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DINAMICA VEICULAR

INTRODUGAO

O estudo do comportamento dinamico de veiculos inicia-se pelo desenvolvimento de modelos
vibratdrios simplificados de representagdo unidirecional dos movimentos do veiculo. Em geral
trés tipos de modelos simplificados sdo utilizados para o estudo inicial do comportamento

dindmico do veiculo:

e Modelo da Dinamica Longitudinal;
e Modelo da Dinamica Vertical;

e Modelo da Dinamica Lateral.

Estes modelos consideram preliminarmente apenas um corpo rigido (chassis) € com apenas um
grau de liberdade (1 G.L.) e tem finalidade especifica, permitindo investigar apenas alguns
aspectos do comportamento dindmico do veiculo. Considerando um niimero maior de graus de
liberdades (por exemplo: 2 GL) o mesmo enfoque permite elaborar modelos mais complexos,
que produzem resultados mais detalhados. Os modelos de multiplos corpos do veiculo completo
(Multibody Systems - MBS) podem ser utilizados para estudos tridimensionais mais avangados

do desempenho veicular de forma mais detalhada mas muito mais complexa.

A suspensao do veiculo ¢ o componente agregado ao chassi com a finalidade de atenuar (filtrar)
as irregularidades encontradas pelas rodas, no trafego pela pista de rolamento. A elasticidade da
suspensdo constitui em conjunto com a massa do veiculo, um sistema massa/mola com
frequéncia natural propria. A excitacdo ¢ considerada como uma entrada externa. As
irregularidades podem ter pequeno comprimento de onda (ex. rua de paralelepipedo),
comprimento de onda médio (ex. ondula¢do do asfalto) ou ter longo comprimento de onda (ex.
relevo do terreno). Cada comprimento de onda de irregularidade excita frequéncias distintas,
com valores magnificados pela velocidade de trafego. Existem também as vibragdes internas
devido ao motor que possui excentricidades e assimetrias, que se constituem em

desbalanceamento (fung¢do da velocidade de rotacdo do motor), de média frequéncia de vibragao
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e detonagdes devida a combustdo interna do motor e eventualmente ruidos devido aos gases de

escamento (ruido oscilatdrio de alta frequéncia).

Para o estudo de cada faixa de vibragcao, um modelo especifico deve ser utilizado em funcao da
frequéncia de cada aspecto tratado. Para oscilacdo do veiculo o modelo de corpo rigido (baixa
freqliéncia) com suspensdo flexivel pode ser utilizado. Para freqiiéncias médias (harshness) a
suspensdo primaria, componentes do conjunto propulsor (power-train) e pneu, devem ser
considerados. Para freqiiéncias altas (noise) detalhes de contato do pneu e solo, vibragdes de

motor, escapamento, passagem aerodinamica do ar, etc, devem ser considerados.

Na engenharia automotiva o termo NVH (noise/vibration/harshness) tem sido utilizado para a

classificacao das vibrag¢des do veiculo em trés faixas distintas:

e Ruido audivel (noise) — vibragdes de freqiiéncias elevadas entre 100 e 20.000 Hz.
e Oscilacao do veiculo - Ride (vibration) — vibragdes de baixa freqiiéncia entre 0,1 ¢ 25 Hz

e Rumor (harshness) — vibragdes de freqliéncias médias entre 25 e 100 Hz

As oscilagdes que os passageiros de um veiculo estdo submetidos, dependem da resposta
dindmica do veiculo (caracteristicas da suspensdo e massa do corpo) e do conteudo em
comprimento de onda (frequéncia de excitagdo) da irregularidade da via, por onde o veiculo
trafega. Esta frequéncia de excitacdo depende do comprimento das irregularidades do pavimento

e da velocidade de trafego do veiculo. A expressdo que correlaciona estes efeitos ¢ dada por:

V=A1f (1)

onde V a velocidade longitudinal de movimentag¢ao do veiculo em [m/s], 4 é o comprimento de
onda da irregularidade do pavimento (excitacdo em [m]) e f'¢ a frequéncia natural do veiculo em
[Hz]. Pode-se iniciar os estudos de dindmica veicular com um modelo simples de um grau de
liberdade vertical com excitagdo pela base. Desta forma no dominio da frequéncia ¢ possivel
identificar as aceleragdes do veiculo devido ao comprimento de onda das irregularidades e

quantificar a magnitude da oscilagdo e o conforto (ex. norma ISO 2631).
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A expectativa do sistema de transporte associada com os requisitos dos passageiros exige que o

projeto dos veiculos tenha bom desempenho das seguintes caracteristicas basicas:

e Movimentagao rapida (alta capacidade e aceleracao longitudinal);
e Veiculos dirigiveis (alta capacidade e aceleragdo lateral);
e Capacidade de trafego confortavel (alta capacidade de atenuacao da entrada);

e Trafego eficiente e seguro.

