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Based on Jourdain’s variational equation proposed in 1909, we deduce a minimal set of general
equations of motion for nonholomic dynamical systems of particles and rigid bodies. This equation
of motion for the system, which differs slightly from the Gibbs–Appell equation, appears to be the
same as the equation derived by Kane in 1961. Since the same equation was established by Appell
in 1903 on the basis of D’Alembert’s principle, the newly derived equation is named Appell’s
equation. ©2003 American Association of Physics Teachers.
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I. INTRODUCTION

Analytical mechanics as embodied by Whittaker~1904!1

has long been regarded as a mature subject. Therefore
introduction of a new principle of mechanics or anoth
equation of motion to rival Newton’s equation would attra
great attention. In a more recent treatise on the same su
by Pars~1965!,2 the author discussed a new fundamen
form of equations in mechanics, Jourdain’s variational eq
tion, and a general set of equations of motion, the Gibb
Appell equation. The latter was not new as it was discus
in the section entitled Appell’s equation in Ref. 1. Th
former, which was postulated by Jourdain in 1909,3 has gen-
erated considerable interest as discussed by Budo~1964!,4

Roberson and Schwertassek~1988!,5 Lesser ~1995!,6 and
Moon ~1998!.7

In 1961, another set of equations of motion was discus
by Kane8 and was applied subsequently to dynamical pr
lems with nonholonomic constraints, especially for multico
nected rigid bodies.9–12 His work was later regarded b
others5 to be related to Jourdain’s earlier work, and the p
posed equation and its derivation were named Kan
method, Kane’s equation, or Jourdain’s method by differ
authors. However, Kane’s method was considered to
equivalent to the Gibbs–Appell method by Desloge~1986!,13

and was noted by Chen~1984!14,15as an intermediate step i
the derivation of the Gibbs–Appell equation from Gaus
principle.

In a series of papers, Jourdain3,16,17investigated the appli-
cation of D’Alembert’s principle, Hamilton’s principle, an
Gauss’s principle to dynamical systems with nonholonom
constraints. He noted in Ref. 3 that in addition to t
D’Alembert–Lagrange variational equation for the virtu
displacement and that of Gauss–Gibbs for the virtual cha
of the acceleration, there could be another variational eq
tion for the virtual change of velocity. He then postulat
Jourdain’s variational equation by inference from the ot
two equations. However, he gave no basic principles
which the variational equation was based, nor a new se
equations of motion. Nevertheless, his equation along w
two other variational equations based on the aforementio
principles are listed as three of the six fundamental forms
mechanics.2
72 Am. J. Phys.71 ~1!, January 2003 http://ojps.aip.org
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In this paper, we treat Jourdain’s variational equation a
mathematical representation of a basic principle of mech
ics, the principle of virtual power, which is on par wit
D’Alembert’s principle and Gauss’s principle. We then esta
lish in Sec. III a minimal set of general equations of moti
for nonholonomic dynamical systems from Jourdain’s eq
tion. Our original motivation was to find if the Gibbs–Appe
equation or similar ones could also be derived from the n
principle. However, there emerged a set of differential eq
tions which is very much like Kane’s equation of motio
Because Chen and Desloge already indicated its similarit
the Gibbs–Appell equation, we searched the literature
found that a similar intermediate differential equation a
appeared in Appell’s treatise~1903!18 and Jourdain’s pape
~1905!.17 In fact, Appell’s work was reproduced in the trea
tise by Whittaker in 1904,1 containing the same equation a
an intermediate step.

In Sec. IV, we show how Jourdain’s variational equati
can be applied to derive Euler’s equation of linear mom
tum and of angular momentum for rigid bodies. An applic
tion of the variational equation and Appell’s equation in ge
eralized coordinates or quasi-coordinates is illustrated b
system of two rolling wheels mounted on a rigid axle. T
paper concludes in Sec. V with comparisons of Appe
equation with Newton’s equation, Lagrange’s equation, a
the Gibbs–Appell equation.

II. NEWTON’S PRINCIPLE AND OTHER
PRINCIPLES OF MECHANICS

All principles of classical mechanics are founded on t
basis of Newton’s law for a single particle in free motion19

The law may be expressed in modern notation as

mr̈5FI , ~1!

wherem denotes the mass,r (t) is the position vector at time
t of the particle from a fixed point of reference, andṙ and r̈
are the velocity and the acceleration, respectively. The qu
tity FI is the impressed~external! force acting on the particle
and is a known vector or vector function oft, r , and ṙ , but
not of r̈ . ~Note that the term ‘‘impressed force’’ is used
Newton’sPrincipia.19!
72/ajp/ © 2003 American Association of Physics Teachers
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A. Newton’s principle

If the motion of the particle is constrained,r̈ might not be
proportional to the impressed force. LetF5FI1FC be the
resultant~total! force, whereFC denotes the force exerted b
the constraints on the particle. The equation of motion
modified to be

mr̈5F5FI1FC. ~2!

In accordance with Newton’s third law,FC represents the
reaction from the constraints. Equation~2! should be supple-
mented by auxiliary conditions for the unknown constra
force.

For a system ofN interacting particles, we need to writ
an equation of motion for each particle and the conditions
constraint become more complicated asN increases. We
identify the position of each particle by the subscriptj ( j
51,2,...,N) in the equations of motion,

mj r̈ j5Fj1 (
k51(kÞ j )

N

f jk5Fj
I1Fj

C ~ j 51,...,N!, ~3!

whereFj denotes the resultant force acting on each part
mj by external agents, andf jk denotes the interactive forc
between the pair of particlesmj andmk . The forcef jk may
be an impressed force or a constraint force depending on
interaction mechanism, and the sum is a combination of b
as shown in the last part of Eq.~3!. For example, if two
particles are connected by a rigid and weightless rod,
constraints onmj and mk are represented by the unknow
forces f jk and fk j52f jk , the equation of motion being
supplemented by the geometrical constraintur jku5 l 0

5constant, wherer jk5r j2r k . On the other hand, if the
same particles are connected by an elastic spring with s
ness k, the effect of the constraint is represented byf jk

52k(ur jku2 l 0)r jk /ur jku, which is considered to be an im
pressed forceFj

I . These considerations might sound ambig
ous and confusing, but it was the situation at the turn
eighteenth century. In fact, Newton did not discuss the c
straint force, and the problem of a compound pendul
composed of a rigid rod and several attached masses w
much studied subject at that time. It was against this ba
ground that the search for an alternative to Newton’s p
ciple began shortly after the publication of thePrincipia.19

B. D’Alembert’s principle

In 1743, D’Alembert proposed a principle of dynamics f
the motion of a system of interconnected particles, that
cumvented the difficulty of constraint forces. By combinin
his principle with the principle of virtual displacement pr
posed earlier by J. Bernoulli~1727!, Lagrange~1788! estab-
lished the following variational equation for a dynamic
system with constraints,20

(
j

~mj r̈ j2Fj
I !"dr j50

~D’Alembert–Lagrange equation!.

