded as a mature subject. Therefore, tfé;é’ the principle of virtual power, which is on par with

introduction of a new principle of mechanics or another - Al_emberts prlnCI_pI_e and Gauss's prlnC|pIe.\_Ne then est_ab-
equation of motion to rival Newton’s equation would attract IS in Sec. il a minimal set of general equations of motion
great attention. In a more recent treatise on the same subjel@ enholonomic dynamical systems from Jourdain's equa-

by Pars(1965,2 the author discussed a new fundamentaltion- our original motivation was to find if the Gibbs—Appell
form of equations in mechanics, Jourdain’s variational equagduation or similar ones could also be derived from the new

tion, and a general set of equations of motion, the Gibbs-Principle. However, there emerged a set of differential equa-
Appell equation. The latter was not new as it was discussegOns which is very much like Kane’s equation of motion.

in the section entitled Appell’s equation in Ref. 1. The ecause Chen and Desl_oge already indicated its similarity to
former, which was postulated by Jourdain in 1§0%s gen-  the Gibbs—Appell equation, we searched the literature and
erated considerable interest as discussed by B1864, found that a similar intermediate differential equation also

. y . 18 =y
R h 5| 1 6 appeared in Appell’'s treatised903° and Jourdain’s paper
M%%ir?fggg.r;d Schwertassek98g,” Lesser (1999, and (1905.'" In fact, Appell's work was reproduced in the trea-

In 1961, another set of equations of motion was discusseliS€ Py Whittaker in 1904 containing the same equation as
intermediate step.

by Kané and was applied subsequently to dynamical prob2" how h dain’ iational .
lems with nonholonomic constraints, especially for multicon- " Sec. 1V, we show how Jourdain's variational equation
can be applied to derive Euler’s equation of linear momen-

nected rigid bodie®-'? His work was later regarded by " \ .
other€ to be related to Jourdain’s earlier work, and the pro-ium and of angular momentum for rigid bodies. An applica-

posed equation and its derivation were named Kane’%ion of the variational equation and Appell’s equation in gen-

method, Kane's equation, or Jourdain’s method by differenfralized coordinates or quasi-coordinates is illustrated by a
authors. However, Kane’s method was considered to paystem of two rolling wheels mounted on a rigid axle. The

equivalent to the Gibbs—Appell method by Desl¢gesg,’*  Paper concludes in Sec. V with comparisons of Appell's
and was noted by Che1984'*1%as an intermediate step in equation with Newton's equation, Lagrange’s equation, and
the derivation of the Gibbs—Appell equation from Gauss'sth® Gibbs—Appell equation.
principle.

In a series of papers, Jourdaifi’investigated the appli- I NEWTON'S PRINCIPLE AND OTHER
cation of D’Alembert’s principle, Hamilton’s principle, and PRINCIPLES OF MECHANICS
Gauss's principle to dynamical systems with nonholonomic
constraints. He noted in Ref. 3 that in addition to the
D’Alembert—Lagrange variational equation for the virtual
displacement and that of Gauss—Gibbs for the virtual chang
of the acceleration, there could be another variational equa- mi=F', D

tion for the virtual change of velocity. He then postulated h denotes th 0 is th i tor at fi
Jourdain’s variational equation by inference from the otheVN€rem denotes the mass(t) is the position vector at time

two equations. However, he gave no basic principles orf Of the particle from a fixed point of reference, andndf
which the variational equation was based, nor a new set gi' the velocity and the acceleration, respectively. The quan-
equations of motion. Nevertheless, his equation along witfity F' is the impresse¢external force acting on the particle,
two other variational equations based on the aforementione@nd is a known vector or vector function ofr, andr, but
principles are listed as three of the six fundamental forms ofiot of f. (Note that the term “impressed force” is used in
mechanicg. Newton’s Principia.'®)

All principles of classical mechanics are founded on the
basis of Newton’s law for a single particle in free motin.
'Ie'he law may be expressed in modern notation as
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A. Newton’s principle displacementsr; is an arbitrary, infinitesimal, and instanta-
If the motion of the particle is constrainedmight not be ~ N€OUS change of position vectgrthat is imposed on particle
j with 6t=0. In addition, the principle stipulates that the

proportional to the impressed force. LE&F'+FC be the | wal disol ) b fible with th traint
resultant(total) force, whereFC denotes the force exerted by virtual dispiacement must be compatible wi € constraints
of the system, and thi values ofér; are related by a set of

the constraints on the particle. The equation of motion is ; . I -
modified to be P q constraint equations. Therefore, the condition of compatibil-

ity with the constraint is regarded as a part of the principle,
mi=F=F +FC. (20 not that of the definition of the virtual displaceméht.
In accordance with Newton's third lawC represents the The conditions of constraint are usually prescribed in the

reaction from the constraints. Equatit®) should be supple- form _Of functionsg, that relate t_h_e position coor_c!inates or
mented by auxiliary conditions for the unknown constraint’Unctions s that relate the positions and velocities of the

force. particles,

For a system oN interacting particles, we need to write geometric: g4(r,t)=0 (s=1,2,..K), (5)
an equation of motion for each particle and the conditions of . - )
constraint become more complicated Wsincreases. We kinematic:  ¢(r,f,t)=0 (s=1,2,...L), (6)
identify the position of each particle by the subsciipti ~ where r represents (G,r,,...,ry) and i represents
=1,2,..,N) in the equations of motion, (F1,F5,....fn); the integersKk and L are less than §. A

