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Abstract: A new method based on two articulated bodies with internal inertial 
force, similar to the structural buckling effect, is proposed to describe the 
unstable yaw relative angular movement between truck and semitrailer, known 
as jackknifing. An analytic expression is derived from the proposed linear 
model, allowing the prediction of the deceleration limit prior to the yaw 
instability phenomenon. A detailed non-linear model with 19 degrees of 
freedom was developed and used as a simulations tool to verify dynamic 
performance. The analytical results of the jackknife effect were validated by 
comparison with the instability tendency simulated with a complete vehicle 
dynamic model. The results show good agreement between the proposed 
analytical expression and the numerical simulation. The proposed analytic 
expression is independent of the vehicle speed and does not require a stability 
analysis or an integration process, unlike all other techniques available in the 
literature. 
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1 Introduction 

Jackknifing is a yaw instability of a truck, which causes the trailer to rotate, relative to the 
tractor (see Figure 1). As a consequence, the driver loses the vehicle control and the 
trailer can extend to adjacent lanes causing partial or complete traffic obstruction, 
collision with oncoming traffic or parked vehicles, causing accidents and injuries, with 
potential of being catastrophic due to the size and weight of the vehicles involved. The 
jackknifing phenomenon is known to happen at high speeds or under emergency braking,  
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when the wheels are locked and the vehicle tends to swing around. If the truck travels fast 
and the driver needs to brake suddenly then the entire truck, along with the trailers, can 
get into a skid situation. If the tractor and trailer skid long enough, the trailer will be, 
most certainly, jack-knifed, with the rig finally coming to a stop. 

Figure 1 Truck/semitrailer jackknifing (Art from AS in internet) (see online version for colours) 

 

These phenomena can also be aggravated in poor surface adherence conditions (due to 
contaminations by dust, oil, leaves, irregularities, water, ice, etc.) when a slippery road 
causes the reduction or even loss of wheel driving contact forces capabilities. The brake 
distribution between truck and trailer is another relevant aspect. The brake system is 
designed to sustain the adequate brake distribution. Jackknifing usually occurs with 
empty trailers or when the weight of the load is badly distributed. The tractor and the 
trailer brakes are usually designed for a full load, and are far too powerful for an 
underweight trailer. When severe braking is applied, the wheels could lock up, causing 
skidding, and harming the drivability. Another possibility is the trailer brake failure or 
malfunction due to pneumatic connections problems. 

Additionally downshifting or engine retardants can also decelerate the set 
asymmetrically. Particularly, when entering in a curve too quickly for the truck driver to 
handle, equipment malfunction can also increase the risk of jackknifing. The driver 
inability, or when in a dangerous operational speed, incompatible with the road geometry, 
can worsen the risks and should be avoided. 

To prevent such risks, it is imperative to understand the instability phenomenon and 
to find a representative expression containing the main contributing factors, quantifying 
each participation, in order to be able to handle them to minimise potential risks. Pointing 
out which manoeuvres should be avoided, should also contribute to better driving 
practices to haul trucks and trailer sets. 

In the literature review, it has been found that most of the public available works 
relies on the analysis of the stability of the vehicle’s dynamic model. The first studies on 
the jackknifing effect began in the 1960s (Talbott, 1962). Since then, several authors have 
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revisited the subject. The stability of car-trailer using planar model, particularly the yaw 
instability, has been intensively investigated by several authors such as Genta (2006), 
Pacejka (2006), Luijten (2010), Masory and Grainer (2004), Ding et al. (2014) and has 
been widely publicised in the literature. 

The articulated vehicles stability is generally evaluated using the differential 
equations of the system model (Genta, 2006; Pacejka, 2006; Luijten, 2010). The handling 
of the linearised model that describes small changes in the lateral and yaw dynamics of 
these vehicles has been employed. All roots (λ) of the characteristic polynomial equation 
of the linear dynamic system should have negative real parts for the system to be stable 
(Routh-Hurwitz criterion). Luijten states that the vehicle combination experiences a 
saddle-node bifurcation, and that the fourth critical speed determines a monotonic 
stability. The third Hurwitz determinant determines the hopf bifurcation and concludes 
that, in practice, many vehicles with one articulation are stable (Genta, 2006; Luijten, 
2010). 

Analyses, such as yaw or lateral instability, bifurcation, hopf bifurcation or centre 
manifold theory on a non-linear model, have been used to describe the vehicle unstable 
behaviour. Ding et al. (2014) uses a planar linearised simple model to study the 
bifurcation that is sufficient to capture deleterious and dangerous unstable behaviour. 