~4!

In Eq. ~4! and the following, the summation overj is from 1
to N and the symbold means an arbitrary and infinitesim
change as defined in the calculus of variation. The virt
73 Am. J. Phys., Vol. 71, No. 1, January 2003
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displacementdr j is an arbitrary, infinitesimal, and instanta
neous change of position vectorr j that is imposed on particle
j with dt50. In addition, the principle stipulates that th
virtual displacement must be compatible with the constra
of the system, and theN values ofdr j are related by a set o
constraint equations. Therefore, the condition of compati
ity with the constraint is regarded as a part of the princip
not that of the definition of the virtual displacement.21

The conditions of constraint are usually prescribed in
form of functionsgs that relate the position coordinates
functions fs that relate the positions and velocities of th
particles,

geometric: gs~r ,t !50 ~s51,2,...,K !, ~5!

kinematic: fs~r , ṙ ,t !50 ~s51,2,...,L !, ~6!

where r represents (r1 ,r2 ,...,rN) and ṙ represents
( ṙ1 , ṙ2 ,...,ṙN); the integersK and L are less than 3N. A
special type offs , linear in ṙ j , which occurs frequently in
the rotational motion of rigid bodies, is given below:

(
j

aj
s~r ,t !"ṙ j1as~r ,t !50 ~s51,...,L !, ~7!

where aj
s represents a 331 column matrix with elements

aj 1
s , aj 2

s , aj 3
s , andas is a scalar function.

In differential form, Eq.~7! can be written as

(
j

aj
s"dr j1as dt50. ~8!

Because the virtual displacement is infinitesimal and inst
taneous, we retain the coefficients ofdr j and drop that ofdt
in Eq. ~8! to obtain the conditions ondr j as

(
j

aj
s"dr j50 ~s51,...,L !. ~9!

If the differential form on the left-hand side of Eq.~8! is
integrable so that the constraints~7! can be integrated to
yield a form of geometric constraint,gs(r ,t)5cs , wherecs
is the integration constant, then the kinematic constraint c
dition ~7! is called holonomic. Otherwise, it is called non
holonomic.

For a system ofN particles with K geometrical con-
straints, the degrees of freedom in three dimensions is
duced from 3N to n53N2K. Lagrange introducedn gen-
eralized coordinatesq1 ,q2 ,...,qn such that

r j5 r̂ j~q,t !, ~10!

and derived his celebrated equations of motion,

d

dt S ]T

]q̇k
D2

]T

]qk
2Qk50 ~k51,...,n!, ~11!

whereT5 1
2(mj ṙ j "ṙ j is the total kinetic energy of the system

and Qk5( jFj
I "(]r j /]qk) are the generalized forces. Equ

tion ~4!, known as the D’Alembert–Lagrange variation
equation, and Eq.~11! form the foundation of analytical dy
namics.

For a system with nonholonomic constraints, Lagrange
troduced the method of unspecified multipliers~Lagrange’s
multipliers! to reduce the variational equation to a system
individual differential equations involvingr̈ j or q̈k and the
unknown multipliers. However, the end result, which pr
73L.-S. Wang and Y.-H. Pao
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vides a systematic treatment of the constraint forces and
constraint conditions, is not much simpler than Newto
equations. The search for an alternative continued.22

C. Gauss’s principle

The D’Alembert–Lagrange method is based on the co
bination of two principles, D’Alembert’s principle and th
principle of virtual displacement. There was a strong des
to have all of analytical mechanics founded on a single s
position. The principle of least constraint enunciated
Gauss in 1829 was the first successful attempt to base
lytical mechanics on a single postulate, see, for exam
Ref. 22.

The effect of constraints on the motion of a system can
represented by the constraint functionC, defined asC
5( j

1
2mj ( r̈ j2Fj

I /mj )"( r̈ j2Fj
I /mj ). The condition of least

constraint is then determined by minimizingC, which is re-
alized by setting the derivative or the variation ofC equal to
zero. We then obtain the following variational equation
motion;

(
j

~mj r̈ j2Fj
I !"d2r̈ j50

~Gauss–Gibbs variational equation!,

~12!

where the virtual change of accelerationd2r̈ j must be com-
patible with the constraints, andd2t50, d2r j5d2ṙ j50.

The notationd2r̈ j in Eq. ~12! and the idea of taking the
variation of the acceleration while keeping the velocity a
position unchanged were introduced by Gibbs,23 where the
index 2 indicates the second-order change of the positio
dt. Actually, Gibbs postulated Eq.~12! by inference from the
D’Alembert–Lagrange variational equation, and introduc
the function

G5(
j

1

2
mj r̈ j "r̈ j , ~13!

such that the variational equation~12! can be reduced to th
following invariant form:

d2G5d2Q, ~14!

where d2G5( j (]G/] r̈ j )"d2r̈ j and d2Q5( jFj
I "d2r̈ j . This

formulation is in agreement with the principle of least co
straint.

The variational equation~12!, which we call the Gauss–
Gibbs variational equation, can be applied to dynamical s
tems with nonholonomic constraints. For the system withL
linear kinematical constraints, we can find a set ofl 53N
2L independent parameters,yk (k51,2,...,l ), from the con-
ditions of constraint, so that all 3N components ofr̈ j are
related toÿk . The variation ofr̈ j is then related to the varia
tions of ÿk as

d2r̈ j5 (
k51

l
] r̈ j

] ÿk
d2ÿk . ~15!

Due to the independency ofd2ÿk , the variational equation
~14! is satisfied if and only if

(
j

]G
] r̈ j

"
] r̈ j

] ÿk
2(

j
Fj

I "
] r̈ j

] ÿk
50 ~k51,2,...,l !. ~16!
74 Am. J. Phys., Vol. 71, No. 1, January 2003
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If we replace the first term by the partial derivatives of t
Gibbs function, we find

]G
] ÿk

5(
j

Fj
I "

] r̈ j

] ÿk
~k51,2,...,l !, ~17!

where the functionG( r̈ ) has been transformed to the functio
G( ÿ1 ,ÿ2 ,...,ÿl). The l equations of motion~17!, plus theL
conditions for the nonholonomic constraints, form the det
mined set of differential equations for the 3N components of
r j , some of them having being transformed toyk .