N special type of¢s, linear inf;, which occurs frequently in
m;i'j=F;+ > fjk=|=}+|:f (j=1,...N), (3)  the rotational motion of rigid bodies, is given below:
k=1(k#])

whereF; denotes the resultant force acting on each particle > @(rt)i+as(r,)=0 (s=1,...L), (7)

m; by external agents, arfgy denotes the interactive force
between the pair of particles; andm,. The forcef;, may  where « represents a 81 column matrix with elements
be an impressed force or a constraint force depending on th@jsl, ajsz, ajss, anda® is a scalar function.

interaction mechanism, and the sum is a combination of both " |n differential form, Eq.(7) can be written as

as shown in the last part of E@3). For example, if two

particles are connected by a rigid and weightless rod, the 2 asdr+asdt=0. (®)
constraints orm; and m, are represented by the unknown o
forces f;, and f;=—f;, the equation of motion being

supplemented by the geometrical CO”Straih‘[ik|.:|0 taneous, we retain the coefficientsdf; and drop that ofit
=constant, wherg,=r;—r,. On the other hand, if the in Eq. (8) to obtain the conditions odr; as

same particles are connected by an elastic spring with stiff-
nessk, the effect of the constraint is represented foy
=—«k(|rjkl—lo)rjk/Irjl, which is considered to be an im-

pressed forc§} . These considerations might sound ambigu-

d s but it the situati t the t Hf the differential form on the left-hand side of E) is
ous and confusing, but it was the situation at theé wWrn O, qraple so that the constraint® can be integrated to

eighteenth century. In fact, Newton did not discuss the con- ield a form of geometric constraing(r,t)=c,, wherec,

straint force, and the problem of a compound pendulun?’sthe integration constant, then the kinematic constraint con-
composed of a rigid rod and several attached masses wa 9 ’

sa . . e
much studied subject at that time. It was against this bac gillgrr:o(rgiés called holonomic. Otherwise, it is called non-

round that the search for an alternative to Newton’s prin- . . .
g P For a system ofN particles with K geometrical con-

ciple began shortly after the publication of tReincipia. straints, the degrees of freedom in three dimensions is re-
duced from N to n=3N—K. Lagrange introduced gen-
eralized coordinateg;,qs,,...,q, such that

In 1743, D’Alembert proposed a principle of dynamics for r=F(q,t) (10)
the motion of a system of interconnected particles, that cir- SR
cumvented the difficulty of constraint forces. By combining and derived his celebrated equations of motion,

Because the virtual displacement is infinitesimal and instan-

> =0 (s=1..L). 9
J

B. D’Alembert’s principle

his principle with the principle of virtual displacement pro- d{aT aT
posed earlier by J. BernoullL727), Lagrange(1788 estab- _<_) ———Q=0 (k=1,...n), (12)
lished the following variational equation for a dynamical dt\aqx/ dax
system with constraints, whereT = 3Smi;-f; is the total kinetic energy of the system,

) | and Qk=2jF}-(arj/c7qk) are the generalized forces. Equa-
2. (mjfj—Fj)-6rj=0 tion (4), known as the D’Alembert—Lagrange variational

J equation, and Eq11) form the foundation of analytical dy-
(D’Alembert—Lagrange equation namics.
4) For a system with nonholonomic constraints, Lagrange in-

troduced the method of unspecified multipli€tsagrange’s
In Eq. (4) and the following, the summation ovgiis from 1 multipliers) to reduce the variational equation to a system of
to N and the symbob means an arbitrary and infinitesimal individual differential equations involving; or g, and the
change as defined in the calculus of variation. The virtuaunknown multipliers. However, the end result, which pro-
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vides a systematic treatment of the constraint forces and thié we replace the first term by the partial derivatives of the

constraint conditions, is not much simpler than Newton’sGibbs function, we find

equations. The search for an alternative contirifed. 9G oF
—=>F.L

- = k=1,2,...1), 1
C. Gauss's principle M T ( ) (17

The D’Alembert—Lagrange method is based on the comwhere the functioj(i) has been transformed to the function
bination of two principles, D'Alembert’s principle and the G(y,,y,,....y,). Thel equations of motior{17), plus theL
principle of virtual displacement. There was a strong desire;onditions for the nonholonomic constraints, form the deter-
to have all of analytical mechanics founded on a single supmined set of differential equations for thédZomponents of

position. The principle of least constraint enunciated by, some of them having being transformedyta
Gauss in 1829 was the first successful attempt to base and-'-rhe equation of motion in the form of E¢L7), which is

lytical mechanics on a single postulate, see, for exampléyerived from the intermediate ford6), was first established
Ref. 22. . . by AppelP* based on D'Alembert’s principle, and both equa-
The effect of constraints on_the m°“9” ofa _system can b%ons were cited by Whittaker in Sec. 107 of his treatise.
represented by the constraint functidh defined asC  Because the invariant forrfl4) was established earlier by
=3, 3m;(F;—Fj/m))-(f;—F;/m;). The condition of least Gibbs, the functiong is known as the Gibbs function, and
constraint is then determined by minimizidg which is re-  Eq.(17) is known as the Gibbs—Appell equation, whose im-
alized by setting the derivative or the variationtéqual to ~ portance was stressed by Péref. 2, p. 202 as “...provide
zero. We then obtain the following variational equation ofwhat is probably the simplest and most comprehensive form

motion; of the equations of motion so far discovered. They are of

superlatively simple form, they apply with equal facility to
> (mi,—F)-8,i;=0 holonomic and to nonholonomic systems alike, and quasi-
. i j

] coordinates may be used freely.”