For an oversteered truck (Wideberg and Dahlberg, 2013), once a steering command 
(δ1) is given, the vehicle is stable at low velocities. However, it will become unstable if 
the vehicle speed is beyond a certain limit known as the critical speed (Pacejka, 2006; 
Luijten, 2010; Ding et al., 2014; Costa Neto, 2016). The yaw velocity gain of an 
understeered single vehicle (the yaw rate r1 over δ1 as presented in the right graph of 
Figure 2) reaches its maximum at the characteristic speed. Hence, an understeered vehicle 
is directionally stable at any speed. The yaw velocity gain of a neutrally steered vehicle 
increases linearly with speed. Finally, the yaw velocity gain of an oversteered vehicle 
goes to infinity at the critical speed, as it is unstable beyond this velocity, as shown in 
Figure 2. 

Figure 2 Steady-state cornering characteristics for a single vehicle (from luijten): (a) handling 
diagram and (b) yaw gain diagram 

 

The jackknifing effect on the straight road section was recreated by the simulation of a 
complete model considering brake deceleration (Pinxteren, 2010). Also Kaneko et al. 
(2002) have modelled the jackknifing effect by adopting a longitudinal road inclination 
and a gradient on the lateral direction. Several experimental measurements with 
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instrumented vehicles have been performed (Dunn and Hoover, 2004; Ashley et al., 
2014; Li et al., 2016; Bouteldja and Cerezo, 2011; Elhemly et al., 2013). Several studies 
in control technique are also developed (Yuan and Zhu, 2016). Although jackknifing 
phenomenon has been deeply analysed, few contributions to the design or practical 
operational recommendations to the driver have been published. 

The stability of guided vehicles is usually associated with the tyre contact force, 
which is a function of the wheel’s contact slip. The model describing this behaviour is 
addressed considering the ratio between the tyre path slip-speed divided by the vehicle 
speed. Therefore, the model will have a damping matrix associated with the velocities’ 
states divided by the modulus of the vehicle speed. In this case, the modal damping factor 
is inversely proportional to the speed (Barbosa and Costa Neto, 1996), which can be 
lower than or equal to zero for large speeds, then destabilising the systems. The result 
from this type of approach is always associated to a speed limit. 

The motivation of this research is to further the investigation associated with the 
vehicle yaw movement, subjected to an inertial compressive inter-body force, and the 
reactive torque produced by the lateral force of the truck’s tyres, that can sustain it. 
Therefore, the main focus of this research is to investigate the dynamic performance of 
the vehicle’s handling and its stability. 

2 New proposition 

The proposition of this new method is that the yaw instability phenomenon (jackknifing) 
occurs mainly due to eventual tractor/trailer internal compressive force, produced by 
deceleration under non-balanced retarding force distribution. To this end, the column-
buckling model is employed to characterise a two-body folding movement under 
compressive load, to be described next. 

2.1 Buckling model 

The traditional elastic continuous beam buckling (Figure 3(A)) is characterised by a 
sudden sideways instability of a structural member subjected to high compressive P load. 
This load can be calculated with the elastic line equation (Timoshenko), to obtain the 
critical load PCR, prior to buckling, as: 

2CR
E IP P
L

π= =  (1) 

Also, the critical load for a bi-articulated rigid bar system is shown in Figure 3(B), which 
can be solved in a similar fashion, by equating the moment of the compressive force P to 
the internal restitutive torque of the elastic angular spring kϕ, to get the critical load  
PCR as: 

sin (2 )P L kφφ φ= , which for small ϕ reduces to ( )2 0P L kφ φ− = ,  

                           and 
2

CR

k
P

L
φ=  (2) 

showing that the second possible unstable solution is for 0φ =  (beams aligned). 
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Figure 3 Buckling models 
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3 Proposed analytical expression 

The analytical expression proposed in this research to describe/study the jackknifing 
effect is based on the beam-buckling equilibrium phenomena as presented earlier. To 
obtain a static solution of the yaw stability limits for the vehicle, an analytical inertial 
linear model, based on the beam-buckling model, as presented in Figure 3(C), has been 
idealised. In this approach, the yaw (buckling) movement will only happen if the inertial 
reaction load P from the trailer, due to an eventual non-balanced distribution of retarding 
forces, is greater than the restoring torque produced by the tyre lateral contact forces 
(represented by stiffness kϕ). This proposed model does not depend on the vehicle speed 
and can determine the maximum deceleration stability limits. 

When the brake force Fbrake is eventually more intense on the tractor than on the 
trailer, the trailer tends to push it, producing the force P applied on the fifth wheel of the 
tractor by the kingpin of the trailer (KP shown in Figure 4). When the set is aligned in a 
straight trajectory, an unstable equilibrium position is established. However, any 
perturbation or deviation will produce a yaw movement (jackknifing), when the torque of 
the load P is greater than the restoring torque produced by the tyre lateral forces of the 
tractor wheels (Fyi in Figure 4). 