Para estudar estas propriedades € necessario quantificar suas variagoes. Para isto modelos fisicos

de representacdo serdo elaborados cuja solugdo numérica permitira quantificar seu desempenho.
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2. MODOS DE MOVIMENTO

Um veiculo considerado como um corpo rigido, possui seis graus de liberdade de movimento
(trés translagdes e trés rotagdes). Cada graus de liberdade ¢ caracterizado por um modo de
movimento. Os movimentos de translagdo e rotagdo de um corpo rigido, conforme ilustrado na

Figura 1 e na Figura 2, sdo assim descritos (termo em inglés entre paréntesis):

Figura 1 — Movimentos de Translacdo do Veiculo (Barbosa, 2011)

e AVANCO - Movimento de translagao na dire¢ao longitudinal do veiculo (surge X);
e DERIVA - Movimento de translagcao na diregao lateral do veiculo (sway Y);

e GALOPE — Movimento de transla¢io na dire¢cdo vertical do veiculo (bounce Z);

e INCLINACAO - Angulo de rotagiio na dire¢io longitudinal do veiculo (roll - ¢);

e ELEVACAO - Angulo de rotagio na diregéo lateral do veiculo (pitch - 6);

e DIRECAO - Angulo de rotagio na dirego vertical do veiculo (yaw - ).
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Figura 2 — Movimentos de Rota¢io do Veiculo (Barbosa, 2011)

A variacao de movimento de cada grau de liberdade ¢ identificada como:

e Velocidade de AVANCO — Velocidade de translacdo na dire¢ao longitudinal do veiculo (X );
e Velocidade de DERIVA — Velocidade de translacdo na diregdo lateral do veiculo ( y );

e Velocidade de GALOPE — Velocidade de translagdo na direcao vertical do veiculo (2 );
e Velocidade de ROLAGEM - Velocidade de rotagdo na diregdo longitudinal (roll - ¢);

e Velocidade de ARFAGEM - Velocidade de rotagio na diregio lateral do veiculo (pitch - 0);
e Velocidade de GUINADA - Velocidade de rotagcdo da direcao do veiculo (yaw - ).

Devido a forma de distribui¢do de massa do corpo e os tipos de vinculos que a suspensao do
veiculo possui, 0s movimentos podem ocorrer sincronizados € dependentes. Disto resulta em
modos acoplados de movimento (ex. movimento lateral e angular longitudinal: sway ou
movimento vertical e angular lateral acoplado) (movimento vertical e angular de arfagem
acoplada: front-end-bounce). Para veiculos simétricos ha possibilidade dos modos serem

desacoplados. Neste texto apenas o modelo vertical sera abordado.
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. MODELO VERTICAL DO VEICULO

O veiculo pode ter seus movimentos verticais representados por um modelo unidirecional
simplificado de um sistema mecanico do tipo massa/mola/amortecedor de um grau de liberdade
com excitacdo pela base. A Figura 3 mostra uma representacdo grafica desta proposicao,
conhecida como modelo de um quarto de veiculo. O veiculo ¢ representado como um corpo
rigido de massa m e a suspensao como um dispositivo linear composto por uma mola de rigidez
k associada em paralelo com um amortecedor de constante ¢ (modelo de representacao
conhecido como Kevin-Voigth). A excitacdo pela base corresponde a irregularidade da via que

pode, simplificadamente, ser descrita por uma fung¢ao periddica.

=iy

o ALy TN s
— " =
A

Figura 3 — Veiculo excitado pela base

A equagdo diferencial de segunda ordem do sistema mecanico massa/mola/amortecedor com

1GL na diregdo vertical x com excitacdo imposta na base de magnitude u ¢ descrita por:

mi+c(x—u)+k(x—u)=0 ou mi+cx+kx=cu+ku (2)
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onde m ¢ a massa do veiculo, k a rigidez vertical da suspensdo e ¢ a constante de amortecimento
e u a excitacdo aplicada na base. A excitacdo vertical posicional u(s) pode ser descrita por uma
fungdo periodica do tipo:

u(s)=u,sin(2rs+s,) 3)

Note que a posicao do veiculo ao longo da pista, para velocidade constante é: s = s, + V ¢.

Portanto u(s) =f(s/ V).

. SISTEMA MASSA-MOLA

Iniciando por um sistema mecanico simplificado de um grau de liberdade do tipo massa-mola
com expressao de movimento obtida pelos teoremas da mecanica (7R e/ou TOMA) e descrita por

uma equacao diferencial ordinéria (ODE) de segunda ordem do tipo:
mi (O+kx()=F@) ou  i+ly=L @

Na condi¢do de equilibrio estatico para ¥ =0, a suspensdo fica sujeita a apenas a ag¢do da

gravidade que resulta na deflexdo estatica da suspensao determinada por:

Ko =" o |, =" 5)
m

Considerando o sistema massa-mola homogéneo, ou seja, sem for¢amento externo (F = 0), a
resposta livre para condic¢des iniciais diferentes de zero sera periddica e portanto uma possivel
solucdo analitica da equagao diferencial homogénea pode ser descrita por uma fungao periddica

do tipo:

x(t)= A cos(wt+ @) (6)
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Tomando as derivadas de ordem superior da func¢do periddica candidata a solugao tem-se:

x(t)=—Awsen(wt + @) e X(t)=—Aw’ cos(wt+ @) (7)

