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Identification of a wheel–rail adhesion
coefficient from experimental data during
braking tests
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Abstract

The forces that occur in the wheel–rail interface significantly affect vehicle dynamics, especially in the longitudinal

direction. Conventionally, the tangential component of the force exchanged between the rail and the wheel is expressed

as the product of the normal component of the force, and the so-called adhesion coefficient. This ratio depends on

several parameters that are usually summarized in the term ‘adhesion conditions’. When the adhesion conditions are

degraded (for example, in cases of rain, fog, ice, dead leaves, etc.), and the vehicle is accelerating or braking, pure rolling

conditions between the wheels and the rails do not hold any more, and macroscopic sliding occurs on one or more of

the wheels. The aim of this work is to identify a relationship between adhesion coefficient and some parameters, namely

wheel sliding and train speed, starting from a set of experimental measurements, obtained from test runs conducted with

artificially degraded adhesion conditions.
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Introduction

The contact between wheels and rails is very import-
ant in the dynamic behaviour of railways vehicles, and
has been studied since the very beginning of railways.
The resultant of the pressure distribution that arises in
the contact patch can be represented by a force and a
resultant moment (spin). The resulting force can be
expressed as the vectorial sum of one component tan-
gent to the wheel in the contact point and another
component normal to the wheel profile in the same
point. By increasing the tangential force starting from
zero, and fixing the remaining relevant parameters,
two different phases can be distinguished.

The first one, named pseudo-sliding, mainly depends
on elastic deformation of the two contact bodies. In
this case, the contact area can be divided into two
zones, in the first zone, relative slip between the
bodies occurs, while the second zone is characterized
by the adhesion between contact surfaces.1,2 The over-
all size of the contact patch depends substantially on
the normal component of the contact force, while the
relative dimensions between sliding and adhesion areas
depend on the ratio between the tangential and normal
components of the contact forces. The tangential com-
ponent of the force exchanged between the wheel and
the rail is given by the integral of the tangential stresses

that arise in the slip zone. With growing longitudinal
forces the adhesion zone decreases up to a limit situ-
ation where sliding occurs on the whole contact area.
This is the second phase, that may occur during brak-
ing and traction operations and when adhesion
between the wheel and the rail is poor. In such situ-
ations, the adhesion coefficient is a function of several
parameters (normal load, sliding speed, temperature of
the two bodies, contact geometry, weather conditions,
presence of rain, snow, dead leaves, etc.), and the
dependency on some of them may not be easily
expressed analytically.

The adhesion coefficient �, conventionally defined
as the ratio between the tangential and the normal
component of the force exchanged between the wheel
and the rail (respectively T and N), is expressed as

� ¼
T

N
ð1Þ
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The coefficient � depends on several uncontrollable
and difficult to quantify factors, and the research of
a law that relates it to other directly measurable vari-
ables (train speed, wheel velocity, etc.) is a difficult
task. Some experimental identification procedures of
wheel–rail contact forces are presented in the litera-
ture.3–10 On the other hand, the definition of a wheel–
rail interaction model is needed for the realization of a
‘real-time’ realistic simulator of the dynamic of a rail-
way vehicle, which will be used to test in laboratory
‘runs’ (by means of properly designed test rigs) the
behaviour of on-board devices that are part of
advanced train control and monitoring systems, thus
reducing the cost of line tests, such as automatic train
protection and automatic train control (ATP/ATC)
on-board elements, wheel slide protection (WSP) sys-
tems, anti-slip devices and so on.11 More complex test
rigs are necessary to test the interaction between dif-
ferent on-board subsystems also in critical conditions:
in particular virtual test runs with degraded adhesion
conditions may be used for hardware-in-the-loop test-
ing of the complex interactions arising between differ-
ent on-board subsystems on scaled12 or full-scale
roller rigs.13

A quantitative and reliable model of the wheel–rail
interaction forces is needed also to design and develop
innovative devices (for example, WSP and anti-skid
devices), in particular, to test, by means of software
simulations, the behaviour of innovative control stra-
tegies. In this paper, the identification of the wheel–
rail adhesion coefficient starting from experimental
measurements is described. In particular, research
has been performed with the goal of obtaining a reli-
able and computationally efficient model of the
wheel–rail contact to be used in a hardware-in-the-
loop simulator of the dynamics of a railway vehicle,
devoted to test WSP and odometry systems.