(Gauss—Gibbs variational equatjon
(12 D. Remarks

where the virtual change of acceleratiogr; must be com- By the end of the nineteenth century, several other funda-
patible with the constraints, angyt=0, dr;= 6,f;=0. mental principles of mechanics had been developed, but are
The notationd,i’; in Eq. (12) and the idea of taking the not discussed here. It could be said that the search for an
variation of the acceleration while keeping the velocity andalternative to Newton’s principle for dynamical systems with
position unchanged were introduced by GiBbsyhere the constraints had reached a satisfactory state. There were
index 2 indicates the second-order change of the position iD’Alembert’s principle and Lagrange’s equations for system
dt. Actually, Gibbs postulated E¢12) by inference from the  with holonomic constraints, and Gauss’s principle and the
D’Alembert—Lagrange variational equation, and introducedGibbs—Appell equations for a system with holonomic or

the function nonholonomic constraints. This satisfaction was changed by
1 the launching of artificial satellites in 1957. Classical dynam-
gzz Emjrj'rj’ (13)  ics was ushered into the space age, and orbital mechanics,
J

the dynamics of multiconnected rigid bodies, and many other
subjects suddenly became active topics of rese@ah Refs.

25 and 26 and other books previously mentioned new
round of search for alternatives emerged.

such that the variational equatidb2) can be reduced to the
following invariant form:

5,G=6,Q, (14)

where 8,G=Z3(dG/dt;)-8,f; and 5,Q=3F}-&f;. This
formulation is in agreement with the principle of least con-!l- PRINCIPLE OF VIRTUAL POWER AND
straint. APPELL'S EQUATION OF MOTION

The variational equatio12), which we call the Gauss—
Gibbs v_ariational equat_ion, can b_e applied to dynamica! SYSA. Jourdain’s variational equation
tems with nonholonomic constraints. For the system wWith . _
linear kinematical constraints, we can find a setl 8f3N The new search for an alternative actually began with the
—L independent parametesg, (k=1,2,..,1), from the con- paper by JOUI’dalﬁ.FO”OWlng Glbb32,3 he showed that the
ditions of constraint, so that allN8 components of; are  Virtual velocity &;f; , which varies the velocity; with both

related toy, . The variation off; is then related to the varia- POSition and time being fixed, satisfies the same conditions
tions of y, as ) for linear kinematic constraint§7) as does the other two

| variations, dr; and 6,f'; . By comparing all three variations,
y E or Jourdain established, again by inference, the following varia-
o= & oo

] o
— 0oy . 15 . S
&~ 9y, 0Pk (19  tional equation:

Due to the independency @hy,, the variational equation > (mjrj_FJ!).5lfj:0
(14) is satisfied if and only if j

G or; | OF; (Jourdain’s variational equatipn
— Fie—=0 (k=1,2,..]). 16
TIt 9V 2 by ( ) (10 (18)
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for 6,1 (91t=0, 6,rj=0) compatible with the linear kine- . n o (at)

matic constraints, that is, Sifj= > ———— 5.0, . (23
r=1 a9,
E ais-alrj:o. (29 We then substitute Eq$21) and (23) into Eq. (18) and ob-
i

tain the variational equation in generalized coordinates as

Equation(18) was considered to be intermediate in character n JF
between Eqs(4) and (12). o _ > (mj-r-j_;:})._lglqrzo_ (24)

Other than showing the derivation of the extension of =1 7 g,
Lagrange’s equations to nonholonomic systerdirectly fall 5.6 ind d Id ,
from the variational equatiofL8), Jourdain did not give any T @ll 910, are independent, we would recover Lagrange’s
physical meaning to Eq(18), or a basic principle upon €duation immediately, as shown in Sec. V. .
which the equation was founded. Nevertheless, Ed), Because the generalized coordinates are still constrained

along with Eqs(4) and(12), are regarded as the fundamental by the remainingn=_L —K nonholonomic conditions, only

equations of mechanics by Pars. of them are independent. If we substitute £20) into the
Attempts have been made to derive Jourdain’s equatiof@Maining nonholonomic part of E7), we obtain the fol-

(18) from the D’Alembert—Lagrange equation by first differ- lowing m equations relating the generalized velocities:

entiating Eq.(4) with respect to time, showing the inter- n
changeability of the operatorsl{dt and é), and then invok- > Do(a,0g+d(q)=0 (s=1,...m), (29
ing the conditions or;=0.2"*® In accordance with the =1

classical definition of virtual displacement as adopted her
however, the quantityr; in Eqg. (4) is the imposed arbitrary
change of the position vector at a given point, not a change s Of; s I
of some quantity along an arbitrary time-dependent path. Dsr=2 aj‘ﬂa ds=2 aj-WJra. (26)
One cannot take the time-derivative of a quantity that is not ' ' J

a function of time. Therefore, Eq18) should be treated as  In the previous set of constraint conditio{®5) on ¢, only

an independent variational equation of motion in mechanics. generalized velocities are independent. We may select the
We call it Jourdain's variational equationand regard it as a jndependent ones, and relabel thenyagk=1,...), which
mathematical representation of the principle of virtual poweryre called therivileged velocitie We denote the remaining

becau;e the product of force with virtual velocity is virtual dependent generalized velocities by (h=1,...m), and
power’ Based on this principle we shall establish a set of__" .. : : - ety
equations of motion for a nonholonomic system in Sec. llI Bpartmon the matri{ D] in Eq. (25) into two parts[Dy]

and the Euler's equation of motion for rigid bodies in Sec.2Nd[Dgl, such that

Svhere the coefficient® g, anddg are given by

IV. m |
> DlLzn=—2> Diy—ds (s=1,..m). (27
h=1 k=1

B. Appell’'s equations of motion If we assume thaftDg,] is of full rank, the matrixD{,] is

. . ) ) nonsingular. Hence, we can expregsin terms ofy, b
Consider again a system Nfinterconnected particles sub- solvinggEq.(27) to obtain preas Yie DY

ject toL linear kinematic constraints in the form of &),

with K of the constraints being holonomic in the form of Eq. '