Substituindo segunda derivada na equagdo diferencial homogénea e considerando as condigdes

iniciais de ¢y = 0 para # = O0:

)'c'+£x:O - —Aa)zcos(a)t+¢)+£Ac0s(a)t+¢):O (8)
m m
(—a)2+£jAcos(a)t+¢)=O = —a)2+£=0 = a)2=£ 9)
m m m

k

=
m (10)

onde w = (k/m)™° ¢ a frequéncia natural ndo amortecida (em rad/s). Verifica-se portanto que a

solucdo da equacao diferencial.
Uma possivel solucdo da equacdo diferencial, ainda homogénea, para condi¢des iniciais (C/) ndo
nulas, pode ser obtida por uma fun¢do periddica de soma de senos e co-senos com diferentes
magnitudes, do tipo:

x(t) = A sen(wt)+ B cos(wt) (11)

Obtém-se a derivadas de ordem superior da soma como:

x(t)= Awcos(wt)— Bwsen(wt)

(12)

¥(t) =—Aw’sen(wt)— B o’ cos(wt)

10
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Considerando as condigdes iniciais (CI) de ¢, =0; x(¢,)=x,; V(t,) =V, x(t)) = 0 e V(to) =0

utilizadas nas duas equagdes anteriores para fy = 0 pode-se determinar os parametros 4 ¢ B da
equagao de x(¢):
x(t)= A sen(wt)+ B cos(wt) para t,=0 — x,=x(t,))=B —> B=x, (13)

x(t)= Awcos(wt)—Bwsen(wt) para t,=0 —> V,=x(t,)=4Ao — A= (14)
@

onde as constantes dependem das condig¢des iniciais (CI) de posicao e velocidade, sendo B = x, ¢

A =V, / w. Substituindo na expressao de x(¢) obtém-se:

(15)

X
x(t) ="sen(wt)+ x, cos(wt)
®

que ¢ a solugdo da equagdo diferencial do sistema massa-mola com frequéncia natural @, para

qualquer instante de tempo ¢ devido as condigdes iniciais x, € X, .

11
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. FORGAMENTO HARMONICO

Considere agora o corpo do sistema massa/mola com 1 GL submetido a um forcamento externo
harmoénico F(f) com frequéncia @. de magnitude Fy, conforme ilustrado na Figura 3, descrito

por:
mix ()+kx()=F (t) onde F(t)=F,cos(w,t) (16)

A solu¢ao da equacao diferencial ¢ obtida por uma resposta natural do sistema (resposta
homogénea devido apenas as condigdes iniciais) acrescida do comportamento forgado, chamado
de solugdo particular (devido a acdao continuada do for¢gamento periddico externo for¢gando uma

vibragdo em regime permanente).

Desta forma, a solucdo da equagdo homogénea (movimento natural com frequéncia @, devido a
condigdes iniciais sem excitacdo externa) e a solugdo particular (movimento for¢ado com
frequéncia @.), sao fornecidas respectivamente por:

x,(t)= A sen(w, t)+ B cos(w, t) e x,(1)=X cos(aw,1) (17)

Utilizando a solugdo particular de amplitude maxima X (devido a forca aplicada F(t)) e suas

derivada aplicadas na equagao diferencial do sistema, obtém-se:

x,(t)=X cos(w,t) e X, (1)=-Xa. cos(w,1) (18)
—-m X! cos(w,t) +k X cos(w,t) =F,cos(wt) = -mXw +kX=F, (19)
X(k-ma?)=F, = x=—"u Ou (20)

k—ma?) 1-7

12
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onde o, = F,/k ¢ a deflexdo estatica devido a for¢a Fpe r=w,/w, ¢ a razdo entre a frequéncia

de excitagdo e a natural.

Assim a soluc¢ao total (solugdo homogénea mais a particular) é obtida por:

x()=x,(t)+x,(t)=Asen(w, t)+ B cos(w, t)+ Lz (21)
v (k—ma?)

Utilizando novamente as condigdes iniciais de x(#) = 0 e V() = 0 na equacdo anterior para #) =

0 obtém-se as constantes em fun¢ao das condig¢des inicias:

B:X0+(kL02) [ A=—- (22)
—mauo,

Finalmente a historia temporal da posi¢cdo da massa ¢ descrita, para qualquer instante de tempo,

pela soma xi(t) € xp(t):

x(t) = Yo sen(@, t)+| x, —Lz cos(w, 1)+ Lz cos(w, t) (23)
@ k—mao; k—-mao;

n

13
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. SISTEMA AMORTECIDO

Para um sistema mecanico do tipo massa, mola e amortecedor, a equagdo diferencial de
movimento para o sistema com for¢gamento externo peridodico com amplitude F e frequéncia @
resulta em:

mXx (t)+cx(t)+kx(t)=F,cos(w,t) (24)

ou alternativamente:

c . £X+F0cos(a)et)

X=——x— (25)
m m m
xz—zga)nx—a)jHM onde: w,f:ﬁ € C=i= c_=_F (26)
m m c, 2mk 2mo,

onde ( (zeta) ¢ o fator de amortecimento £ = ¢ /(2ma), @, € a freqliéncia natural ndo amortecida

e ay ¢ a freqiiéncia amortecida obtida de @, = @,+/1-¢7 .