The paper is organized as follows: in the next sec-
tion , a brief introduction to wheel–rail interactions
during degraded adhesion tests is presented. Then, the
experimental data and corresponding vehicle model
are described; a simplified dynamic model adopted
to identify adhesion coefficient from experimental
data is presented; the proposed identification model
based on feed-forward neural networks is presented;
the results of the training and validation on available
experimental data are shown; and finally the results
obtained are discussed.

Problem description

The adhesion coefficient, introduced in the preceding
section, depends on a large number of variables:
environmental conditions (e.g. presence of water,
snow, ice on the rail surface), materials, temperature,
etc. Due to the complexity of the phenomenon, with
constant environmental conditions, it is commonly
accepted to express adhesion as a function of sliding
speed, �v, defined as the difference between the

vehicle speed and the tangential velocity of the
wheel at the point of contact,6,14,15 defined as

�v ¼ v� r! ð2Þ

in a braking phase, and

�v ¼ r!� v ð3Þ

in a traction phase. where v is the vehicle speed, ! is
the angular wheel velocity and r is the wheel contact
radius.

As will be explained in the following subsection, in
the so-called pseudo-slip or creepage zone, i.e. the part
of the adhesion curve where the sliding between the
wheel and the rail is small, and the elastic deform-
ations of the bodies determine the entity of the tan-
gential force exchanged, the adhesion coefficient
depends on the relative slip,1,2 given by the following
expression

�v ¼
v� r!

v
ð4Þ

in a braking phase, and

�v ¼
r!� v

r!
ð5Þ

in a traction phase.

Wheel–rail contact forces in rolling conditions

A complete theoretical study of the adhesion in the
micro-slip zone is described in by Kalker1 and
Johnson,2 but its results cannot be used directly to
obtain the wheel–rail model to be used for hardware in
the loop (HIL) simulation of safety relevant subsystems
like WSP systems, mainly for the following reasons:

. the accurate models described in previously cited
studies are not adequate to simulate macroscopic
sliding occurring with degraded adhesion
conditions;

. considering real-time requirements for hardware-
in-the-loop testing and the necessity of the simula-
tion of many axles/contact points (at least four)
involve the availability of limited computational
resources and the preference for algorithms that
can be solved in a known deterministic time;

. finally, for the application we are interested in, the
model of the vehicle is planar, so tri-dimensional
models considering multi-contact patches are too
sophisticated in this case.

Given the magnitude of the tangential and the
normal component of the contact force, numerical
procedures are available1 that evaluate the shape
and the dimensions of the contact area and subdivide
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it into the sliding and the adhesion zone.16 This pro-
cedure is used for the analysis of the phenomena that
occur in the contact area between two elastic bodies,
which are rolling with respect to the other.

For small values of creepage, the relationship
between the creepage and the creep force can be con-
sidered linear, so longitudinal Fx and lateral Fy forces
and the moment Mz can be calculated according to
Kalker theory

Fx ¼ �f11�

Fy ¼ �f22�� f23�

Mz ¼ f23�� f33�

ð6Þ

where f11, f22, f33, f23 are the linear creep coefficients,
depending on the contact ellipse semi-axis and on the
material properties, their values are tabulated and can
be found, for example, in Kalker.1 The coefficients �, �
and � represent, respectively, the longitudinal,
lateral and spin creepage components, and are
defined as17

� ¼
vrc � ir

vow

� ¼
vrc � tr

vow

� ¼
:r

w � nr

vow

ð7Þ

In the above expressions, vrc is the wheel speed at
the contact point, ir is the unit vector that identifies
the rail longitudinal direction, tr is the unit vector tan-
gent to the contact surface and orthogonal to ir (it
identifies the lateral direction), nr is the unit vector
normal to the contact surfaces in the contact point,
vow is the magnitude of the velocity of the wheelset
centre of mass.

The tangential forces evaluated with this linear
model have to be saturated, in order to approximate
a limited known friction factor �. The saturation of
creep forces is performed according to the modified
Jonshson–Vermeulen formulation,17 by defining a
coefficient ks as

ks¼

�N

FR

FR

�N

� �
�
1

9

FR

�N

� �2

�
1

27

FR

�N

� �3
" #

for FR43�N

�N

FR
for FR43�N

8>>>><
>>>>:

ð8Þ

where � is the wheel–rail friction factor, N is the

normal component of the force, FR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
x þ F2

y

q
is

the total creep force and Fx and Fy are the creep

forces in the x and y directions, respectively.