The equation of motion in the form of Eq.~17!, which is
derived from the intermediate form~16!, was first established
by Appell24 based on D’Alembert’s principle, and both equ
tions were cited by Whittaker in Sec. 107 of his treatis1

Because the invariant form~14! was established earlier b
Gibbs, the functionG is known as the Gibbs function, an
Eq. ~17! is known as the Gibbs–Appell equation, whose im
portance was stressed by Pars~Ref. 2, p. 202! as ‘‘...provide
what is probably the simplest and most comprehensive fo
of the equations of motion so far discovered. They are
superlatively simple form, they apply with equal facility t
holonomic and to nonholonomic systems alike, and qua
coordinates may be used freely.’’

D. Remarks

By the end of the nineteenth century, several other fun
mental principles of mechanics had been developed, but
not discussed here. It could be said that the search fo
alternative to Newton’s principle for dynamical systems w
constraints had reached a satisfactory state. There w
D’Alembert’s principle and Lagrange’s equations for syste
with holonomic constraints, and Gauss’s principle and
Gibbs–Appell equations for a system with holonomic
nonholonomic constraints. This satisfaction was changed
the launching of artificial satellites in 1957. Classical dyna
ics was ushered into the space age, and orbital mecha
the dynamics of multiconnected rigid bodies, and many ot
subjects suddenly became active topics of research~see Refs.
25 and 26 and other books previously mentioned!. A new
round of search for alternatives emerged.

III. PRINCIPLE OF VIRTUAL POWER AND
APPELL’S EQUATION OF MOTION

A. Jourdain’s variational equation

The new search for an alternative actually began with
paper by Jourdain.3 Following Gibbs,23 he showed that the
virtual velocity d1ṙ j , which varies the velocityṙ j with both
position and time being fixed, satisfies the same conditi
for linear kinematic constraints~7! as does the other two
variations,dr j andd2r̈ j . By comparing all three variations
Jourdain established, again by inference, the following va
tional equation:

(
j

~mj r̈ j2Fj
I !"d1ṙ j50

~Jourdain’s variational equation!

~18!
74L.-S. Wang and Y.-H. Pao
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for d1ṙ j (d1t50, d1r j50) compatible with the linear kine
matic constraints, that is,

(
j

aj
s"d1ṙ j50. ~19!

Equation~18! was considered to be intermediate in charac
between Eqs.~4! and ~12!.

Other than showing the derivation of the extension
Lagrange’s equations to nonholonomic systems1 directly
from the variational equation~18!, Jourdain did not give any
physical meaning to Eq.~18!, or a basic principle upon
which the equation was founded. Nevertheless, Eq.~18!,
along with Eqs.~4! and~12!, are regarded as the fundamen
equations of mechanics by Pars.

Attempts have been made to derive Jourdain’s equa
~18! from the D’Alembert–Lagrange equation by first diffe
entiating Eq.~4! with respect to time, showing the inte
changeability of the operators (d/dt andd!, and then invok-
ing the conditions dr j50.27,28 In accordance with the
classical definition of virtual displacement as adopted he
however, the quantitydr j in Eq. ~4! is the imposed arbitrary
change of the position vector at a given point, not a cha
of some quantity along an arbitrary time-dependent pa
One cannot take the time-derivative of a quantity that is
a function of time. Therefore, Eq.~18! should be treated a
an independent variational equation of motion in mechan
We call it Jourdain’s variational equation, and regard it as a
mathematical representation of the principle of virtual pow
because the product of force with virtual velocity is virtu
power.7 Based on this principle we shall establish a set
equations of motion for a nonholonomic system in Sec. II
and the Euler’s equation of motion for rigid bodies in Se
IV.

B. Appell’s equations of motion

Consider again a system ofN interconnected particles sub
ject to L linear kinematic constraints in the form of Eq.~7!,
with K of the constraints being holonomic in the form of E
~5!. By differentiatingr j (t) in Eq. ~10! with respect to time,
we obtain

ṙ j5(
r 51

n
] r̂ j~q,t !

]qr
q̇r1

] r̂ j~q,t !

]t
, ~20!

whereq̇r5dqr /dt are thegeneralized velocities. The accel-
eration is given by

r̈ j5(
r 51

n
] r̂ j~q,t !

]qr
q̈r1 (

r ,s51

n
]2r̂ j~q,t !

]qr]qs
q̇r q̇s

12(
r 51

n
]2r̂ j~q,t !

]qr]t
q̇r1

]2r̂ j~q,t !

]t2 . ~21!

From Eqs.~20! and ~21!, we obtain the following relations
for the coefficients of transformation:

]r j

]qr
5

] r̂ j

]qr
5

] ṙ j

]q̇r
5

] r̈ j

]q̈r
. ~22!

The system is said to havel 53N2L degrees of freedom
represented byn generalized coordinates. If we take thed1
variation of Eq.~20!, we find
75 Am. J. Phys., Vol. 71, No. 1, January 2003
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d1ṙ j5(
r 51

n
] r̂ j~q,t !

]qr
d1q̇r . ~23!

We then substitute Eqs.~21! and ~23! into Eq. ~18! and ob-
tain the variational equation in generalized coordinates a

(
r 51

n

(
j

~mj r̈ j2Fj
I !"

] r̂ j

]qr
d1q̇r50. ~24!

If all d1q̇r are independent, we would recover Lagrang
equation immediately, as shown in Sec. V.

Because the generalized coordinates are still constra
by the remainingm5L2K nonholonomic conditions, onlyl
of them are independent. If we substitute Eq.~20! into the
remaining nonholonomic part of Eq.~7!, we obtain the fol-
lowing m equations relating then generalized velocities:

(
r 51

n

Dsr~q,t !q̇r1ds~q,t !50 ~s51,...,m!, ~25!

where the coefficientsDsr andds are given by

Dsr5(
j

aj
s"

] r̂ j

]qr
, ds5(

j
aj

s"
] r̂ j

]t
1as. ~26!