(5). By differentiatingr;(t) in Eq. (10) with respect to time, 2h:gl Bt bn  (h=1,...m), (28)
we obtain
N where
afi(q,t afi(q,t
=3, Sl Tial (20 -
r=1 dr Bhk:_sgl [D,]hs Dsks (299

whereq,=dq, /dt are thegeneralized velocitiesThe accel-

eration is given by -

by=—> [D'Ipdds (h=1,...m) (k=1,..n).

n a n 24
afi(q,t) 7t (q,t) s=1
. j . j L.
Pi= + —_—
: Z‘l og, él 3q,0qs r9s (29b)
2 at 25 (ot _ Let [P,s].denolte the permutation mat_rix frony(,z,) to
D fi(a,0) . rj(g' ). (21 Gr SO thatd, = Sj_; PVt =hey Pr+hZn . Every gener-
=1 aqpot " at alized velocity can be then expressed in terms of the privi-
From Egs.(20) and (21), we obtain the following relations leged velocitiesyy as
for the coefficients of transformation: |
&I’j _ &fj _ &I’J _ 5]'] (22) qr:kzl Crkyk+crv (30)
S P ML P e T where
The system is said to havye=3N—L degrees of freedom m
represented by generalized coordinates. If we take the Co.=P..+ p B 31
variation of Eq.(20), we find Tk hzl r+hy=hke (313
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m

Cr:hzl Pra+nbn- (31b
If we substitute the’,; variation of Eq.(30), that is,
[
816:= 2, Crcd¥i (32

into the variational equation in generalized coordindgs,
we obtain

E 2 Z (mjF;— F)

=1lr=1j=

Crk01Yx=0. (33

Because the,y, are arbltrary and independent, the follow-
ing equations of motion are established:

EZ(m,, F)- q’crk 0 (k=1,...]). (34)

These equations may also be derived directly from B4)

by noting the relation(36); they form a system of second-
order differential equations iii, the coefficients are func-
tions ofy,, y, and the dependent variables. This system of
I=3N—L equations plus then supplementary kinematic
equations of constraint®5) form a determinant set of dif-
ferential equations for the unknown variablesg|, . We shall
name Eg.(41) as well as Eq.(34) Appell's equations of
motion for the reason discussed in Sec. VI.

C. Reduced Appell's equations of motion and cyclic
coordinates

The final form of Appell’s equationgtl) together with the
supplemental conditions varies according to the choice of the
privileged velocities. This set of equations can sometimes be
reduced to a fewer number of equations by choosing the
privileged velocities judiciously.

On the other hand, we can bypass the using of virtual Note that Eq(41) is independent of the velocities,, but

generalized velocitie$;q, and work with 5;r; directly. If
Eq. (30) is substituted into Eq20), the following transfor-
mation fromy, to f; is obtained:

fi=2 Bizy.0¥c+Bi(zy.0), (35
where
n ~ n
ar; ot
B=2 5g.Cor B=2, ot G (36
= = r
Like a theﬂk is an assemblage of the coefficients of the

transformatlon in vector notation.
By taking the time-derivative of Eq35), the accelerations
f; are found in terms of the privileged coordinates as

|
Fi=> ﬂfﬂ*‘ﬂfﬂ*‘ﬂj-
k=1

37
From Egs.(35) and(37), we note that
o o
= =P, 38
Yk Yk A 39

which holds even for linear nonholonomic kinematic con-
straints.

According to Eq.(35), the virtual velocityd;f; is related
to 1Y as

|
51“:21 ﬁr&lyk

If we substitute the transformation @ r; into Jourdain's
variational equatlor(18) and transform the dependent vari-
ables inf; andF accordingly, we obtain

(39

2 2 mjf; = F})-B61,=0. (40

We recognize that thé,y, are independent and deduce the

following set of independent equations of motion in privi-
leged coordinates:

Ej)m (Zy,Y.9.0-B= EF(zyyt)ﬁ,
(41

76 Am. J. Phys., Vol. 71, No. 1, January 2003

is still dependent og,, . In addition, Eq(28) may be used as
the supplementary conditions for the constraints. Accord-
ingly, we may reduce the number of supplemental equations
by one if one of the dependent variables, gayis absent in
Bhk, bn, Bk B; , and the forcing functions'! , because the
corresponding constraint equation fQrin Eq. (28) is redun-
dant. The total number of equations to be solved is thus
reduced frorm to n— 1. Because such a reduction is similar
to the notion of cyclic coordinates for the Lagrangfanye

call the variablez, the cyclic coordinate, and the reduced
system of the equations theduced Appell’s equations all

the dependent coordinates are cyclic, we have

; mj'r'j<y,'y,y,t>-ﬂ,-k<y,t>=2 F(y.y. 0By,

(k=1,...)) (42)

with the minimal number I) of independent differential
equations for the reduced system, which is precisely the de-
grees of freedom of the constrained system. As observed by
Appell 18 this reduced minimal set of equations is sufficient
to determine all privileged coordinatgg, without invoking

the equation of constraints. Once the varialyigare solved,

the remaining variableg,, are found by quadrature through
Eq. (28).