The translational dynamic equilibrium equation of the tractor with mass m1 on the 
D’Alembert’s form is expressed as: 

brake 1( ) 0GP F m a+ − =
    (3) 
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which shows that the kingpin force P, due to eventual non-proportional braking forces 
between tractor (Fbrake= –Fx1 – Fx2) and trailer (Fx3), acts as a compressive force during 
deceleration. 

Figure 4 Tractor force distribution 
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Applying the angular Euler’s equation for a planar bicycle simplified model according to 
Figure 4, and expressing the angular momentum of the tractor in the moving local 
reference frame (Gxyz), fixed on the tractor, and for a pole coincident with its centre of 
mass G, gives: 

[ ] [ ] [ ] [ ] [ ]T
G G GI I Mω ω ω+ ∧ =  (4) 

where [I]G is the tractor inertia matrix, [ω] is the angular speed vector, [ ]ω  is the angular 
acceleration vector and MG is the moment of the external forces, all related to the pole G. 
The free body force diagram presented in Figure 4, for a symmetric vehicle to the 
longitudinal axis, shows that the planar dynamic angular equation, will lead to the 
rotational equation in the z direction only as: 

3 1 1 2 2 1 1sin cos sinGz z y y xJ PL F L F L F Lα φ δ δ= + − −  (5) 

where δ is the front wheel steer angle, P is the kingpin force, and ϕ is the tractor yaw 
angle. Considering a null steering angle δ, the previous expression reduces to: 

3 1 1 2 2sinGz z y yJ PL F L F Lα φ= + −  (6) 

clearly showing the ‘battle’ between the aligning torques of the wheels lateral forces (Fyi) 
against the kingpin force P moment. Note that, in the simple bicycle model with no 
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steering angle (δ = 0), the longitudinal component of the brake force Fxi does not 
contribute to the right side of the angular equation. 

The lateral tyre force Fiy (for the ith tyre) is usually described as proportional to the 
side-slip of the tyre contact path ξiy: 

i y i y i yF C ξ= − , where 
| |

i v
i y

V
V

ξ =   (7) 

Therefore, the side-slip of each tyre should be determined. The velocity at contact point A 
of the front wheel (see Figure 4) is obtained from the velocity field equation. Taking the 
absolute velocity of the tractor’s centre of mass G G GV X i Y j= +

    , written in the planar 

moving reference frame Gxyz, with the unit versors i j k
 

, it is possible to obtain the 
velocity of the front wheel contact point A as: 

( ) ( )1 1( )A G G G G GV V A G X i Y j k L i X i Y L jω φ φ= + ∧ − = + + ∧ = + +
             (8) 

Projecting the velocity of point A on the reference frame Au v  , aligned with the front 
wheel, rotated by the steering angle δ, the following expressions are obtained for the 
velocity of the front wheel contact point A: 

( ) ( ) ( )( )1 1cos sin sin cosA G G G GV X i Y L j X u v Y L u vφ δ δ φ δ δ= + + = − + + +
            (9) 

( ) ( )1 1cos sin sin cosA G G G GV X Y L u X Y L vδ φ δ δ φ δ   = + + + − + +   
        (10) 

By considering a small steering angle (cosδ = 1 and sinδ = δ), gives the following 
expression for the front wheel lateral direction velocity ( Av AV V v= ⋅

  ): 

( ) ( )1 1A G G G GV X Y L u X Y L vφ δ δ φ   = + + + − + +   
        → ( )1Av G GV X Y Lδ φ= − + +     

 (11) 

Therefore, the front wheel lateral force at point A FAv (see Figure 4) will be proportional 
to the corner stiffness (CAy) of the front tyre as described in equation (7): 

( ) ( )1 1

| |
G G G

Av Ay Ay
x G

X Y L Y L
F C C

V X

δ φ φ
δ

   − + + +
   = − = − − +
   
   

   

  (12) 

where x GV X≅  . In a similarly fashion, the lateral force for the rear wheel B will be  
given by: 

( ) ( )2 2

| |
G G G

Bv By By
x G

X Y L Y L
F C C

V X

δ φ φ
δ

   − + − −
   = − = − − +
   
   

   

  (13) 

By considering that prior to the instability both vehicles are in a rectilinear trajectory with 
δ = 0 and 0φ = , gives the force for the front and rear wheels as: 
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G
Ay Ay

G

Y
F C

X
= −


 , for the front wheel, and G

By By
G

Y
F C

X
= −


 , for the rear wheel (14) 

The components of the vehicle’s absolute speed GV


 can be expressed in the auxiliary 
reference frame as: 

| | cosG GX V φ=
 ; | | sinG GY V φ= −

  → tanG

G

Y
X

φ= −

  (15) 