A solucao da equagao diferencial ¢ novamente obtida por uma resposta natural do sistema
(resposta homogénea que se extingue ao longo do tempo devido ao amortecimento), acrescida do
comportamento forcado harmonico chamado de solugdo particular (devido a ag¢do continuada do
forgamento externo induzindo a uma oscilagdo em regime permanente), agora neste caso, com

atraso de fase:
x,(t)=A sen(w, t)+ B cos(w, t) e x,(1)=X cos(w,1—¢) 27)

Utilizando apenas a resposta particular x,, devido a¢do externa periddica para o movimento de

regime for¢ado (ou seja quando @ = w, ) e suas derivadas:

14
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x,()=X cos(w,t=9) ; x,()=—Xo,sen(w,t—¢) e ¥, ()=-X o’ cos(w, t—@) (28)
Aplicando na equagao principal:
X|tk=ma?)cos(e, t - §) —corsen(w, t - ) |= F, cos(a, t - $) (29)
Utilizando as duas relagdes trigonométricas:
cos(AF B)=cosAcosBtsenAsenB e sen(AfB)=senAcosBxcosAdAsenB (30)

e fazendo 4 = (w. t ) e B = ¢ e substituindo na equagdo anterior, obtém-se o sistema de

equacoes:

X[(k—mwj)cos¢+ca)e senquﬁ]:F0 31)
X[(k —mw.)sen ¢—cw, cos ¢]= 0
cuja solucao ¢ a amplitude X do movimento na frequéncia forcada @, e a respectiva fase ¢

resultam em:

Ly

X =
(k= ma?) + e ]

172 e ¢ = arctan(&j (32)

k—-ma’

que sio a Funciio de Resposta em Frequéncia (FRF) e a respectivo Angulo de Fase. Pode-se
apreciar a resposta do sistema amortecido quando se aplica um degrau unitario (solucao

facilmente obtida por transformada de Laplace), conforme mostrado na Figura 4.

15
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Figura 4 — Resposta ao Degrau em func¢iao do fator de amortecimento (fonte: Wiki)
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7. TIPOS DE EXCITAGAO

O sistema mecanico pode estar sujeito a diferentes tipos de excitagao:

e Excitacao harmonica;

e Excitacao periddica (conjunto harmdnico);

e Excitagdo aplicada na base;

e Excitacdo randomica (aleatoria);

e Excitacdo ndo periddica, (curta duracdo — impulso ou impacto, degrau ou pulso, rampa de

longa duragao, etc.).
7.1. Superposicao de Excitagoes

Uma excitagdo harmonica aplicada ao corpo ¢ caracterizada por uma fungao periddica do tipo:
F=F senw,t (33)

onde F, ¢ a amplitude da variacdo e @, a freqiiéncia de excitagdo imposta. A solu¢do desta

equacao diferencial foi apresentada no item anterior.

Suponha agora que o sistema seja submetido a diversas excitacdes com diferentes frequéncia @,;
com amplitude F,;. Utilizando o principio da superposicao de sistemas lineares, a solu¢ao para

cada excitacao ¢ a soma de cada termo:

mx, +cx, +kx =F (1)
mx,+cx,+kx,=F,(t) (34)

mx,+cx, +kx,=F (t)

17
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A excitagdo pode ser um conjunto de fun¢do periddicas com amplitude e periodo proprio de
repeti¢do. O somatdrio de um conjunto de fungdes harmonicas pode caracterizar uma funcao

periddica composta (técnica de Fourier) do tipo:

F(1)=) Fysen(@, 1 +¢) (35)

onde F,; ¢ a amplitude da variacdo da componente i do somatorio, @,; a sua i-éssima frequéncia e

@ a i-éssima fase.

Nos casos de excitagdo nao peridodica como a excitagdo aleatdria ou excitagao de curta duragao o
sistema serd submetido a um impulso ou impacto. A resposta de um sistema com este tipo de
excitacdo pode ser obtida por um processo de integracio numérica. No caso de ndo haver
variagdo significativa da posicao, a colisdo corresponde a uma mudanga abrupta de velocidade.
A implementacdo desta funcao no processo de integracdo numérica pode ser realizada pela troca
do estado do sistema (mudanga da velocidade sem mudanca da posi¢ao). No caso de uma
excitacdo randomica de longa duragdo o sistema sera submetido a uma variacdo suave da
entrada. Excitagcdo do tipo rampa ou degrau sdo formas usuais descontinuas para excitacdo do

sistema com facil solucdo pela técnica de Laplace.