In the previous set of constraint conditions~25! on q̇, only
l generalized velocities are independent. We may select
independent ones, and relabel them asẏk (k51,...,l ), which
are called theprivileged velocities.2 We denote the remaining
dependent generalized velocities byżh (h51,...,m), and
partition the matrix@Dsr# in Eq. ~25! into two parts,@Dsh8 #
and @Dsk9 #, such that

(
h51

m

Dsh8 żh52 (
k51

l

Dsk9 ẏk2ds ~s51,...,m!. ~27!

If we assume that@Dsr# is of full rank, the matrix@Dsh8 # is
nonsingular. Hence, we can expressżh in terms of ẏk by
solving Eq.~27! to obtain

żh5 (
k51

l

Bhkẏk1bh ~h51,...,m!, ~28!

where

Bhk52(
s51

L

@D8#hs
21Dsk9 , ~29a!

bh52(
s51

L

@D8#hs
21ds ~h51,...,m! ~k51,...,n!.

~29b!

Let @Prs# denote the permutation matrix from (ẏk ,żh) to
q̇r , so thatq̇r5(k51

l Prkẏk1(h51
m Pr ( l 1h)żh . Every gener-

alized velocity can be then expressed in terms of the pr
leged velocitiesẏk as

q̇r5 (
k51

l

Crkẏk1cr , ~30!

where

Crk5Prk1 (
h51

m

Pr ( l 1h)Bhk , ~31a!
75L.-S. Wang and Y.-H. Pao
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cr5 (
h51

m

Pr ( l 1h)bh . ~31b!

If we substitute thed1 variation of Eq.~30!, that is,

d1q̇r5 (
k51

l

Crkd1ẏk ~32!

into the variational equation in generalized coordinates~24!,
we obtain

(
k51

l

(
r 51

n

(
j 51

N

~mj r̈ j2Fj
I !"

] r̂ j

]qr
Crkd1ẏk50. ~33!

Because thed1ẏk are arbitrary and independent, the follow
ing equations of motion are established:

(
r 51

n

(
j 51

N

~mj r̈ j2Fj
I !"

] r̂ j

]qr
Crk50 ~k51,...,l !. ~34!

On the other hand, we can bypass the using of virt
generalized velocitiesd1q̇r and work withd1ṙ j directly. If
Eq. ~30! is substituted into Eq.~20!, the following transfor-
mation fromẏk to ṙ j is obtained:

ṙ j5 (
k51

l

bj
k~z,y,t !ẏk1bj~z,y,t !, ~35!

where

bj
k5(

r 51

n
] r̂ j

]qr
Crk , bj5(

r 51

n
] r̂ j

]qr
cr1

] r̂ j

]t
. ~36!

Like aj
s , the bj

k is an assemblage of the coefficients of t
transformation in vector notation.

By taking the time-derivative of Eq.~35!, the accelerations
r̈ j are found in terms of the privileged coordinates as

r̈ j5 (
k51

l

bj
kÿk1ḃj

kẏk1ḃj . ~37!

From Eqs.~35! and ~37!, we note that

] ṙ j

] ẏk
5

] r̈ j

] ÿk
5bj

k , ~38!

which holds even for linear nonholonomic kinematic co
straints.

According to Eq.~35!, the virtual velocityd1ṙ j is related
to d1ẏk as

d1ṙ j5 (
k51

l

bj
kd1ẏk . ~39!

If we substitute the transformation ofd1ṙ j into Jourdain’s
variational equation~18! and transform the dependent va
ables inr̈ j andFj

I accordingly, we obtain

(
j 51

N

(
k51

l

~mj r̈ j2Fj
I !"bj

kd1ẏk50. ~40!

We recognize that thed1ẏk are independent and deduce t
following set of independent equations of motion in priv
leged coordinates:

(
j

mj r̈ j~z,y,ẏ,ÿ,t !"bj
k5(

j
Fj

I~z,y,ẏ,t !"bj
k

~k51,...,l !. ~41!
76 Am. J. Phys., Vol. 71, No. 1, January 2003
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These equations may also be derived directly from Eq.~34!
by noting the relation~36!; they form a system of second
order differential equations inÿk , the coefficients are func
tions of yk , ẏk and the dependent variables. This system
l 53N2L equations plus them supplementary kinematic
equations of constraints~25! form a determinant set of dif-
ferential equations for then unknown variablesqr . We shall
name Eq.~41! as well as Eq.~34! Appell’s equations of
motion for the reason discussed in Sec. VI.

C. Reduced Appell’s equations of motion and cyclic
coordinates

The final form of Appell’s equations~41! together with the
supplemental conditions varies according to the choice of
privileged velocities. This set of equations can sometimes
reduced to a fewer number of equations by choosing
privileged velocities judiciously.

Note that Eq.~41! is independent of the velocitiesżh , but
is still dependent onzh . In addition, Eq.~28! may be used as
the supplementary conditions for the constraints. Acco
ingly, we may reduce the number of supplemental equati
by one if one of the dependent variables, sayzc , is absent in
Bhk , bh , bj

k , bj , and the forcing functionsFj
I , because the

corresponding constraint equation forżc in Eq. ~28! is redun-
dant. The total number of equations to be solved is th
reduced fromn to n21. Because such a reduction is simil
to the notion of cyclic coordinates for the Lagrangian,29 we
call the variablezc the cyclic coordinate, and the reduce
system of the equations thereduced Appell’s equations. If all
the dependent coordinates are cyclic, we have

(
j

mj r̈ j~y,ẏ,ÿ,t !"bj
k~y,t !5(

j
Fj

I~y,ẏ,t !"bj
k~y,t !

~k51,...,l ! ~42!

with the minimal number (l ) of independent differentia
equations for the reduced system, which is precisely the
grees of freedom of the constrained system. As observed
Appell,18 this reduced minimal set of equations is sufficie
to determine all privileged coordinatesyk , without invoking
the equation of constraints. Once the variablesyk are solved,
the remaining variableszh are found by quadrature throug
Eq. ~28!.