Wheel–rail contact forces when sliding is present

When the full contact zone is sliding, pure rolling
conditions do not hold any more, and macroscopic
sliding between the wheel and the rail occurs. In this
phase, the adhesion coefficient depends on the abso-
lute slip, defined in equation (4). The relationship
between the adhesion coefficient � and the absolute
sliding �w was investigated by many researchers
because its behaviour is fundamental for the perform-
ance anti-skid and WSP devices.6 This relationship is
defined on the basis of experimental results, but, since
macro-sliding occurs, for example, in the presence of
contaminants in the contact area, the variability of
adhesion coefficient due to non-homogeneous contact
conditions is very high, and the identification of its
dependence on slip is difficult.

To obtain a unique model, valid either for the
micro-slip and the macro-slip ranges, it is necessary
to express the adhesion factor � as a function of the
relative slip, given by the ratio between the absolute
slip and the speed.

Since in this work, the longitudinal dynamics is
analysed, the relative slip in this case is evaluated as
the component of the above defined creepage in the
longitudinal direction.

An example of relative slip/adhesion curve is pre-
sented in Boiteux,6 and is shown in Figure 1. As can
be seen, two curves are present: the continuous one
refers to a loss of adhesion, i.e. to an increment of the
slip, while the dashed curve is relative to a recovery of
adhesion, i.e. to a decrement of the slip, and their typ-
ical shapes are clearly different.

The behaviour of the adhesion factor with
degraded conditions seems to be affected also by vehi-
cle speed, as confirmed by experimental tests and the
literature.6,7 The dependency on velocity has been
often explained with the so-called energetic or polish-
ing effect: degraded adhesion conditions are mainly
due to contaminants present in the wheel–rail inter-
face, when high sliding occurs, the energy dissipated
by the friction produces localized heating that may
partially destroy or remove contaminants; material
from sliding surfaces is removed and the tribological
features of the rolling surfaces are altered. As a con-
sequence, the equivalent friction adhesion factor is
modified. This is also called the polishing effect since
the sliding of a wheel clears the rail from the contam-
inants, improving the adhesion conditions found by
the following ones. This effect is often claimed to be
responsible for the hysteresis behaviour of the adhe-
sion factor during repeated cycles of contact losses.
The cleaning effect mainly depends on the specific
energy dissipated during the sliding per unit of
length, which depends on vehicle speed; as a conse-
quence, the effect due to energy dissipation produces
an alteration of the adhesion factor that depends on
speed and from the wear number associated with slid-
ing. Relative sliding is a good index to evaluate this
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phenomenon since it is approximately proportional
to the specific energy dissipated over a unitary arc
length. Other parameters, e.g. unmodelled contact
force fluctuations due to the flexible behaviour of
both wheel and rail, may contribute to modifying
the behaviour of the adhesion factor with speed.

Data from test runs

The theoretical models and qualitative considerations
described in the preceding section are useful for the
comprehension of the wheel–rail contact phenomena,
but do not give quantitative information on the adhe-
sion curve.

In order to verify these qualitative behaviours and
to obtain quantitative information, a set of experi-
mental data, from a series of test runs, is analysed,
to estimate, by means of a simplified dynamical
model, the adhesion coefficient between the wheel
and the rail. The experimental data used to identify
the wheel–rail adhesion coefficient are obtained from
a set composed of 27 braking tests,11 conducted with a
single vehicle, where the adhesion between the rail and
the wheels is degraded by spraying a water-based
solution of soap (cleonsol) on the wheel or on the rail.

The tests were originally devoted to verify the
behaviour of WSP systems and were conducted
according to Union Internationale des Chemins des

Fer (UIC) regulations on WSP homologation proced-
ures.18 In these tests, braking performance is evaluated
in critical adhesion conditions, artificially reproduced.
Braking performance is usually evaluated by means of
braking stopping distance and deceleration; however,
other parameters are often measured to obtain more
detailed information on the system behaviour.
The tests described in this paper were conducted with
a single vehicle, a passenger coach named UIC Z1. In
Figure 2(a), the device used to spray the solution of con-
taminants is shown. Alternatively, on some tests pre-
scribed by UIC regulations, degraded adhesion
conditions are realized by applying directly on the rails
the solution of contaminants as shown in Figure 2(b).