18
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7.2. Excitagao pela Base

A excitagdo imposta na base de um sistema veicular do tipo massa-mola-amortecedor, conforme
ilustrado na Figura 5, corresponde a um deslocamento vertical decorrente da irregularidade do
pavimento, que pode ser descrita por uma funcdo harmodnica periodica posicional (fung¢dao da

posicdo §) ou temporal (fung¢do do tempo #) do tipo:

u(s)=u,sin(2rs+s,) (36)

u(t)=u,sin(wgt+0)=u, sinzrV-(t+t,)/ A) (37)

Considerando que a frequéncia de excitagdo seja w, =27V /A e amplitude uy, obtém-se a

funcdo temporal da excitacdo geométrica da via e sua derivada temporal como:

u(t)=u, sin(w,1t) e u(t)=u,m, cos(w,t) (38)

V=Af. € w=2nf,

F(t) I Vv s(t)=Vt+s,
_>
m

u(t) = up sin (we t + 0)

k
5:‘ © ut) =u,sin(2nVt/)

u
AN
U t
"/ /\ Léy _
N — to — o
s=Vt Veiculo excitado pela base
A

Figura 5 — Sistema excitado pela base

19
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Substituindo esse valor de excitagdo de entrada u(¢), e sua derivada u(z), na equagdo diferencial

de movimento do sistema mecanico de segunda ordem com 1 grau de liberdade, conforme

mostrado na Figura 5, obtém-se:

mi+c(x—u)+k(x—u)=F()
mi+cx+kx=cu+ku+F(t) (39)

mx+cx+kx=c-w,u,cos(w,t)+k-u,sen(w,t)+ F(t)

Aplicando no lado direito da equacdo a identidade trigonométrica de soma de angulos

sen(a + B)=(sena-cos B)*(cosa-sen f) e fazendo S =, t, obtém-se:
sen(a+w,t) = (sen a- cos(a)et))+ (cos a- sen(a)et)) (40)

Igualando o lado direito das duas equagdes segundo coeficiente de proporcionalidade U, obtém-

se:
c-w,u,cos(w,t)+k-u,sen(w,t)=U, - (sen a-cos(w, t)+cosa -sen(w, t)) (41)
de onde se conclui que:

W, cu ku cw -co,

o

senq = ; cosa = ; eportanto: tana=———< = « =arctan
U, U, k

(42)

Finalmente utilizando a relagdo de Pitdgoras (sen” o +cos” a =1) obtém-se:

U,=u,(cw,) +k (43)

formando os termos da equagdo dindmica homogénea na forma:

mx+cx+kx=U;sen(w,t+a) (44)

20



DINAMICA VEICULAR

que ¢ similar a um sistema massa-mola-amortecedor excitado por uma forca vertical periodica

aplicada ao corpo de frequéncia @,, com fase o e amplitude U,

Portanto a magnitude do deslocamento vertical X do sistema massa-mola-amortecedor quando
excitado pela base, ¢ similar ao forgamento aplicado na massa ja apresentado no item 6, sendo

descrito por:

P
e — 22, 2 2
[k-mw?y +cw?]” " [k=ma}) +ca?]

> € ¢:arctan(k_c—na);w2j (45)

Dividindo o numerador e o denominador por k e lembrando que: @’ =k/m e { =c/2mw,) e
fazendo a razdo entre a frequéncia de excitagdo e natural r=wm,/w®,, obtém-se a relagdo

chamada de Transmissibilidade de Deslocamento:

u (1-r*) +Q2<r) 1+(4C7 -1)r?

o

X_ { 1+Q2¢ry } e ¢= arctan(—2 & J (46)

A Figura 6 apresenta a razdo normalizada de transmissibilidade da expressdo acima e o

correspondente angulo de fase, para diferentes fatores de amortecimento .
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Figura 6 — Transmissibilidade de Deslocamento (Fonte: Rao)

Note no grafico de transmissibilidade (Figura 7) que para uma determinada amplitude da

irregularidade (u,) de comprimento de onda A =27V /w, coincidente com a frequéncia natural

a, , a resposta em amplitude sera aproximadamente 2,28 vezes para um fator de amortecimento
de £ = 0,25. Para amplitudes moduladas em comprimento de onda (espectral), o resultado da

transmissibilidade sera modulado na mesma proporg¢ao.

EXEMPLO: Um veiculo que trafega a uma velocidade de Vx = 60 km/h, quando submetido a
uma irregularidade periddica e harmonica do pavimento com amplitude uy = 0,010 metros e
comprimento de onda de 4 = 7 metros. Considere o veiculo com massa total de 1.200 kg, sem
amortecedor e rigidez do conjunto de molas de 68.218 N/m. Determine a amplitude do
movimento vertical em regime permanente do chassis do veiculo. Determine novamente a

amplitude do movimento para um comprimento de onda de A = 35 metros.