IV. VARIATIONAL EQUATION OF MOTION FOR
SYSTEM OF RIGID BODIES

In Sec. III, the variational equations and the equations
motion were given for discrete systems with a finite numb
of particles. The motion of rigid bodies, however, is usua
treated by applying Euler’s laws for rigid body motion. Sin
a rigid body may be considered as an aggregate of an infi
number of particles or continuously distributed mass e
ments separated by constant distances, the variational e
tion for discrete systems may be extended to that of ri
bodies by replacing the summation by the integration o
the mass elements. Various procedures for deducing
equation of motion for a rigid body from the variation
equation have been proposed~see, for example, Refs. 30
32!. The one proposed by Wittenburg31 does not invokea
priori knowledge of Euler’s law and is summarized below
76L.-S. Wang and Y.-H. Pao
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A. Equations based on D’Alembert’s principle

For a continuous distribution of mass in a rigid bodyB
occupying a volume in three-dimensional space, a part
with massmj at the positionr j is replaced by the mass ele
mentdm occupying the positionr which varies continuously
within the volume. The total mass of the body is given
m5*B dm, and the center of mass of the body is defined
r c5*B rdm/m. If dFI denotes the force impressed on t
mass elementdm, the D’Alembert–Lagrange equation~4!
may be extended for a continuum as

E
B
~ r̈dm2dFI !"dr5dW , ~43!

wheredW is the virtual work done by the internal force
Because the mutual distance between each and every pa
mass elements is held fixed for a rigid body, we setdW50
in Eq. ~43!.

The general motion of a rigid body may be decompos
into the motion of a reference point in the body plus a ro
tion about that point. We choose the reference point to be
center of mass, and denote the relative position vecto
constant length from the center of massC to each mass
element byr 8. Due to its infinitesimal character, the virtu
displacement of each mass element positioned atr can be
expressed as

dr5dr c1duÃr 8, ~44!

wheredu contains three infinitesimal angles of rotation. W
denote the angular velocity of the rigid body byv, and write

ṙ5 ṙ c1vÃr 8, ~45a!

r̈5 r̈ c1v̇Ãr 81vÃ~vÃr 8!. ~45b!

If we substitute Eq.~45! into Eq. ~43! and carry out the
integration over the bodyB, we obtain the variational equa
tion of motion for a rigid body:

~mr̈ c2FI !"dr c1~ I c"v̇1vÃI c"v2L c!"du50, ~46!

where FI5*BdFI is the total impressed force,L c5*Br 8
3dFI is the total impressed torque on the entire body ab
the point C, and I c denotes the moment of inertia dyad
about the center of mass,

I c5E
B
~ ur 8u212r 8r 8!dm. ~47!

If the rigid body is free to translate or rotate,dr c anddu
are independent of each other. The variational equation~46!
leads to two independent equations of motion, one from e
term,

mr̈ c5FI , I c"v̇1vÃI c"v5L c. ~48!

They are, respectively, the well-known Euler’s equation
linear momentum and that of angular momentum for a ri
body in free motion.

We note that Euler’s equation of angular momentum c
also be derived from Lagrange’s equations in terms of
quasi-velocitiesv, which are linear functions of the rate o
change of the orientation angles~see Ref. 1, Sec. 30!. The
notion of quasi-velocities was also adopted by Poincare´ to
derive the same equation directly from Hamilton’s princip
by considering a special variation of the angular velocity33

In modern geometric mechanics, Poincare´’s work has been
77 Am. J. Phys., Vol. 71, No. 1, January 2003
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incorporated with the theory of Lie groups to form th
Euler–Poincare´ equations applicable to rigid bodies an
ideal fluids~Ref. 34, Chap. 13!.

B. Equations based on principle of virtual power

The derivation of the variational equation for a rigid bod
based on D’Alembert’s principle as outlined in Sec. IV A
essentially that of Wittenburg.31 Because the motion of rigid
bodies is usually constrained by kinematic conditions,
convert the virtual displacements to virtual velocities. B
reasoning similar to that used by Jourdain,3 we replacedr by
d1ṙ5d1ṙ c1d1vÃr 8 in Eq. ~43! and obtain the following
variational equation for a rigid body:

~mr̈ c2FI !"d1ṙ c1~ I c"v̇1vÃI c"v2L c!"d1v50. ~49!

Again Euler’s equations for a rigid body in free motion E
~48! are recovered.

For a system ofNB rigid bodies, we append a subscri
j 51,...,NB to all physical variables pertaining to each bod
and sum all the terms forj 51,...,NB to obtain a single varia-
tional equation for the entire system,

(
j 51

NB

~mj r̈ j
c2Fj

I !"d1ṙ j
c1~ I j

c"v̇j1vjÃI j
c"vj2L j

c!"d1vj50.

~50!

This single variational equation can be reduced to a sys
of independent equations of motion for multiconnected rig
bodies if the kinematic constraint conditions forṙ j

c and vj

are given.
From the constraint conditions, a set of generalized co

dinatesq1 ,q2 ,...,qn may be constructed such that

ṙ j
c5(

r 51

n ] r̂ j
c~q,t !

]qr
q̇r1

] r̂ j
c~q,t !

]t
, ~51a!

vj5(
r 51

n

v̂j r ~q,t !q̇r . ~51b!

These generalized coordinates may be subject to the o
nonholonomic constraints in the form of Eq.~25!. By a pro-
cess similar to that presented in Sec. III B, a set ofl inde-
pendent privileged velocitiesẏk (k51,...,l ) may be found,
in terms of which the generalized velocities are expresse
in Eq. ~30!. The following set of equations of motion analo
gous to Eq.~34! is then established:

(
r 51

n F (
j 51

NB

~mj r̈ j
c2Fj

I !"
] r̂ j

c

]qr

1~ I j
c"v̇j1vjÃI j

c"vj2L j
c!"v̂j r GCrk50. ~52!

On the other hand, from Eqs.~51! and ~30!, we find

ṙ j
c5 (

k51

l

b̄j
kẏk1b̄j , ~53a!

vj5 (
k51

l

ḡj
kẏk1ḡj , ~53b!

where
77L.-S. Wang and Y.-H. Pao
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b̄j
k5(

r 51

n ] r̂ j
c

]qr
Crk , b̄j5(

r 51

n ] r̂ j
c

]qr
cr1

] r̂ j
c

]t
, ~54a!

ḡj
k5(

r 51

n

v̂j r Crk , ḡj5(
r 51

n

v̂j r cr . ~54b!

The d1 variations of the velocities are then related by

d1ṙ j
c5 (

k51

l

b̄j
kd1ẏk , ~55a!

d1vj5 (
k51

l

ḡj
kd1ẏk . ~55b!

From either Eq.~50! or Eq. ~52!, another form of the equa
tions of motion for rigid bodies can be established as

(
j

~mj r̈ j
c2Fj

I !"b̄j
k1~ I j

c"v̇j1vjÃI j
c"vj2L j

c!"ḡj
k

50 ~k51,...,l !. ~56!