The following measured values were available for
this study:

. absolute vehicle speed v;

. vehicle wheel angular velocities !i, i¼ 1 , . . . , 4;

. pressure in the brake cylinder pi, i¼ 1 , . . . , 4.

Each measurement is sampled with a time step of
2.4ms, corresponding to 417Hz. Train speed is mea-
sured by a radar Doppler sensor, whose signal is typ-
ically affected by high-frequency noise and spikes
corresponding to track irregularities,19 then it is fil-
tered using a digital linear low-pass fourth-order
filter with a cut-off frequency of 1.5Hz. Wheel

Figure 1. Typical qualitative behaviour of the slip/adhesion curve, adapted from Boiteux et al.6
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velocities are measured with angular speed sensors,
whose signals are affected by misalignment and quant-
ization errors. Typically, their noise level is lower than
the radar Doppler one, on the other hand, the dynam-
ics of the wheel angular speed is faster than the vehicle
one. In order to preserve the information content of
axle speed measurements, angular speed sensors
(tachometers) are filtered with a low-pass filter with
a cut-off frequency of 4Hz. Experimental data are
elaborated using the MATLAB standard tools for
signal processing.

Figure 3 shows one experimental braking test:
Figure 3(a) shows the vehicle speed and the velocity
of the first wheel during the braking, as a function of
time, while Figure 3(b) shows the pressure in the cor-
responding brake cylinder, as a function of time as
well. It is worth noting that the low adhesion and the
intervention of the WSP system lead to an oscillating
behaviour, both in the wheel tangential velocity and in
the brake cylinder pressure. The amplitude and fre-
quency of such oscillations depend on many factors,
including the feature of the WSP system, the dynamical
parameters of the vehicle, etc. The WSP system object-
ive is to maintain the slip value in a range in which the
adhesion coefficient is high: when the value of the brak-
ing force is too high, with respect to the available
wheel–rail adhesion, the wheel begins to slide, and
the sliding value increases rapidly (as can be seen, in
these tests, it reaches values up to 5m/s). The WSP
device then modulates braking force, in order to
reduce and control the slip value. Figure 4 shows, for
a similar test, the vehicle speed and the wheel periph-
eral velocities relative to four wheels. In this figure, it is
worth noting the different behaviour of the four wheel
velocities, due to the different adhesion conditions met
by the wheels, which determine different interventions
of the WSP.

In these tests, the rail profile was the UIC 60, and
the wheel was ORES1002; the profiles did not present
significant wear, the track was straight and without
turnouts.20

Simplified dynamic model

The dynamics of each wheelset can be described by
the following differential equation, which is referred
to as the simplified model of the wheel sketched
in Figure 5,

Tir ¼ J _!i þ Cf, i ð9Þ

where Ti is the tangential component of the contact
force acting on the ith axle, _!i is the axle angular
acceleration, Cf,i is the braking torque, r is the wheel
radius and J is the axle moment of inertia. The brak-
ing torque Cf,i has been assumed proportional to the
brake cylinder pressure pi

Cf, i ¼ �pi ð10Þ

The proportionality coefficient � depends on the cylin-
der area, on the brake rigging ratio, on the brake effi-
ciency and on the friction coefficient of braking
materials, which in this study was assumed to be
0.35.21 The friction factor of thebrake pads is
known from technical documentation of the pad
maker, and it is also information available in the
brake plant calculation, which is usually produced
as part of the vehicle technical documentation. The
brake pad friction factor can be easily verified or
extrapolated from the braking test with full adhesion
condition conditions exploiting the proportionality
between vehicle deceleration and applied braking
forces. From expression (9), Ti can be calculated as

Ti ¼
1

r
J _!i þ

1

r
�pi ð11Þ

Moreover, vehicle longitudinal deceleration is esti-
mated with a simple derivative filter applied to train
speed measurements. The vertical forces between vehi-
cle body and bogies are estimated by means of a

Figure 2. Degraded adhesion tests: (a) device used to produce degraded adhesion condition on the railway vehicle and (b) device

used to produce degraded adhesion condition acting directly on the rails.11
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simplified two-dimensional vehicle dynamic model,
and then the normal load acting on each axle is eval-
uated. For example, the vertical force between the
body and the front boogie can be evaluated as

Nb1 ¼
mc � g

2
þ
mc � d � h1 � hbð Þ

l1
ð12Þ

where mc is the car body mass, g is acceleration due to
gravity, d is vehicle longitudinal deceleration and h1,
hb, h2, l1 and l2 are dimensions corresponding
to the geometrical layout of the vehicle shown
in Figure 6.