Resolucio: a frequéncia natural vertical do veiculo ¢ obtida da expressao:

a)nz\/z = fnzia)n = ﬁl:L £=L @=1,2HZ
m 27 2z \m 22\ 1200

a frequéncia de excitagdo periddica forcada f'para A =7 para Vx = 60 km/h, é dado por:

22



DINAMICA VEICULAR

veifr = p=V_8936 oaem o @ S 2384
A7 o f 12

Simplificando a expressdo anterior de transmissibilidade para um fator de amortecimento 4 nulo

tem-se:
KZ{ 1+(2¢r)? TZ = X=u ! =
u, [(A=r*)"+@2¢r) \V(-r)

L 0,01.0342=0,0034m

X =0,010- (1—1,982)

Para comprimento de onda de A = 35 metros ; ¥ = 0,396 ¢ X = 0,118 metros, conforme ilustrado

na Figura 7.

Transmissibilidade
2 ,@,T\R:zzs
o 2 3 \
= e \\
815 e =
2 g X
= == e
05 zeta: 0.25 o e T A
0 | I I
0 0.5 1 15 2 25 3
120 EE————_
100 e
T 8 /
% 60 F}"Fase:53°
w40 //'
20 -
o
D — L L L L
0 0.5 1 i5 2 25 3
Raz&o de Frequéncia (r)

Figura 7 — Curva de Transmissibilidade (zeta = 0.25)

Outra métrica que pode ser utilizada para a avaliacdo de resposta em freqiiéncia para
movimentos verticais ¢ a fun¢do de transferéncia de for¢a ou aceleragao (Acelerdncia). Esta
funcdo permite identificar a magnificagao das aceleragdes do veiculo para diferentes freqiiéncias
de excitagdo Portanto a forga transmitida para a base dada por —mx = c(x—u)+k(x—u)=F,

tem resposta em frequéncia, conforme ilustrado na Figura 8, dada por:
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Figura 8 — Funcio de Resposta em Frequéncia (fonte: Rao)

Verifica-se, portanto que para um fator de amortecimento da suspensdo de € = 0,20 uma
variacdo de 2,8 vezes da fun¢do Fri/ku,. Note ainda que para um fator de amortecimento da

suspensao de §=0,35 aresposta do sistema ndo tem mais amplificacdo na frequéncia natural.
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Figura 9 — Acelerancia ou Transmissibilidade de Forca

8. AVALIAGAO DA RESPOSTA EM FREQUENCIA

Observa-se experimentalmente que um sistema mecanico submetido a uma excitagdo externa de
frequéncia @,, tem seu movimento for¢ado (apds os transitdrios) manifestado numa unica
frequéncia de vibragdo (tipicamente idéntica a @,). A métrica para avaliagdo de resposta em

frequéncia para movimentos verticais utiliza a funcdo de transferéncia da magnitude do
deslocamento vertical sobre a magnitude da excitagdo pela base. Considere o sistema
massa/mola/amortecedor submetido a excitagdo harmonica pela base conforme ilustrado na
Figura 5. A equagdo diferencial de segunda ordem a termos constantes para o sistema

homogéneo resulta em:

miX+c(x—u)+k(x—u)=F(t) - mi+cx+kx=cu+ku (48)
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A Resposta em Freqiiéncia (RF) do sistema com excitagdo forcada pela base (Barbosa, 2012) ¢é

[IP=2]

obtida pela transformada de Laplace *“s” da equagdo diferencial homogénea em x e u para
condigdes iniciais nulas. Assumindo a solucdo de regime forcado apds os transitorios, todo o

sistema vai oscilar na frequéncia de excitagdo ®,. Na sua forma mais geral, os deslocamentos
assumem a forma x(z)=Ce", devido a irregularidade u(z) =u,e", que é uma composi¢io de

senos e co-senos da forma da identidade de Euler: ¢’ =(cos@+i-senf) e considerando a
variavel s como um nimero complexo na forma s =0 +i®, (transformacdo de Laplace), obtém-

se as derivadas de ordem superior como:

x(t)=X(s)e" ; x()=s-X(s)e¥ e ¥({t)=s5"-X(s)e" (49)

u(t)=U(s)e” e u(t)=s-U(s)e" (50)
Fazendo a substituindo na equacdo anterior e eliminando e*, obtém-se:

(ms*+cs+k)X(s)=(cs+k)U(s) (51)

X(s)  cs+k
U(s) ms*+cs+k

(52)

Substituindo s=iw, e fazendo a relacdo da saida pela entrada dos polindmios algébricos em

funcdo de s, obtém-se a funcao de resposta for¢cada em frequéncia da amplitude do deslocamento

X(iw,) para a amplitude das irregularidades da entrada U(i®,) como:

X(iow,) 2w,s+o;
Uliow,) s +2lw,s+w;

(53)
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Figura 10 — Curva de Resposta em Frequéncia da Transmissibilidade de Deslocamento

Para acelerancia com excitacdo pela base, a funcdo do sistema massa/mola/amortecedor se

transforma em:

26w, s+,

X(ia)e) — o’
UGo,)

sz+2§’a)ns+a)fj

(54)

A fungdo de resposta em aceleragdo permite identificar a magnificacdo das aceleragdes do

veiculo (conforto) para diferentes frequéncias de excitacdo (segundo /SO 2631 ver Figura 11).
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Figura 11 — Limite de Vibraciao (Fonte: Rao, 2008)