Once the coefficient vectorsb̄j
k and ḡj

k are found from the
constraint conditions, the minimal set of equations of mot
for a system of rigid bodies is established directly.

To summarize, we have shown three approaches to
lyzing the motion of a system of rigid bodies based on
variational equation of virtual power. The first is to app
directly the variational equation for a rigid body, Eq.~50!,
together with the conditions of kinematic constraints. T
second is to apply the equation of motion in generaliz
coordinates, Eq.~52!, and the third is to use the equation
motion in quasi-velocitiesvj , Eq. ~56!. There is no simple
guideline for which approach one should follow. Custom
ily, the use of the quasi-velocitiesvj as independent vari
ables is preferred for torque-free motion (L j

c50). Other-
wise, one usually replacesvj by the appropriate generalize
velocities such as the Eulerian angular speeds or the ang
rate of roll–pitch–yaw angles. These three approaches
illustrated with the example given in Sec. IV C.

C. The motion of a two-wheel-axle assemblage

To illustrate the application of the variational equation
virtual power for dynamical systems with kinematic co
straints, we consider the motion of two wheels of radiusa
mounted on a rigid axle of lengthl , rolling on a rough plane
inclined by an anglea to the horizontal~see Fig. 1!. Each
wheel is attached by a bearing to the axle, free to spin ab
the axle with no wobbling about any axis perpendicular
the axle.

We associate the coordinate axesx, y, z with a triad of
unit vectors$i, j , k% to the inclined plane; thex andz axes are
along and normal to the inclined plane, respectively. T
motion of each wheel is then specified by six paramet
three Cartesian coordinates (xj ,yj ,zj ) ( j 51,2) of the center
of mass and three Eulerian angles (f j ,u j ,c j ) for each wheel
in free motion, rotating about a set of axes through the ce
of each wheel as shown in Fig. 1. The triad is first rota
aboutk through the precession anglef j to the new position
indicated by the triad$ i j8 ,j j8 ,k j85k% such thatj j8 is along the
axle. The axle is then rotated through the nutation angleu j

abouti j8 to the new triad$ i j95 i j8 ,j j9 ,k j9% such thatj j9 coincides
78 Am. J. Phys., Vol. 71, No. 1, January 2003
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with the axis of symmetry of the wheelj . Finally, the axes
are rotated through the spin anglec j aroundj j9 . The result-
ant angular velocity for each wheel is then

vj5ḟ jk1 u̇ j i j81ċ j j j9 , ~57!

and hence

d1vj5~d1ḟ j !k1~d1u̇ j !i j81~d1ċ j !j j9 . ~58!

Let M be the total mass for the wheel assemblage and
load, concentrated at the center of each wheel, and letm8
(,M ) be the mass of the rim of the wheel. The impress
force acting on each wheel is thusMg sinai1Mg cosak,
and the impressed torque about the center of mass is z
The principal moment of inertia dyadic for each wheel
given by

I j
c5 1

2 m8a2i j9i j91m8a2j j9j j91 1
2 m8a2k j9k j9 . ~59!

Because the wheels remain in contact with the ground,
the axle remains parallel to thex–y plane, we have two
simple conditions of constraints for each wheel,

~ i! ż150 ~or z15a!,

~ ii ! u̇150 ~or u150!,

~ iii ! ż250 ~or z25a!,

~ iv! u̇250 ~or u250!.

By setting the nutation anglesu15u250, the triad
$ i j9 ,j j9 ,k j9% coincides with $ i j8 ,j j8 ,k j8%. In addition, both
wheels precess at the same angle with the axle, giving ris
the geometrical conditionf15f2[f, or the kinematic con-
dition

~v! ḟ15ḟ25ḟ,

and$ i18 ,j18 ,k18%5$ i28 ,j28 ,k28%[$ i8,j 8,k8%.
The fact that each wheel rolls without sliding at the co

tact point imposes two nonholonomic kinematic conditio
of constraints on each wheel:

~vi! ẋ15aċ1 cosf,

~vii ! ẏ15aċ1 sinf,

~viii ! ẋ25aċ2 cosf,

Fig. 1. Wheel-axle assemblage moving on an inclined plane with inclina
anglea. In addition to the axes shown, thek axis points normal to the plane
The angles of rotation of the wheels~not shown! are c1 and c2 , and the
heading of the assemblage is represented by the anglef betweenj and j 8.
78L.-S. Wang and Y.-H. Pao
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~ ix! ẏ25aċ2 sinf.

The assumption that the axle is rigid and inextensible
poses a geometrical constraint condition, (x22x1)21(y2

2y1)25 l 2, which may be converted into a kinematic cond
tion, as either

ẋ25 ẋ12 l ḟ cosf, ~60a!

or

ẏ25 ẏ12 l ḟ sinf. ~60b!

If we combine Eq.~60a! with conditions~vi! and ~viii ! to
eliminateẋ1 and ẋ2 , we find

~x! aċ25aċ12 l ḟ, ~61!

which can also be derived from Eq.~60b! with conditions
~vii ! and~ix!. Therefore, there are altogether ten equations
kinematic constraints, six being integrable and four be
nonintegrable. The number of degrees of freedom of the
tem of two connected rigid bodies is reduced from 12 to 2
the constraints from the ground and the axle. Note t
among the ten constraint conditions,~i!–~iv! and ~vi!–~ix!
are the constraints on individual wheels, while~v! and~x! are
the constraints on the two coupled rigid bodies.

After the constraint conditions have been specified, any
the three approaches discussed in Sec. IV B can be ado
to derive the minimal set of equations of motion as sho
below.

Method I (direct application of the variational equation:
From the first five conditions of constraints, we findd1ż1

5d1u̇15d1ż25d1u̇250, and d1ḟ15d1ḟ2[d1ḟ. The
variational equation of virtual power~50! for the assemblage
is then reduced to

(
j 51

2

~~Mẍj2Mg sina!d1ẋ j1Mÿjd1ẏ j1m8a2c̈ jd1ċ j !

1m8a2f̈d1ḟ50. ~62!

By choosingċ1 and ḟ as the privileged velocities, the re
maining five constraints are used to find the following re
tions:

d1ẋ15a cosfd1ċ1 , d1ẏ15a sinfd1ċ1 , ~63a!

d1ẋ252 l cosfd1ḟ1a cosfd1ċ1 ,
~63b!

d1ẏ252 l sinfd1ḟ1a sinfd1ċ1 ,

d1ċ252
l

a
d1ḟ1d1ċ1 . ~63c!