Finally, using the previous relation, the lateral tyre forces will be functions of the corner 
stiffness of each tyre and angle ϕ : 

tanAy AyF C φ=  and tanBy ByF C φ=  (16) 

Applying these results into the moment equation, and considering a steady state aligned 
unstable equilibrium (ϕ ≈ 0; αz = 0), gives: 

3 1 1 2 2sin tan tanGz z y yJ PL C L C Lα φ φ φ= + − , and ( )3 1 1 2 2 0y yPL C L C L φ+ − =  (17) 

The solutions of these equations for ϕ = 0 (vehicles aligned), gives the critical load Pcritic 
beyond which the yaw instability occurs (jackknifing) as: 

2 2 1 1

3

y y
critic

C L C L
P

L
−

=  (18) 

From the dynamic equilibrium equation for the tractor (with mass m1) and for the trailer 
(with mass m2) in the longitudinal direction with braking forces Fxi, give, respectively: 

1 2 1 1 0x x GP F F m X− − − =  and 3 2 2 0x GP F m X− − − =  (19) 

For a rigid couple between tractor and semitrailer (king-pin and fifth wheel) 1 2G GX X≅   
results, approximately, the same longitudinal movement and acceleration, giving: 

( ) ( )1 2 2 3 1x x xP F F m P F m− − = − −  or 
( )1 2 2 3 1

1 2( )
x x xF F m F m

P
m m

+ −
=

+
 (20) 

The compressive force P is associated with any unbalanced retarding force between 
tractor and trailer. To characterise this unbalance, a brake-ratio (br) between tractor and 
trailer braking forces is defined as: 

( )
1 2

1 2 3

x x tractor

x x x total

F F Fbr
F F F F

+
= =

+ +
 (21) 

This means that for br = 1 only the tractor braking forces (Fx1 + Fx2) are active.  
If br = 0.5, the trailer braking force (Fx3) is 50% of the total braking force applied. 

From equations (20) and (21), and after some manipulations, and by using the Pcritic 
expression (equation (18)) it is possible to obtain the following expressions: 

( ) 1 21xP a br m br m= − −    and 
( )
( )

2 2 1 1

3 1 21
y y

x critic

C L C L
a

L br m br m−

−
=

− −  
 (22) 
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where the last expression is the truck critical longitudinal deceleration. 
Although this expression is a closed form solution for the critical longitudinal 

deceleration, factors such as braking distribution, vehicle load transfer during braking and 
tyre stiffness, all have influence on the terms that appear in equation (22). These will be 
considered next. 

3.1 Braking force distribution 

The braking force distribution between tractor and semitrailer should be designed to 
sustain the best braking proportion. Ideally, the braking of long lorries should be 
distributed proportionally to the mass of each vehicle. 

There are three contributory retarding forces from the braking system for long trucks: 
the front steering axle brakes (usually hydraulic), the drive axle brakes or motor retarder, 
and the semitrailer axle brakes (usually pneumatic). 

As the real vertical load and dynamic oscillations of the vehicles are not explicitly 
known, to properly control the braking distribution is not a simple task. The loading 
sensing valve (LSV) installed on the truck suspension is used to measure the load and to 
control the braking intensity in each axle. The control of the braking distribution is 
usually performed with a flow-restrictive valve (not a pressure regulator) with an 
electric/electronic device. Therefore, an unbalanced braking distribution is prone to 
happen. The brake-ratio (br) between tractor and the semitrailer braking force, defined 
earlier (expression 21), gives this distribution, and may be a parameter to be studied. 
According to Pinxteren (2010), the maximum typical braking deceleration of a laden 
semitrailer is between 6.7 m/s2 and 7.4 m/s2 for an unladen tractor/semitrailer 
configuration. 

3.2 Tyre stiffness 

The tyre properties depend on: the carcass structural properties, inflating pressure and 
load conditions. The main tyre structural property considered in this approach is the 
lateral tyre stiffness. The actual tyre load also significantly influences the lateral tyre 
stiffness. Therefore, the tyre cornering stiffness dependency on vertical load should be 
taken into account. The relation between the tyre cornering stiffness and the vertical load 
was found to be almost linear for vertical forces under 40 kN for truck tyres (Luijten, 
2010). Therefore, from Figure 5 the ratio of the tyre cornering stiffness to the vertical 
load for truck tyres is 1/ 5.73[rad ]zC F −=  (Luijten, 2010). This effect was introduced 
into the proposed analytical expression. 