IV. VARIATIONAL EQUATION OF MOTION FOR
SYSTEM OF RIGID BODIES

In Sec. Ill, the variational equations and the equations of
motion were given for discrete systems with a finite number
of particles. The motion of rigid bodies, however, is usually
treated by applying Euler’s laws for rigid body motion. Since
a rigid body may be considered as an aggregate of an infinite
number of particles or continuously distributed mass ele-
ments separated by constant distances, the variational equa-
tion for discrete systems may be extended to that of rigid
bodies by replacing the summation by the integration over
the mass elements. Various procedures for deducing the
equation of motion for a rigid body from the variational
equation have been proposéske, for example, Refs. 30—
32). The one proposed by Wittenbifgdoes not invokea
priori knowledge of Euler’'s law and is summarized below.
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A. Equations based on D’Alembert’s principle incorporated with the theory of Lie groups to form the

) S ) o Euler—Poincareequations applicable to rigid bodies and
For a continuous distribution of mass in a rigid boBly  jdeal fluids(Ref. 34, Chap. 18

occupying a volume in three-dimensional space, a particle

with massm; at the positiorr; is replaced by the mass ele-

mentdm occupying the position which varies continuously

within the volume. The total mass of the body is given byB. Equations based on principle of virtual power
m= [ zdm, and the center of mass of the body is defined as
r’=[zrdm/m. If dF' denotes the force impressed on theb
mass elementm, the D’Alembert—Lagrange equatio#d)

The derivation of the variational equation for a rigid body
ased on D’Alembert’s principle as outlined in Sec. IVA is
essentially that of Wittenburdf. Because the motion of rigid

may be extended for a continuum as bodies is usually constrained by kinematic conditions, we
convert the virtual displacements to virtual velocities. By
fB('r'd m—dF')-or= oW, (43)  reasoning similar to that used by Jourdaine replacesr by

O,F=6,i°+ S;wXr’ in Eg. (43) and obtain the following
where W is the virtual work done by the internal forces. variational equation for a rigid body:
Because the mu_tual dist_ance betwge_n each and every pair of (MES— F1)-8,F+ (1% 6o+ XIS w—L%)-5,w=0. (49)
mass elements is held fixed for a rigid body, we 8&t=0
in Eq. (43). Again Euler’s equations for a rigid body in free motion Eq.

The general motion of a rigid body may be decomposed48) are recovered.

into the motion of a reference point in the body plus a rota- For a system oNg rigid bodies, we append a subscript
tion about that point. We choose the reference point to be thg=1,... Ng to all physical variables pertaining to each body,
center of mass, and denote the relative position vector cind sum all the terms fgr=1,... Ng to obtain a single varia-
constant length from the center of maSsto each mass tional equation for the entire system,
element byr’. Due to its infinitesimal character, the virtual g
displacement of each mass element positioned edn be E (MiFS— FDY« 811+ (1%+éo; + @ X1 S+ — L)+ 8,0, = 0.
expressed as = N i i IR R B j

Or=06r¢+ 560Xr’, (44)

where 66 contains three infinitesimal angles of rotation. We
denote the angular velocity of the rigid body &y and write

(50)
This single variational equation can be reduced to a system
of independent equations of motion for multiconnected rigid
bodies if the kinematic constraint conditions ffcfrand w;
=1+ wXr’, (459 are given.
From the constraint conditions, a set of generalized coor-

F=F+ oXr’+ oX(wXr'). (45D dinatesq ,q5,...,q, may be constructed such that
If we substitute Eq.45) into Eq. (43) and carry out the N oac c
integration over the bodjg, we obtain the variational equa- . E Jfj(a.n g+ Jfj(a.n (518
tion of motion for a rigid body: I = g, ' at
(Mi€—F")-8r¢+ (1% o+ wXI%w—L°%)-50=0, (46) n
where F'=[dF' is the total impressed forcd,®= [’ "’J:Zl @ (A9 - (51D

x dF' is the total impressed torque on the entire body about h lized i b bi h h
the pointC, andI® denotes the moment of inertia dyadic - eﬁel generaiize tco_ort |r_1attis ;nay ?ES(USFS to the other
about the center of mass, nonholonomic constraints in the form of E@5). By a pro-

cess similar to that presented in Sec. Il B, a set aide-
IC:J (Jr'|21—r"r")dm. 47) _pendent pnwlgged velocme)?sk (k=1,...,_|)_ may be found,
B in terms of which the generalized velocities are expressed as

o ) in Eqg. (30). The following set of equations of motion analo-
If the rigid body is free to translate or rotaté; and 56 gous to Eq(34) is then established:

are independent of each other. The variational equd#én N
leads to two independent equations of motion, one from eaci
term,

~C

Ng
2 (er_Fl) (grl
= I

= 7 oq,
mi°=F', 1%+ oXI%o=L°". (48)
They are, respectively, the well-known Euler’'s equation of ~ +(I{-&;+ &;XI{-e;— L})-&j, |C(=0. (52)
linear momentum and that of angular momentum for a rigid
body in free motion. On the other hand, from Eq&1) and (30), we find

We note that Euler’'s equation of angular momentum can
also be derived from Lagrange’s equations in terms of the c_ X
quasi-velocitiesw, which are linear functions of the rate of '] —gl Byt By (539
change of the orientation anglésee Ref. 1, Sec. 30The
notion of quasi-velocities was also adopted by Poindare ! S
derive the same equation directly from Hamilton’s principle w;= 2 7j(YK+ Y (53b)
by considering a special variation of the angular velotity. k=1
In modern geometric mechanics, Poincamwork has been where
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n aC n aC 2C
ar: — ar; ar;
= =N 1
E_Zl e Crc B Zl Iy T o (543
n n
?/;‘:;l @jCry» 71:2‘,1 @€y . (54b)
The &, variations of the velocities are then related by
[
8= kgl 1_5',!(51Yk : (553
|
Sr0,= kgl Vo1V (55b)

Fig. 1. Wheel-axle assemblage moving on an inclined plane with inclination
anglea. In addition to the axes shown, tkeaxis points normal to the plane.
The angles of rotation of the whee(sot shown are ¢; and ¢,, and the
heading of the assemblage is represented by the ahbktweenj andj’.