The linear and angular accelerations in Eq.~62! are derived
by differentiating the respective constraint conditions w
respect to time. If we substitute all these expressions into
~62! and collect coefficients ford1ċ1 and d1ḟ, we obtain
two independent equations of motion for the wheel ass
blage,

2a~M1m8!c̈12 l ~M1m8!f̈52Mg sina cosf, ~64a!

al~M1m8!c̈12~Ml 21m8l 21m8a2!f̈

5Mgl sina cosf. ~64b!
79 Am. J. Phys., Vol. 71, No. 1, January 2003
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Note that only two variablesf andc1 and their time deriva-
tives appear in Eq.~64!, which can be solved without an
supplementary conditions of constraints. Once this system
second-order differential equations is solved forf and c1
with the appropriate initial conditions, the remaining five v
locities are determined from the constraint conditions and
corresponding coordinates are determined by simple qua
ture.

Method II (application of Appell’s equation in generalize
coordinates): After eliminating the five holonomic con
straints, a set of seven generalized coordinates@qr #
[(x1 ,y1 ,c1 ,x2 ,y2 ,c2 ,f) is constructed. The remainin
five conditions of constraints may be expressed in the fo
of Eq. ~25! as

(
r 51

7

Dsrq̇r50 ~s51,...,5!, ~65!

where the elements of the first row in the 537 coefficient-
matrix @Dsr# are D1r(1,0,2a cosf,0,0,0,0); the second to
the last ~fifth! row is, respectively, D2r(0,1,
2a sinf,0,0,0,0), D3r(0,0,0,1,0,2a cosf,0), D4r(0,0,0,1,
0,2a sinf,0), D5r(0,0,2a,0,0,a,l ). Because the variablef

appears in the coefficient-matrix@Dsr#, we selectḟ as the

first privileged velocityẎ1 according to the guideline out

lined in Sec. III. In addition, we selectċ1 as the second

privileged velocityẎ2 and solve Eq.~65! to obtain the trans-
formation

q̇r5 (
k51

2

CrkẎk , ~66!

where the 732 transformation matrix@Crk# is given by two
columns, the transpose of the first column:Cr1(0,0,0,
2 l cosf,2l sinf,2l/a,1); the second column is
Cr2(a cosf,asinf,1,a cosf,asinf,1,0). Because all five
dependent variablesx1 , y1 , x2 , y2 , c2 are absent from the
matrix @Crk# and the impressed forceFI , they constitute the
five cyclic coordinates for the system. If we substitute t
coefficient matrix@Crk# into Appell’s equation in generalized
coordinates, Eq.~52!, the same set of equations as in Eq.~64!
can be established. They constitute what we called the
duced Appell’s equations, after ignoring the five cyclic coo
dinatesx1 , y1 , x2 , y2 , c2 .

Method III (application of Appell’s equation with quas

velocities): After identifying the privileged velocitiesċ1 and

ḟ, the coefficient vectors in Eq.~53! for the velocities are
found to be

b̄1
c15b̄2

c15ai8, ḡ1
c15ḡ2

c15 j 9, ~67a!

b̄1
f50, b̄2

f52 l i8, ḡ1
f5k, ḡ2

f5k2
l

a
j 9. ~67b!

If we substitute these vectors, the accelerations, and
forces into Appell’s equation with quasi-velocities~56!, we
again derive the same set of equations~64!. This approach is
essentially the same as the one used by Kane in establis
the equations of motion.8
79L.-S. Wang and Y.-H. Pao
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V. COMPARISONS WITH OTHER PRINCIPLES AND
EQUATIONS OF MOTION

A. Newton’s principle and constraint forces

The reduction of the D’Alembert–Lagrange variation
equation to Newton’s equation of motion~3! is well known.
It is established by applying Lagrange’s method of unspe
fied multipliers. Analogously, we can reduce Jourdai
equation~18! by the same method. If we multiply each of th
equations of constraint~19! by the unspecified multiplierl i
and combine all constraint equations with the variatio
equation~18!, we obtain

(
j

S mj r̈ j2Fj
I2(

s51

L

lsaj
sD "d1ṙ j50. ~68!

By applying Lagrange’s method, this single equation giv
rise to the following system of independent equations of m
tion:

mj r̈ j5Fj
I1(

s51

L

lsaj
s ~ j 51,...,N!. ~69!

We thus recover Newton’s principle from Jourdain’s equ
tion if the summation oflsaj

s is identified as the constrain
force Fj

C in Eq. ~3!, that is,

Fj
C5(

s51

L

lsaj
s ~ j 51,...,N!. ~70!

Conversely, by multiplying each of Newton’s equatio
~3! by d1ṙ j , and combining all the equations, we find

(
j

mj r̈ j "d1ṙ j2(
j

Fj
I "d1ṙ j5(

j
Fj

C"d1ṙ j . ~71!

If we use the expression ofFj
C in Eq. ~70!, which could also

be established by D’Alembert’s principle, the term on t
right-hand side of Eq.~71!, which represents the total virtua
power generated by the constraint forces, can be express

(
j 51

N

Fj
C"d1ṙ j5(

j 51

N

(
s51

L

(
k51

l

lsaj
s
•bj

kd1ẏk . ~72!

The triple summation is seen to vanish on account of
conditions

(
j

aj
s"bj

k50 ~s51,...,L ! ~k51,...,l !, ~73!

which can be derived from Eqs.~39! and ~19!. Hence, we
recover Jourdain’s variational equation from Newton’s pr
ciple. Either way we have made use of the additional con
tion ~70! which is supplemented by another principle. The
fore, Jourdain’s variational equation and Newton’s princip
should be treated as independent equations in mechanic

The deduction of Eq.~72! reveals that the total virtua
power generated by the constraint forces vanishes if the
tual velocities are compatible with the prescribed kinema
constraints. This was mentioned as an independent princ
in mechanics known as Jourdain’s principle.4 If we accept
this principle, we can then directly derive Jourdain’s var
tional equation from Newton’s equation; this approach
called Jourdain’s method.5
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Furthermore, if we multiply each of Newton’s equation
~3! by the vectorbj

k directly, and then add these equatio
together, the grand sum is a single equation for the indep
dent parameteryk :

(
j

mj r̈ j "bj
k5(

j
~Fj

I1Fj
C!"bj

k . ~74!

By replacingFj
C in Eq. ~74! by the expression~70!, we ob-

tain

(
j

mj r̈ j "bj
k2(

j
Fj

I "bj
k5(

j
(
s51

L

lsaj
s"bj

k . ~75!