3.3 Vehicle load transfer 

The vehicle dimensions influence the maximum safe deceleration. The vehicle vertical 
tyre force distribution due to the load is also affected by intensity of the deceleration. As 
shown in Figure 6, the distance between axles (Ln) and the height of the centre of mass 
(hGm, indeed affect the force distribution. 
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Figure 5 Cornering stiffness of a single truck tyre as function of vertical load (Font: liujten) 

 

Figure 6 Truck dimensions and the identification of the active forces 

Truck Dimensions 
Active forces 

F3 
L2 L1N2 N1 

hG2

hKP hG1

Q

P

N3 

F2
F1

A1

L5 L4 L3

A2

 
To take into account the truck dimensions, the equations for the translational vertical 
equilibrium are used for a null vertical acceleration, resulting, for each body (tractor and 
semitrailer), in the following expressions: 

1 2 1N N m g Q+ = + , for the tractor, and 3 2N Q m g+ = , for the semitrailer (23) 

The equations for the angular equilibrium for a null angular acceleration affected by a 
longitudinal acceleration ax, should also be considered. Taking the pole A1, on the tractor 
and the pole A2 for the semitrailer gives: 

1 1 1 2 2 1 1 3 0ext
A x G KPM N L N L m a h Ph QL= − − − + =  (24) 

2 23 5 2 4 0ext
A x G KPM N L m a h Ph QL= − − − − =  (25) 

The solution of this system of equations (Sanchez, 2017) gives: 

( ) 2 3 2 4 2 2
1 1 2 1 5 2 2

1 2 4 4 5

1 x G KP
x G KP x G KP

L L m gL m a h Ph
N m gL a h Ph L m a h Ph

L L L L L
      − + +

= − + + − −       + +          
 (26) 
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( ) 1 3 2 4 2 2
2 1 1 1 5 2 2

1 2 4 4 5

1 x G KP
x G KP x G KP

L L m gL m a h PhN m gL a h Ph L m a h Ph
L L L L L

      − + +
= + − + − −       + +          

 (27) 

2 4 2 2
3

4 5

x G KPm gL m a h Ph
N

L L
+ +

=
+

 (28) 

3.4 Expression for the maximum safety deceleration 

Considering the planar model, complemented by the braking distribution (equation (21)) 
and the tyre stiffness, affected by the normal load (equation (27)), it is possible to obtain 
a simple expression for the maximum safety deceleration (acritic) prior to the yaw 
instability for the vehicles as: 

( )
( )

2 2 1 1

3 1 21
y y

critic

C L C L
a

L br m br m

−
=

− −  
 (29) 

The lateral tyre stiffness (Cyi), which depends on the normal tyre load (according to  
graph in Figure 5) affected by the load transfer coupled with the acceleration itself 
(equations (27)), was solved by a Levenberg-Marquardt search numeric method. 

Using typical truck parameters, as shown in Table 1, one can obtain the maximum 
safety deceleration values as shown in Figure 7, using the analytic expression given by 
equation (29). 

Figure 7 Maximum safety deceleration as a function of the brake-ratio 
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One interesting aspect of this new method is that the maximum safety deceleration 
expression is not dependent on the speed as the traditional approaches are. By adopting 
only a simple buckling model, one can predict safety conditions for truck manoeuvres 
without complex stability analysis or time consuming simulations results (see Figure 9). 

Figure 8 Vehicle’s position and angular movements 
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Figure 9 Multibody model (Adams) (see online version for colours) 

 

4 Dynamic model of the vehicle 

To verify the reliability of the proposed analytical expression depicted in equation 29, for 
the calculation of the deceleration limit prior to the jackknifing effect, a complete 
dynamic model of the vehicle, within the same conditions and parameters, was used for 
validation purposes. A complete non-linear numeric model of the vehicles is used to 
simulate the stability phenomena. The initial conditions are established (positions, angles 
and velocities) for a vehicle on a flat and plane surface with fixed and constant friction 
coefficient of the interaction between tyre and surface. For each brake ratio (br variation), 
several simulations were performed with the total brake (sum of the brake of the  
truck and the semitrailer) intensity increased gradually, until the instability occurs  
(see Figure 10). For each brake ratio value, the correspondent maximum deceleration is 
identified and stored for comparison purpose. The results of equation (29), for the same 
conditions and parameters, were then directly compared with the results of the simulation 
(see Figure 13). The model was developed by Sanchez (2017), and has 19 degrees of 
freedom and has a similar content to the analytical expression. A two-body articulated 
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planar motion, shown in Figure 8, and the vehicle’s pitch vertical load transfer, due to 
longitudinal accelerations, are included (Figure 6). The total braking force can be 
controlled in intensity and distribution between tractor and semitrailer (equivalent to the 
brake ratio index – br, in equation (19)) to produce asymmetry, generating kingpin force 
variations. The tyre contact model adopted is linearised to be compatible with the 
analytical expression, but the inclination at the root is determined by the tyre stiffness 
properties only. The road surface is flat and clean with a homogeneous friction 
coefficient. This model is used to simulate the vehicle braking process using a numerical 
integration algorithm. 