The vertical (normal) load acting on the front
wheel of the front bogie can be evaluated as

N1 ¼
Nb1 þmb1 � g

2
þ
mb1 � dec � h2

l2
ð13Þ

Vertical loads acting on the other wheels, namely N2,
N3 and N4, are calculated in a similar way.

Once the vertical and the longitudinal components
of the contact force are estimated, the adhesion coef-
ficient �i can be evaluated for each wheel and for each
time sample. In Figure 7, the typical behaviour of the
adhesion factor � is shown, as a function of the slip

Figure 3. Example of data measured during a braking test: (a) comparison between train speed and wheel speed and (b) pressure on

first brake axle.

6 Proc IMechE Part F: J Rail and Rapid Transit 0(0)

 at PENNSYLVANIA STATE UNIV on September 18, 2016pif.sagepub.comDownloaded from 

http://pif.sagepub.com/


during single adhesion losses. The profile has been
calculated using the experimental data corresponding
to the test shown in Figure 4. In particular, curves
�i(�v) (index i represents the corresponding axle
number) are evaluated using the following
relationship

�i ¼
�pi þ Ji _!i

Niri
ð14Þ

For example, in Figure 8 the adhesion curve obtained
for the same axle with different braking speeds is
shown: it is worth observing that the adhesion curve

depends on speed, as discussed, for example, in
Polach.7

Definition of a model based on neural
networks

As discussed in the preceding sections, the wheel–rail
phenomenon is quite complex and depends on several
uncontrollable and even unobservable parameters. On
the other hand, simulation of degraded adhesion con-
ditions is necessary to reproduce complex interactions
that often arise among different mechatronic on-
board systems and railway vehicle dynamics. Typical
applications are the study and the simulation of WSP
systems, anti-skid traction controls or odometry on-
board subsystems.

The goal of the analysis described in this paper is to
define a mathematical model able to describe, in a
realistic but computationally efficient way, the behav-
iour of wheel–rail adhesion in critical environmental
conditions, as those present in the experimental tests
described in the preceding section.

The first variable that has to be taken into account
in this study is the sliding �v, furthermore, as outlined
in the preceding sections, during cyclical sequences in
which the wheel sliding is increased and decreased, the
adhesion factor shows hysteresis. The time derivative
of slip �_v is then useful to recognize the curve relative
to loss of adhesion, i.e. to an increment of the slip,
from the one relative to a recovery of adhesion, i.e.
to a decrement of the slip.

In this work, a mathematical relationship between
two inputs, which in our case, are the wheel slip

Figure 4. Example of data measured during a braking test: vehicle speed and wheel velocities.

T

C
r

f

i

ω,θ

Figure 5. Forces and torques acting on a wheel during

braking.
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�v and its time derivative �_v, and the adhesion factor
�, which is the output.

Mathematical models used to represent physical
phenomena can be substantially divided into two
main groups: deterministic or mechanistic models
and data-driven models. The former are usually
adopted when the phenomenon dynamics is quite
simple and a limited set of experimental data are
available, while, on the contrary, the latter ones are
used when the system physics is uncertain or complex
but several experimental measurements are available.
Pugi et al.22 presented a deterministic three-dimen-
sional model that allowed the adhesion to be modelled
also in critical conditions. They adopted different
types of identification techniques to solve the prob-
lem. Data-driven models are also referred to as black

box models: a mathematical structure of the model is
usually pre-defined, which depends on a series of par-
ameters that are tuned, during an iterative process
called training in order to replicate as precisely as pos-
sible the experimental data. Neural networks belong
to this type of system identification methods.