From either Eq(50) or Eq. (52), another form of the equa-
tions of motion for rigid bodies can be established as

2 (myf=F)-Bi+ (16 + X150y = L)
! with the axis of symmetry of the wheg¢l Finally, the axes
=0 (k=1,...)). (56)  are rotated through the spin angle around; . The result-

- — ant angular velocity for each wheel is then
Once the coefficient vectors; and?li( are found from the

constraint conditions, the minimal set of equations of motion ;= ¢;k+ éjij’ + i//]-j;’ , (57)
for a system of rigid bodies is established directly.

To summarize, we have shown three approaches to ang-nd hence
lyzing the motion of a system of rigid bodies based on the 51wj=(51¢j)k+(519j)ij’+(51¢j)j]’- (58)
variational equation of virtual power. The first is to apply
directly the variational equation for a rigid body, E@&O), Let M be the total mass for the wheel assemblage and the

together with the conditions of kinematic constraints. Theload, concentrated at the center of each wheel, andhlet
second is to apply the equation of motion in generalized <M) be the mass of the rim of the wheel. The impressed
coordinates, Eq52), and the third is to use the equation of force acting on each wheel is thidg sinai+ Mg cosak,
motion in quasi-velocitieso;, Eq. (56). There is no simple and the impressed torque about the center of mass is zero.
guideline for which approach one should follow. Customar-The principal moment of inertia dyadic for each wheel is
ily, the use of the quasi-velocities; as independent vari- given by

aples is preferred for torque-free motioh_]-‘(= 0). Othe_r— |J_c:%m,azijlijr+m,azjirjjr+%m,azkglk;,_ (59)
wise, one usually replacas; by the appropriate generalized o )

velocities such as the Eulerian angular speeds or the angularBecause the wheels remain in contact with the ground, and
rate of roll-pitch—yaw angles. These three approaches até€ axle remains parallel to the-y plane, we have two
illustrated with the example given in Sec. IV C. simple conditions of constraints for each wheel,

(i) z;=0 (or z;=a),

C. The motion of a two-wheel-axle assemblage (i) 8,=0 (or 6,=0),

To illustrate the application of the variational equation of
virtual power for dynamical systems with kinematic con- (iii)
straints, we cons_lder the motion of t_wo wheels of radius (iv) 6,=0 (or 6,=0).
mounted on a rigid axle of length rolling on a rough plane ) ] _
inclined by an anglex to the horizontalsee Fig. 1 Each By setting the nutation angles;=6,=0, the triad
wheel is attached by a bearing to the axle, free to spin abodij .jj ,kj} coincides with {i ,j; ,kj}. In addition, both
the axle with no wobbling about any axis perpendicular towheels precess at the same angle with the axle, giving rise to
the axle. the geometrical conditiogh, = ¢p,= ¢, or the kinematic con-

We associate the coordinate axesy, z with a triad of  dition
unit vectors{i, j, k} to the inclined plane; the andz axes are . . .
along and normal to the inclined plane, respectively. The V) $1=¢2=¢,
motion of each wheel is then specified by six parametersand{i; ,j;,k;}={is.j5.ko}={i",j’ ,k'}.
three Cartesian coordinates; (y;,z;) (j=1,2) of the center  The fact that each wheel rolls without sliding at the con-
of mass and three Eulerian angles (6; ;) for each wheel tact point imposes two nonholonomic kinematic conditions
in free motion, rotating about a set of axes through the centesf constraints on each wheel:
of each wheel as shown in Fig. 1. The triad is first rotated

z,=0 (or z,=a),

aboutk through the precession angfg to the new position (Vi) X;=ay; cosg,
indicated by thg triadij ,j; ,k{ =Kk} such thaf; is a_long the (Vi) y,=ai, sing,
axle. The axle is then rotated through the nutation amgle

”

abouti; to the new triadi} =

i ,ji ki'} such thafi coincides (Vi) X,=a,cosd,
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(iX) V,=ay,sing. Note that only two variableg and; and their time deriva-
tives appear in Eq(64), which can be solved without any
The assumption that the axle is rigid and inextensible imsyupplementary conditions of constraints. Once this system of
poses a geometrical constraint conditiox,{x;)*+(y>  second-order differential equations is solved frand i,
—y,)?=12, which may be converted into a kinematic condi- with the appropriate initial conditions, the remaining five ve-

tion, as either locities are determined from the constraint conditions and the
L . corresponding coordinates are determined by simple quadra-
X=X, —| ¢ cosg, (603  tyre.
or Method Il (application of Appell’s equation in generalized
. coordinates) After eliminating the five holonomic con-
Yo=Y1—l¢sing. (60b)  straints, a set of seven generalized coordinafes]

=(Xq,Y1,¥1,X2,Y2,¥,,¢) IS constructed. The remaining
five conditions of constraints may be expressed in the form
of Eq. (25) as

If we combine Eq.(60@ with conditions(vi) and (viii) to
eliminatex, andX,, we find