Table 1 Typical truck parameters 

Parameter Value 
Gravity acceleration (g)  9.8 m/s2 
Tractor mass (m1)  7449 kg (A) 
Semitrailer mass (m2)  32,551 kg (A) 
Normalised lateral stiffness (flat)  5.73 1/rad (A) 
Normalised longitudinal stiffness (flong)  0.15 1/rad (B) 
Distance between front axle and truck centre of mass – L1 1.1 m (A) 
Distance between rear axle and truck centre of mass – L2  2.49 m (A) 
Distance between fifth wheel and truck centre of mass – L3 2.49 m (A) 
Distance between kingpin and truck centre of mass – L4  4.98 m (A) 
Distance between semitrailer rear axle semitrailer centre of mass – L5  3.15 m (A) 
Height of truck centre of mass – hg1  1.4 m (A) 
Height of semitrailer centre of mass – hg2  2.435 m (B) 
Height of kingpin and fifth wheel coupling – hkp  1.4 m (A) 
Truck vertical moment of inertia – Jz1  26.608 kg×m2 (A) 
Truck vertical moment of inertia – Jz2  533.917 kg×m2 (A) 

(A) Luijten (2010) and (B) Dunn and Hoover (2004) 

4.1 Simulation results and analysis 

For comparison purposes, a sudden severe brake action was applied only on the tractor 
(brake ratio – br = 1.0). The stability of the vehicle was observed via the deceleration 
intensity (Figure 10(B)), the kingpin force (Figure 10) and the relative angular movement 
between the vehicles (Figure 11). Beginning at the initial speed of 120 km/h  
(Figure 10(A)), after one second, the brake is suddenly applied, resulting in an almost 
constant deceleration (–5 m/s2 at 1.5 s as shown at Figure 10(B)). The vehicle initially 
travels straight (Figure 12), on a plane track and no steering counter-action is applied 
(δ = 0). A quasi-steady-state compression force between vehicles is developed (P force 
through kingpin, shown at Figure 10(C)). 

The vehicles angular behaviour can be analysed from the relative angle (Figure 
11(A)) and relative angular speed (Figure 11(B)). The tractor front and rear axle normal 
forces are also presented (Figure 11(C)). 
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Figure 10 Results of the simulation for br = 1 (A – speed, B – longitudinal truck deceleration,  
C – truck/semitrailer coupling force) 

 

After losing the alignment (jackknifing movement), when the relative yaw angle between 
vehicles increases drastically (after approximately 5 s – Figure 11(A)), the posterior 
nonlinear dynamics takes place, with the bodies interacting with each other, trying to 
recover the controllability, when the set stops (around 7.4 s). 

Figure 12 illustrates this movement in sequential time frames, where the jackknifing 
effect is observed. It is shows the top view of the vehicle trajectory on the xy plane. The 
red dots are coincident with the location of the vehicle’s centre of masses. In this 
simulation, the brake application is only on the truck (br = 1.0, according to equation 21). 
It can be seen that the jackknifing movement starts around a 50 m trajectory, and after 5 s 
of simulation. Vehicle parameters used in the simulation are those presented in Table 1. 

It can be seen in Figure 13 that, as the total braking force is increased, the more 
intense is the deceleration. It also shows that as the more the braking force concentrates 
on the truck, in detriment of the semitrailer, the greater is the kingpin force. After several 
simulations with different decelerations levels (total braking force) and braking 
distribution (truck × semitrailer) the points (*) shown in Figure 13, were obtained. 
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Figure 11 Results of the simulation for br = 1 (A – relative yaw angle, B – relative angular speed, 
C – truck axle normal force) 

 

Figure 12 Truck semitrailer trajectory (in metres) (see online version for colours) 
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Figure 13 Critical deceleration for different brake ratios (simulation results – marker * and 
analytical results – solid line) 

 

Several simulations with the non-linear model, with different decelerations levels (total 
braking force) and braking distribution (truck × semitrailer) were performed and plotted 
in Figure 13 with marker (*). In this figure a comparison of the linear analytical 
expression (equation (29)) vs. simulated results of the critical acceleration (marker *) as a 
function of the brake-ratio (br) is presented. It can be seen that the simulation results 
show good agreement with predictions from the analytical expression. Although the 
simulations results for critical deceleration are slightly smaller than the results from the 
linear analytical expression, the same trend is, nonetheless, confirmed. 