In this paper, a simple and widely known type of
neural network, the multi-layer perceptron, is
adopted. A feed-forward neural network23–25 consists
of one or more layers of neurons. The latter layer is a
defined output layer, while the others, when they are
present, are referred to as hidden layers. Each layer is
composed of a series of neurons, and each neuron is a
simple dynamical system that applies a specific trans-
fer function to a weighted sum of the inputs. The
structure of the neural network is defined once the

m1m2m3m4

mb1mb2

mc

h1

h2

l1

l2 l2

Figure 6. Simplified vehicle dynamic model of a railway vehicle in the longitudinal plane.

Figure 7. Wheel–rail adhesion factor as a function of slip calculated from degraded adhesion data of Figure 4, the curves were

obtained elaborating data from the first loss of adhesion at the beginning of the braking phase.
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number of layers, the number of neurons for each
layer, and the neuron transfer function are defined.
The identification of a function using data-driven
techniques in general requires three steps. The first
step is the collection of reference data; each datum
is a vector that contains an input vector and the cor-
responding measured output vector. The available
data are usually divided in two subsets: the training
data set and the validation data set. The first one is
used for the iterative optimization of network param-
eters (training), while the second one is used to evalu-
ate system performance. In our application, for the
training phase, the second axle data were used,
while for the validation, we used the third axle ones.
This solution was adopted for convenience, even if it
could seem better to choose, for the data sets, meas-
urements from all the wheels. However, since the vehi-
cle used to perform the tests is symmetric, and the
tests are conducted in two different directions, we
could assume that the data sets from the second and
third wheels are quite similar.

Then the network’s architecture (organization of
neurons in the network and definition of the activa-
tion function for each neuron) is defined. Finally, the
network is trained: reference data are submitted to the
network and the values of parameters are updated in
an iterative process in order to minimize the error
between the network output and the desired output.
The error can be defined in several ways; usually
a measurement of the distance is used, in this
paper, we adopted the mean square error. The
chosen architecture is a multi-layer perceptron, using
in the training process, the Levenberg–Marquardt
algorithm.23–25

The performance of a neural network depends on
its architecture; for the examined problem, double-
layer networks have been chosen, with hyperbolic tan-
gent activation functions in the hidden layer and
linear activation functions in the output layer. This
type of architecture has been chosen since it is
simple and widely adopted in the identification of
non-linear systems starting from noisy measurements.

Some tests were performed to find the optimal
number of neurons in the hidden layer: if the
number of neurons is too low, the model is too simple
and is not able to reproduce the complexity of the
physical phenomenon. On the other hand, increasing
the number of neurons, the system complexity obvi-
ously increases, also from the computational point of
view. Furthermore, if the network is too complex, it is
no more able to capture the physics of the system, but
rather tends to copy the input/output experimental
pairs, which usually are affected by measurement
noise, and the system outputs may be not realistic.
Some tests showed that in the presented case, the opti-
mal size of the hidden neuron layer is 10.

At the end of the training process, the neural net-
work defines substantially the function between the

Figure 8. Slip curve from experimental tests of the second axle at 120 km/h and at 160 km/h the curves were obtained elaborating

data from the first loss of adhesion at the beginning of the braking phase.

Figure 9. Error in the training and validation processes.
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sliding (and its time derivative) and the adhesion coef-
ficient. Results are then analysed and verified using, as
inputs, experimental data not included in the training
process.

Figure 9 shows the behaviour of the relative error
for the training and validation data sets as a function
of the number of training epochs (i.e. number of iter-
ations in the training process). The diagram shows a
good mutual accordance and a quite similar depend-
ency from the number of epochs between the different
data sets, this result confirms that the training and
validation data sets have similar information
contents.

Results

Figure 10 shows, for a test included in the validation
data set, a comparison between the experimental and

the model predicted adhesion values. As can be
observed from the figure, the neural network based
model is able to reproduce the experimental data
with a good approximation. This test was obtained
by giving to the neural network identification model
the inputs from an experiment and observing the cor-
responding output. Since the input data are those
from experimental measurements, the output of the
identification model presents some oscillations and
some sharp points.

The behaviour in the first part of the diagram, cor-
responding to small sliding values, is approximately
linear, but presents some irregularities due to the
measurement errors. Actually, in this part of the dia-
gram, the identification model reliability is not very
high, because of the unreliability and noise in the
experimental measurements. In an implementation
of the model devoted to reproduce the dynamics of
a railway vehicle, this part could be substituted by a

Figure 10. Slip curve of second axle: comparison between the neural network (N.N.) output and experimental data.