(X)  ag=ay;~ 1o, (61) ;
which can also be derived from E¢0b with conditions Z D.0,=0 (s=1,...,5, (65)
(vii) and(ix). Therefore, there are altogether ten equations of =1

kinematic constraints, six being integrable and four being : . o
nonintegrable. The number of degrees of freedom of the sydvhere the elements of the first row in the<3 coefficient-
tem of two connected rigid bodies is reduced from 12 to 2 bymatrix [Dg,] are D4,(1,0,—-aco0s¢,0,0,0,0); the second to
the constraints from the ground and the axle. Note thathe last (fifth) row is, respectively, D, (0,1,
among the ten constraint conditions)—(iv) and (vi)—(ix) —asin,0,0,0,0), D5/(0,0,0,1,0;-acos¢,0), D,(0,0,0,1,
are the constraints on individual wheels, whilg and(x) are  0,—asin¢,0), D5, (0,0,—a,0,0a,1). Because the variabl¢

the constraints on the two coupled rigid bodies. . SR .
After the constraint conditions have been specified, any ofPPears in the coefficient-matrpDy;], we select¢ as the

the three approaches discussed in Sec. IVB can be adoptést privileged velocityY; according to the guideline out-

to derive the minimal set of equations of motion as shownlined in Sec. Ill. In addition, we seleat; as the second
below. i TN ;
: L i . rivileged velocityY, and solve Eq(65) to obtain the trans-
Method | (direct application of the variational equation) ?ormatgilon WYz a(65
From the first five conditions of constraints, we fidgz;
:61-01:51'22:51.0220, and 51(-]51251(-1)2551(-1). The 2 .
variational equation of virtual powéb0) for the assemblage q,= 2’1 CiuYk, (66)

is then reduced to

where the K 2 transformation matrixC,, ] is given by two
columns, the transpose of the first colum@;,(0,0,0,
—1cosp,—Ising,—l1/a,1); the second column is
+m'a’$ps,¢=0. (62) C,,(acos¢,asing,1,acosp,asing,1,0). Because all five
o : o - dependent variables,;, y;, X5, Y,, ¢, are absent from the
By choosingy, and ¢ as the privileged velocities, the re- mayix[C,, ] and the impressed forde, they constitute the
maining five constraints are used to find the following rela-fje cyclic coordinates for the system. If we substitute the

2

tions: coefficient matriq C,, ] into Appell’'s equation in generalized
Sk = St SV =asinds.. coordinates, E_q52), the same set of equations as in Ey)
X1 =aC0SPoYn,  ory1=asingoy, (633 ‘an be established. They constitute what we called the re-
81%,= —1 COSp S, p+a cose S, i, duced Appell’s equations, after ignoring the five cyclic coor-

_ _ (63b) dinatesx, Y1, X2, Yo, #¥>.

51Y,=—1sings,p+asingsd iy, Method 11l (application of Appell’s equation with quasi-

. L . yelocities) After identifying the privileged velocitieg; and
S1=— =81+ 51, (630 ¢, the coefficient vectors in Eq53) for the velocities are

a found to be

The linear and angular accelerations in E&R) are derived L

by differentiating the respective constraint conditions with flzﬁg“:ai’, ?flz?;”l:j”, (672

respect to time. If we substitute all these expressions into Eq.

(62) and collect coefficients fop; ¢, and 5,4, we obtain

two independent equations of motion for the wheel assem- BY=0, B5=—1i", W=k, ¥=k- NG
blage,

N N ; If we substitute these vectors, the accelerations, and the
2aM+m)yy—1(M+m’)$=2Mgsina cosé, (643 forces into Appell's equation with quasi-velociti€s6), we
al(M+m") i — (MI12+m’ 12+ m’ a2) 7 again derive the same set of equatiéd). This approach is

( Y1~ )¢ essentially the same as the one used by Kane in establishing
=Mgl sina cosg. (64b  the equations of motiof.
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V. COMPARISONS WITH OTHER PRINCIPLES AND Furthermore, if we multiply each of Newton’s equations
EQUATIONS OF MOTION (3) by the vectorﬁ}< directly, and then add these equations
together, the grand sum is a single equation for the indepen-

dent parametey, :
A. Newton’s principle and constraint forces

The reduction of the D’Alembert—Lagrange variational
equation to Newton’s equation of motid8) is well known. I L
It is established by applying Lagrange’s method of unspeci- > miiB=2 (Fj+F))-B. (74
fied multipliers. Analogously, we can reduce Jourdain’s . :
equation(18) by the same method. If we multiply each of the
equations of constrair(fL9) by the unspecified multipliex;
and combine all constraint equations with the variationalBy replacingFjC in Eq. (74) by the expressiol(70), we ob-

equation(18), we obtain tain
L
; mj'r'j—F}—;1 Nse | +817;=0. (68)
L
By applying Lagrange’s method, this single equation gives > mjf;-gf— > Fl-g=2 > oL (75)
rise to the following system of independent equations of mo- ] i Ios=1
tion:
L
mj'r']-=F}+2 )\Saef (j=1,...N). (690  Again the double sum on the right-hand side of EG)
s=1

vanishes. Equatio(v5) is then identical to Appell’s equation

We thus recover Newton’s principle from Jourdain’s equa—(41)-_ o -~ . .
tion if the summation oh e is identified as the constraint ~ This derivation clarifies the meaning Ef: FjinEq.(3)
force FC in Eq. (3), that is and subsequent equations. All interactive forces, including
! ' ' the contact of a particle with its surroundings, which are
c L _ unknown quantities but are accompanied by prescribed kine-
Fi= 21 Nsa]  (j=1...N). (700 matic conditions of constraints, are treated as the constraint
. forcestC. On the other hand, those that are specified explic-

Conversely, by multiplying each of Newton’s equationsitly in terms of unknown kinetic variables and pertinent ki-

(3) by 8:f;, and combining all the equations, we find netic coefficientdmaterial constanjssuch as the forces ex-
erted by the connecting spring, are treated as the impressed
. . . . |
; mjl’j-ﬁlrj—Ej: FJI-51I’J=§J: FJ-C-51|’J- . (71) forceSFj .