The analytic expression (equation (29)) reveals the relevant parameters to identify the 
maximum deceleration limit, prior to the jackknifing effect. The expression is directly 
related to the vehicle mass distribution (m1 and m2), the tyre lateral stiffness (coefficients 
Cy1 and Cy2) and the vehicle dimensions (distance of each axle to the truck centre of mass 
L1 and L2). It is also an inverse function of the brake ratio (br) as defined on equation (21) 
(term on the denominator of equation (29)). Additionally, as can be observed in  
equation (27), the height of the centre of mass of each vehicle (hG1 and hG2) does affect 
the vertical tyre load. 

To evaluate the contribution of the variation of the vehicles masses on the maximum 
safety deceleration, the analytical expression (equation (29)) is used to obtain the results 
presented in Figure 14, due to the variation of the nominal truck mass (m1 = 7449 kg) and 
semitrailer mass (m2 = 32551 kg). 

It can be observed that decreasing the mass of the semitrailer (m2) the safety limit 
deceleration is reduced gradually. For example, reducing the semitrailer mass to 60% of 
its nominal value (see Table 1), the maximum deceleration decreased to –4.6 m/s2. The 
opposite merit can be observed for the truck mass (m1). Therefore increasing the truck 
mass the safety limit reduces. This analysis can be performed for all the influencing 
parameters, disclosed in the analytic expression (equation (29)). 
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Figure 14 Maximum deceleration limit for vehicles mass variations (br = 1) 

 

5 Conclusions 

A new model based on two articulated bodies with internal inertial force is proposed to 
describe the yaw angular movement between truck and semitrailer known as jackknifing. 
An analytical expression is derived, allowing predictions of deceleration limits prior to 
the yaw instability phenomenon. The distribution of the braking force between truck and 
semitrailer was considered. The load transfer between semitrailer and truck plays an 
important role and it is included in the formulation. The tyre stiffness variation due to the 
vertical load is also included. 

As can be observed from the analytic expression (equation (29)), the relevant 
parameters to identify the maximum deceleration limit, prior to the jackknifing effect, are 
directly related to the vehicle mass distribution (m1 and m2), the tyre lateral stiffness 
(coefficients Cy1 and Cy2) and the vehicle dimensions (distance of each axle to the truck 
centre of mass L1 and L2). It is also an inverse function of the brake ratio (br). 
Additionally the height of the centre of mass of each vehicle (hG1 and hG2) does affect the 
vertical tyre load. Therefore, the trend of each relevant parameter can be evaluated 
individually, as presented in Figures 7 and 14. It should be emphasised that the proposed 
analytic expression is independent of the vehicle speed and does not require an 
integration process, unlike all other techniques available in the literature. Therefore it is a 
new contribution. 

The proposed analytical expression was used to calculate the yaw instability limit, 
related to a deceleration level with a specific braking distribution. The proposed 
expression is independent of the vehicle speed, and depending only on the vehicle’s 
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internal inertial forces, due to an eventual brake malfunction. A detailed non-linear model 
with 19 degrees of freedom (item 5) was developed and used as a simulations tool to 
verify dynamic performance. The results obtained were presented as graphs of the 
variables in function of the time (truck velocity, longitudinal acceleration, longitudinal 
inter-vehicle coupling force, relative yaw angle, relative angular speed, the normal forces 
in each axle). Additionally the truck and semitrailer trajectory was illustrated along the 
plane showing the yaw angle of the vehicles. 

The results were validated by comparison with a complete system dynamic model. 
Simulations of a braking process on a flat road were performed with the same vehicle’s 
parameters. Braking intensity was progressively increased until the yaw instability 
occurred. The values of the critical maximum deceleration for different braking-ratios 
show good agreement between the proposed analytical expression and the numerical 
simulations. 
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Nomenclature 

aG  Acceleration of the centre of mass of the tractor 
ax  Longitudinal component of the acceleration of the tractor 
A  Tractor front wheel touch point 
Auv  Auxiliary moving reference frame fixed to the wheel 
B  Tractor rear wheel touch point 
br  Brake-ratio between tractor and semitrailer braking forces 
Ci  Tyre stiffness coefficient of the ‘ith’ wheel 
Fbrake  Brake force 
Fxi  Tyre longitudinal braking force of the ‘ith’ wheel 
Fyi  Tyre lateral forces of the ‘ith’ wheel 
flat  Normalised lateral stiffness 
flong  Normalised tyre longitudinal stiffness 
Gxyz Moving referential frame fixed to the body 
g  Acceleration of gravity 
Jzi  Tractor vertical moment of inertia of the ‘ith’ body 
KP  Kingpin of the semitrailer 
Ln  Distance between the axles and centre of mass G 
hGm  Height of the body ‘m’ centre of mass, 
VG  Velocity of the centre of mass of the tractor 
m1  Tractor mass 
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m2  Semitrailer mass 
MG  Moment of the external forces related to pole G 
Ni  Vertical load on the ‘ith’ wheel 
OXYZ  Fixed referential frame 
PCR  Buckling critical load 
P  Longitudinal force on the kingpin 
Q  Vertical force on the kingpin 