Figure 11. Complete slip curve (simulated), obtained at a speed of about 120 km/h.
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linear model as described in the subsection on wheel–
rail contact forces in rolling conditions.

The obtained mathematical model based on neural
networks is then verified by giving regular patterns
and smooth functions as inputs. For example,
Figure 11 shows the results obtained by linearly
increasing the sliding from zero to a maximum value
of about 9m/s and then decreasing it linearly up to
zero. The time derivative of the sliding in this example
is then composed of two constant parts, the first posi-
tive and the second negative. This example shows how
the obtained model can reproduce the typical shape of
a simulated cycle composed of a loss of adhesion and
a following recovery of rolling conditions, the typical
hysteresis behaviour of the adhesion factor is evident.
In the diagram, the part of the curves relative to small
sliding values (around zero) is not displayed, since the
identification procedure is not very reliable in this
part, as previously discussed.

Conclusions

Identification of adhesion behaviour in the wheel–rail
contact is a multi-faceted phenomenon that is hard to
investigate. This paper analyses the problem of the
adhesion identification in braking, analysing a reach-
able models that correlates slip and adhesion coeffi-
cient. The numerical estimation of the adhesion
coefficient from a set of data tests allowed a series
of absolute slip/adhesion curves to be obtained(for
each axle relative to different train speeds). Then, an
identification of the adhesion coefficient using a stand-
ard neural network procedure was implemented: it
permitted the definition of a mathematical model for
the evaluation of the adhesion coefficient as a function
of the wheel sliding. In addition, the obtained model
produces results compliant with the main properties
of the observed phenomenon, e.g. the different behav-
iour corresponding to loss of adhesion and recovery
of adhesion. Since the simulated phenomena are also
dominated by stochastic disturbances, clearly, a per-
fect fit of experimentally measured time histories is
not possible.

The proposed adhesion model is limited to a bi-
dimensional approach that constrains possible appli-
cations to planar vehicle models which are often used
for real-time simulation on HIL test rigs such as those
described in Pugi et al.11 or to full-scale roller rigs
such as those described in Allota et al.12 and
Malvezzi et al.13 Further work will be devoted to pro-
duce degraded adhesion models able to reproduce a
near to realistic behaviour also on multi-patch, three-
dimensional contact models usually used for multi-
body simulations.
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Appendix 1

Notation

dec (m/s2) train deceleration
f11, f22, f33, f23 linear creep coefficients
ir unit vector that identifies longitu-

dinal direction
g (m/s2) gravity acceleration
h1, h2, hb, l2 (m) vehicle dimensional features,

shown in Figure 6
ks coefficient for the tangential con-

tact force saturation
mb1, mb2 (kg) bogie masses

mc (kg) car body mass
mi (kg) mass of each wheel
nr unit vector normal to the contact

surfaces in the contact point
pi (Pa) pressure at the ith brake cylinder
r (m) wheel radius
rf (m) wheel braking radius
tr unit vector tangent to the lateral

direction
v (m/s) train speed
vow (m/s) magnitude of the velocity of the

wheelset centre of mass
vrc (m/s) wheel speed at the contact point
Cf (Nm) braking moment at the wheel
Cf,i (Nm) braking moment at the ith wheel
Fx (N) contact force component in the

longitudinal direction
Fy (N) contact force component in the

lateral direction
FR (N) resultant of longitudinal and lat-

eral contact force components
Ji (kg m2) wheelset moment of inertia
N (N) normal component of the contact

force
Ni (N) normal contact force at the wheel

i
Nbi (N) vertical force between the car

body and the ith bogie
T (N) tangential component of the con-

tact force
Ti (N) tangential contact force at the

wheel i

� proportionality coefficient
between brake pressure and brake
torque

� adhesion coefficient
�, � and � longitudinal, lateral and spin

creepage
�v (m/s) relative slip
! (rad/s) angular wheel velocity
!i (rad/s) angular velocity of the ith wheel
!
�
(rad/s2) angular wheel acceleration

_!i (rad/s
2) angular acceleration of the ith

wheel
�v (m/s) absolute slip
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