Again the double sum on the right-hand side of Eq.~75!
vanishes. Equation~75! is then identical to Appell’s equation
~41!.

This derivation clarifies the meaning ofFj
C , Fj

I in Eq. ~3!
and subsequent equations. All interactive forces, includ
the contact of a particle with its surroundings, which a
unknown quantities but are accompanied by prescribed k
matic conditions of constraints, are treated as the constr
forcesFj

C . On the other hand, those that are specified exp
itly in terms of unknown kinetic variables and pertinent k
netic coefficients~material constants!, such as the forces ex
erted by the connecting spring, are treated as the impre
forcesFj

I .
Within the framework of modern geometrica

mechanics,35 the velocitiesṙ j reside in a fiber of the tangen
bundle of the configuration space, and the kinematic con
tions of constraints restrict the admissible velocity to
within a subspace of the fiber. Accordingly, the virtual velo
ity d1ṙ j compatible with the constraints is an arbitrary vec
in the subspace, and the expression in Eq.~39! shows that the
admissible subspace is spanned by the base vectorsbj

k ( j
51,...,N). Hence the result( j Fj

C"bj
k50 which leads to Eq.

~41! from Eq. ~75! can be viewed as the vanishing of th
projection of the constraint forces onto the admissible s
space spanned bybj

k . Appell’s equation then implies that th
net forcesFj

I2mj r̈ j are orthogonal to the base vectors in t
admissible subspace. Similarly, Jourdain’s variational eq
tion in the form of Eq.~18! means that the net forces a
orthogonal to the entire admissible subspace. This inter
tation is in agreement with the projection method of dyna
ics recently proposed.36–38

B. Lagrange’s equation

If all constraints of the system are holonomic, the gen
alized coordinatesq1 ,q2 ,...,qn are all ~independent! privi-
leged coordinatesyk . We thus obtain
80L.-S. Wang and Y.-H. Pao
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bj
k5

]r j

]qk
5

] ṙ j

]q̇k
. ~76!

Appell’s equation~41! is readily reducible to Lagrange’
equation~11! by the substitution ofbj

k with ]r j /]qk . For
nonholonomic systems the reduction to the Lagrang
Ferrers equation1 and other similar ones is also possible.

C. Gibbs–Appell equation

It was mentioned previously15 that Appell’s equation~41!
is an intermediate step in deriving the Gibbs–Appell eq
tion ~17!. In terms of the formulation presented in Sec. I
the derivation of one from the other is immediate. Note t
in all three variational equations, the vectormj r̈ j may be
replaced by]G/] r̈ j , whereG is given in Eq.~13!, and for the
case of linear kinematic constraints, Eq.~38! holds. The two
parts of Eq.~41! can thus be expressed as

(
j

mj r̈ j "bj
k5(

j
mj r̈ j "

] r̈ j

] ÿk
5

]G
] ÿk

, ~77a!

(
j

Fj
I "bj

k5(
j

Fj
I "

] r̈ j

] ÿk
, ~77b!

and Eq.~16! is recovered. The reverse procedure of deriv
Eq. ~41! from the Gibbs–Appell equation~17! is equally
simple.

In the applications of both Eqs.~17! and ~41!, there is no
difference between the final form of the differential equ
tions of motion if the same privileged coordinates are c
sen, see, for example, Ref. 13. Equation~41! is however
preferred to Eq.~17! as the former does not require th
evaluation of the function]G( ÿk ,ẏk ,yk ,żh ,zh ,t)/] ÿk , see,
for example, Ref. 39. Therefore, whatever is said about
importance of the Gibbs–Appell equation as quoted in
remarks of Sec. II applies equally well to Appell’s equati
~41!, especially the reduced Appell’s equation~42!.

VI. CONCLUDING REMARKS

From 1899 to 1903, Appell18 discussed new forms o
equations of motion based on D’Alembert’s principle and
variational equation~4! for dynamical systems with nonholo
nomic constraints. He first showed for a system ofl degrees
of freedom that there exists independent parametersy1 ,...,yl

~privileged coordinates in our notation! such that dr j

5(bj
kdyk , in our notation. The general equations of moti

can then be written in compact form~Ref. 18, Eq.~5!, p.
304! as follows:

Qk2Pk50 ~k51, . . . ,l !, ~78!

whereQk5( jFj "bj
k andPk5( jmj r̈ j "bj

k . He then noted the
selection of the independent parameters from the genera
coordinates for a nonholonomic system, and relation~38!
was established~Ref. 18, Sec. 465!. By writing Pk

5]G/] ÿk , whereG is the Gibbs’ function, Appell then de
duced Eq.~17!, without assigning the name to the functionG
or the equation. The entire presentation including Eqs.~17!
and~41! has been discussed succinctly by Whittaker~Ref. 1,
Sec. 207!.

However, the utilitarian value of Eq.~41! remained unno-
ticed until Kane,8 who derived the same equations fro
‘‘D’Alembert’s principle’’ ~Eq. ~18! in Ref. 8!, which is es-
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sentially an alternative form of Eq.~3! in this paper. By
multiplying each equation in Eq.~3! by the vectorbj

k , which
was called thepartial velocitycorresponding to thegeneral-
ized speed y˙ k , and summing over all the particles, Kan
established the equations of motion in the form of Eq.~74!.
Although the term of virtual displacement is not used, t
notion of instantaneous and infinitesimal change is impl
in stating the ‘‘equation of instantaneous constraints.’’ H
then deduced the final equation in the form of Eq.~41! by
asserting without proof that( jFj

C"bj
k vanishes. The proof is

supplied in Sec. V C, Eqs.~70!–~74!, by invoking Newton’s
principle and Jourdain’s principle concurrently.

In this paper, Jourdain’s variational equation is postula
as a mathematical representation of a fundamental princ
in mechanics, the principle of virtual power, independent
all other principles. We then derived in Sec. III the fund
mental equations of motion~41! from Jourdain’s equation
Because the method we used and the equations we de
are not much different from those used by Appell, Eq.~41! is
named Appell’s equation.
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eighty-five-ton magnet and a vacuum tank eight inches across, which allowed him to accelerate
the deuterons at very high speeds and direct them against any target. His work developing pow-
erful beams of particles had already earned high praise from none other than Bohr himself, ‘‘the
dean of quantum theorists,’’ who would make two trips from Copenhagen to California in the
1930’s to check up on the young Berkeley Physicist.
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