αZ  Yaw angular acceleration 

δ = δ1  Tractor front wheel steering angle 

ϕ  Vehicle yaw angle 

ϕ1 = φ1  Tractor yaw angle 

ϕ2 = φ2  Semitrailer yaw angle 

φ  Relative yaw angle between tractor and semitrailer 

kϕ Elastic angular spring stiffness 

ξiy  Side-slip of the ith wheel 

Ciy  Lateral corner stiffness of the ith wheel 
Viv  Side-speed of the ith wheel contact path 

V


  Vehicle velocity 

i j k
 

  Tri-orthogonal unit vectors of the moving reference frame fixed to the body 

u v    Orthogonal unit vectors at point A of the auxiliary moving reference frame 

[I]G  Tractor inertia matrix, referred to pole G 

[ω]  Angular speed vector 

[ ]ω   Angular acceleration vector 

Appendix A: Dynamic equations 

The differential vehicle’s equations of motion, based on Sanchez (2017) and Luijten 
approach (2010), are obtained with the Lagrange method. The Lagrange equation is 
stated as: 

i
i i

d L L Q
dt q q

∂ ∂+ =
∂ ∂

 where L T U= −  for 1...i n= . 

The geometric dimensions are described in Figures 4 and 6, where 1 2x x x= =   
and 2 1 3 1 4 2y y L Lφ φ= − −  and 6 4 5L L L= + . The generalised coordinates are: 

[ ]1 2
Tq x y φ φ=  
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The kinetic energy is: ( ) ( )2 2 2 2 2 2
1 1 2 2 1 1 2 2

1 1 1 1
2 2 2 2Z ZT m x y m x y J Jφ φ= + + + + +      

( )( ) ( ) ( )2 2 2 2 2 2
1 2 1 2 3 1 3 1 1 2 4 2 1 4 2 3 4 1 2

2 2
1 1 2 2

1 1 12 2 2
2 2 2

1 1
2 2Z Z

T m m x y m L L y m L y L L L

J J

φ φ φ φ φ φ

φ φ

= + + + − + − +

+ +

        

 
 

Applying the virtual work principle gives the generalised forces as: 

1 1 3x y yQ F Fδ ϕ= − − ; 1 2 3y y y yQ F F F= + + ; 
1 1 1 2 2 3 3y y yQ L F L F L Fφ = − −  and 

2 6 3yQ L Fφ = −  

The global coordinates are expressed according to the vehicle local coordinates are: 

1 1x u V φ= − ; 1 1 1y V uφ= − ; 1 1rφ =  and 1 2ϕ φ φ= −  

The lateral tyre contact forces expressed in the local coordinates are (Ci is the ith tyre 
stiffness coefficient): 

( )1 1 1 1 1 1 1
1

yF C V L r C
u

δ= − + + ; ( )2 2 1 2 1
1

yF C V L r
u

= − −  and 

( )3 3 1 3 1 6 3
1

yF C V L r L C
u

θ ϕ= − − − +  

Taking the following abbreviation between coefficients: 

1 2C C C= + ; 3 4tC C C= + ; 1 1 1 2 2sC L C L C= −  and 2 2 2
1 1 1 1 2qC L C L C= −  

Finally it is obtained the equations expressed in the local coordinates as: 

( )( ) ( ) ( ) ( ){ }
( ) ( ){ }

1 2 1 1 2 3 4 1 2 4 1 1 3 3 6 1

3 6 1 1 3 2 1 1 1 2 3 3 4 1

1 [ t s

t Z

m m V ur m L L r m L C C V C C L L r
u

C L C u C L m V ur J m L L L r

ϕ

ϕ ϕ δ

+ + − + + = − + + − +

− − + − + + + +

 

 
 

( ) ( ){ }
( ) ( ){ }

2 2
2 3 4 1 3 1 1 3 3 3 6 4 3 1

3 3 6 3 1 1 1 2 4 1 1 2 2 4 3 4 1

1 [ s t

t Z

m L L C C L V Cq C L L L C L r
u

C L L C L u C L m L V ur J m L L L r

ϕ

ϕ ϕ δ

= − + + + + +

+ + + − + + + +



 
 

( ) ( )2 2
2 2 4 3 6 1 3 6 3 6 1 3 6 3 6

1
ZJ m L C L V C L L L r C L C L u

u
ϕ ϕ ϕ + = − − + + + −    