Within  the framework of modern geometrical

If we use the expression & in Eg. (70), which could also mechanics? the velocities'; reside in a fiber of the tangent
be established by D'Alembert's principle, the term on thePundie of the configuration space, and the kinematic condi-
right-hand side of Eq(71), which represents the total virtual tions of constraints restrict the admissible velocity to be

power generated by the constraint forces, can be expressed'4&hin a subspace of the fiber. Accordingly, the virtual veloc-
N ity 61f; compatible with the constraints is an arbitrary vector

) NS« . in the subspace, and the expression in(B6) shows that the

121 ch"slrj:;l 521 gfl )‘S“js'ﬂrﬁlyk' (72 admissible subspace is spanned by the base veﬂéb(sr}
1,...N). Hence the resulf; F{"-B{=0 which leads to Eq.
1) from Eg. (75 can be viewed as the vanishing of the
projection of the constraint forces onto the admissible sub-
space spanned tﬁf Appell's equation then implies that the
net forcesF} —m;f'j are orthogonal to the base vectors in the

missibl . Similarl rdain’s variational equa-
i can b derved fom Eqi39 and 19 Hote, we.Eo s et af 349 e ke nl e e

recover Jourdain's variational equation from Newton's prin-,hogonal to the entire admissible subspace. This interpre-

ciple. Either way we have made use of the additional condization’is in agreement with the projection method of dynam-

tion (70) which is supplemented by another principle. There-j.q recently proposetf -3

fore, Jourdain’s variational equation and Newton’s principle

should be treated as independent equations in mechanics.
The deduction of Eq(72) reveals that the total virtual

power generated by the constraint forces vanishes if the vir-

tual velocities are compatible with the prescribed kinematic ' )

constraints. This was mentioned as an independent principf@- Lagrange’s equation

in mechanics known as Jourdain’s principlé. we accept

this principle, we can then directly derive Jourdain’s varia- If all constraints of the system are holonomic, the gener-

tional equation from Newton’s equation; this approach isalized coordinates|;,qd;,...,q, are all (independentprivi-

called Jourdain’s methatl. leged coordinateg, . We thus obtain

The triple summation is seen to vanish on account of th<?_4
conditions

D aB=0 (s=1..L) (k=1...)), (73)
J
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arj o sentially an alternative form of Eq23) in this paper. By
ﬂ}‘—aqk R (76)  multiplying each equation in E43) by the_vectorﬂ}‘, which
) ) ] ) was called thepartial velocity corresponding to thgeneral-
Appell's equation(41) is readily reducible to Lagrange’s jzeq speed y, and summing over all the particles, Kane
equation(11) by the substitution of8 with Jr;/dgx. For  established the equations of motion in the form of ).
nonholonomic systems the reduction to the Lagrange-Although the term of virtual displacement is not used, the
Ferrers equatidnand other similar ones is also possible.  notion of instantaneous and infinitesimal change is implied
) i in stating the “equation of instantaneous constraints.” He
C. Gibbs—Appell equation then deduced the final equation in the form of E4l) by

It was mentioned previoust§that Appell’'s equatiorf4l) ~ @sserting without proof that - vanishes. The proof is
is an intermediate step in deriving the Gibbs—Appell equasupplied in Sec. VC, Eqs70)—(74), by invoking Newton's
tion (17). In terms of the formulation presented in Sec. I, principle and Jourdain’s principle concurrently.
the derivation of one from the other is immediate. Note that In this paper, Jourdain’s variational equation is postulated
in all three variational equations, the vectori; may be s @ mathematical representation of a fundamental principle
replaced byiG/t; , whereg is given in Eq.(13), and for the in mechanics, the principle of virtual power, independent of

case of linear kinematic constraints, E88) holds. The two &/l other principles. We then derived in Sec. Il the funda-
parts of Eq.(41) can thus be expressed as mental equations of motiofd1) from Jourdain’s equation.
' Because the method we used and the equations we derived

. L Ofy  dG are not much different from those used by Appell, &{) is
; mjf ;- = 2 mjrj'a-_yk W (778 hamed Appell's equation.
| I ‘?Fi
2 FB=2 Fir o, (770
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THE CYCLOTRON

In 1931, Lawrence and his co-workers succeeded in building the first cyclotron, using g tank

82

six inches across and a small electromagnet whose poles faced each other vertically across
In the gap was placed a shallow cylindrical tank, pumped out to a high vacuum so tha
particles inside could move freely without interference from air molecules. Lawrence fed de
ons(heavy hydrogen nucleas atomic projectiles in at the center and kicked them around at
speeds using a radio frequency oscillator. He then graduated to a bigger setup, using
eighty-five-ton magnet and a vacuum tank eight inches across, which allowed him to acce
the deuterons at very high speeds and direct them against any target. His work developin
erful beams of particles had already earned high praise from none other than Bohr himsel
dean of quantum theorists,” who would make two trips from Copenhagen to California in
1930’s to check up on the young Berkeley Physicist.

Jennett Conanffuxedo ParkSimon & Schuster, New York, NY, 2002p. 134.
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