Exemplo: Para o problema anterior com irregularidade periddica e harmdnica do pavimento com
amplitude uy = 0,010 metros, obtém-se valor de magnitude de aceleracdo ligeiramente superior a
0,01 m/s* que ¢ o limite de percep¢io proposto pela norma ISO-2631, conforme ilustrado na

Figura 11:

1

1

(1-198*f

X =ru =1,98%-0,010- =0,0133 ms >
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8.1. Determinacao das Raizes

Para o sistema homogéneo (sem excitagdo externa), obtém-se a equacgdo de segunda ordem em s
que apresenta as duas raizes complexas conjugadas S;, que corresponde a frequéncia natural

amortecida:

(ms*+cs+k)X(s)=0 = ms*+cs+k=0 (55)
c /c2—2mk
Su:——i 2 (56)
m 4m

8.2. Implementagao Numérica

Para a implementagdo numérica da solucao da funcao de transferéncia, conforme descrito na

equacao:

X(s) 2o, s+ ]
U(s) s°+2w, s+

(57)

basta descrever os polindmios em s do numerador (num) e outro para o denominador (den),
utilizar a fungdo tf e os seguintes comandos no ambiente Octave (ou Matlab) para obter os

graficos de magnitude e fase apresentados na Figura 12:

num = [(2*zeta*wn) wn”2];
den=[1 (2*zeta*wn) wn”2];
G = tf (num,den);

bode(G);
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Bode Diagram
10 . e -

Magnitude [dB]
8

Phase [deqg]

10! 10° 10’ 107 10
Frequency [rad/s]

Figura 12 — Grafico de Bode

Observacio: ¢ necessario ter o médulo de Controle (no Octave utilize: pkg load control) para

processar os comandos sugeridos (no Matlab utilizar o toolbox: Control).
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. AMORTECEDOR COM BUCHA ELASTICA

Tipicamente o amortecedor veicular ¢ fixado em suas extremidades entre o chassis e a
suspensao, com parafusos envolvidos por buchas elésticas, conforme ilustrado na Figura 13. A
finalidade das buchas é permitir a articulagdo do amortecedor durante a excursdo da suspensdo e

reduzir vibragdes de frequéncias elevadas.

Figura 13 — Amortecedor com bucha elastica de fixacao

Como efeito indireto, a bucha elastomérica também introduz uma elasticidade em série com o
amortecedor, que contribui para a redugdo de vibragdes de frequéncias elevadas. Um modelo
para representacdo completa deste componente estd apresentado na Figura 14 sendo conhecido
como modelo visco-elastico de Maxwell. Os deslocamentos dos componentes eldstico e

dissipativo podem ser descritos por duas variaveis distintas s e u# respectivamente (Rill, 2009).

K F(t)

Amortecedor e Bucha
Elastica em Série

Figura 14 — Amortecedor e Mola em Série
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Para cada elemento do componente elastico/dissipativo tem-se as forgas proporcionais a

deslocamentos e velocidades conforme:

F .=-ks e E, . =—c-(i-3) (58)

Como os componentes estdo em série, a mesma forga F(t) aplicada no amortecedor passa pela

bucha eléstica (mola), portanto F,_, =F = F, portanto igualando as equagdes obtém-se

mola amort

uma equacao diferencial linear de primeira ordem em u:

k-s=c-(i-5) = cs+k-s=cu = —ims=——8 (59)

onde a razdo entre o amortecimento ¢ a elasticidade corresponde a constante de tempo T =c / k

de um sistema de primeira ordem em u.

A resposta estaciondria s(t) em frequéncia do componente de Maxwell para excitagdo harmonica

u(t) do tipo:

u(t)=u,senwt e portanto u(t) =u, o coswt (60)

pode ser determinada inserindo a resposta temporal que serd na mesma frequéncia forcada de

frequéncia wtal que:

s(t):uo(a-sena)t+b-cosa)t) e portanto S(t):uoa)(a-cosa)t—b-sena)t) (61)

Substituindo essas expressdes na equagdo de primeira ordem, obtém-se:
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c c
7u0w(a-cosa)t—b-sen a)t)=7u0a)cosa)t—u0(a-sen wt—b-coswt)

Separando os termos em seno e co-seno resulta em:

c c
7u0a)b-sena)t=u0a-sena)t Ta)b=a
=
c c c c
7u0a)a-coswt=7u0a)cosa)t+u0b-cosa)t 7@a=7a}+b

Fazendo a substitui¢ao:

[ijz_lb—iw S PO (S| R
k ok ¢ \@*—(k/c) o’ —(k/c)

(62)

(63)

(64)

Assim a curva de resposta em frequéncia em @, da funcdo de forca elastica Fmola , ¢ dada por

Fmola =-ks=—-ku, Lz (a)sena)tjtﬁcosa)tJ
o’ —(k/c) c

Esta expressdo pode ser transformada utilizando soma de senos e co-senos em:

Fmola = ﬁmola-(sean ¥)

onde a magnitude da forga ¢: Fmola = % ®* —(k/c)2 kuyo
o —(k/c) o’ —(k/c)
fase é&: Y = arctanM .
w

(65)

(66)

=—————— ¢ oangulode
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A rigidez dinfmica k,, = Fmola/u, e o angulo de fase ¥ do componente mola/amortecedor em

série (modelo visco-elastico de Maxwell) esta apresentada na Figura 15, para kK = 400N/mm e

diferentes intensidade de amortecimento (c; até cs).

k=400 N/mm

0

1 = 1000 N/(m/s)
2 = 2000 N/(m/s)
3 = 3000 N/(m/s)
4 = 4000 N/(m/s)

0

(¢

0

Figura 15 — Resposta em frequéncia da Rigidez Dinamica do Componente

Mola/amortecedor em Série (Fonte: Rill, 2009)

Com o aumento da frequéncia, a componente amortecedor/mola muda de um desempenho
dissipativo puro, kgyn = 0 € ¥ = 90° para um comportamento elastico puro, kgyn = ke — 0. A
faixa de frequéncia onde o componente de Maxwell fornece rigidez e amortecimento, ¢

controlada pelo valor da constante de amortecimento c.

De maneira similar a curva de resposta em frequéncia em @, da funcdo de forca viscosa

dissipativa Famort , ¢ dada por

Famort = —c(L't - $)= CUyw- [(a coswt—bsen a)t)— cos a)t]

Famort = cu,w-[(acos ot —bsen wt)—cos wt]= cuym-[(a—1)cos wt —bsen wt] (67)

(k/c) ’
Famort = cuyw-|| ——F——5 |[cOs@t —| ————— [seno?
o’ —(k/c) w* —(k/c)
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Esta expressdao pode ser transformada utilizando a expressdo de soma de senos e co-senos

(cos(a+,8):cosa-cosﬂ—sena-sen,b’) em:

Famort = Famort (coswt+d) (68)
onde a magnitude da forca é: Famort = % (k/c) —a® = Y o angulo de
(k/c) - (k/c) -’

2

on

fase é&: @ = arctan

A rigidez dinamica c,, = Famort/u, e o dngulo de fase ® do componente mola/amortecedor em

série (modelo visco-elastico de Maxwell).
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10. AJUSTE BASICO DA SUSPENSAO

O ajuste basico da suspensao do veiculo para os movimentos verticais conhecido como vertical

TUNING, pode ser feito com o modelo simplificado de 1 graus de liberdade. Duas propriedades

importantes devem ser estimadas:

e Rigidez da mola da suspensao e

e Fator de amortecimento.

As propriedade inerciais tipicas de veiculos comerciais estd resumida na Tabela 1.

Tabela 1 - Propriedades Inerciais (S7)

Tipo | Carro Passeio | Carro Grande SUV Veiculo Caminhao
Component Médio Comercial
Eixo Dianteiro 80 kg 100 kg 125 kg 120 kg 600 kg
Eixo Traseiro 80 kg 100 kg 125 kg 180 kg 1100 kg
Chassis 1100 kg 1400 kg 1950 kg 3200 kg 14300 kg
Posigao a) 1.10 m 1.10 m 1.45m 1.90 m 2.90 m
CG b) 1.40 m 1.40 m 1.38 m 1.40 m 1.90 m
Momento Inércia | 1500 kgxm® | 2350 kgxm® | 3750 kgxm® | 5800 kgxm® | 50000 kgxm®
Distribuicao de 545 kg 600 kg 914 kg 925 kg 3592 kg
Massas 126 kg 200 kg 76 kg 1020 kg 5225 kg
Concentradas 429 kg 600 kg 960 kg 1255 kg 5483 kg
Curso Suspensdo | 127~152 mm 175~205

Alternativamente pode-se buscar informagdes sobre outros veiculos na Internet como ilustrado

na Figura 16.
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Approximate vehicle

AR SO i System Major components in system
Misc:; Body-in-white Passenger compartment frame. cross and side beams, roof
structure, front-end structure, underbody Noor structure, panels
Powertrain Engine, transmission, exhaust system, fuel tank
Chassis Chassis, suspension, tires, wheels, sieering, brakes
Interior Scats, instrument panel, insulation, trim, airbags
Closures Front and rear doors, hood, Lift gate

Miscellaneous

Electrical, lighting, thermal, windows, glazing

" Based on Stodolsky ef al, 1995a; Bielkengren, 2008; Lotus Engineering, 2000; the actual system definitions and system
companent inclusion can vary, and percentage weight breakdown can vary substantially by velicle

Figura 16 — Distribuicao de Massas por Subsistemas (Fonte: Internet)

Um exemplo de distribuicdo de massa para o sedan médio de tracdo dianteira, com massa total

de 1093 kg, distancia entre eixos de 2600 mm e distribui¢do do centro de massa das partes

medido a partir da roda dianteira ¢ apresentado na Figura 17 (Salvagni, R. B. 2024).

Svst M X 7
e (kg) | (m) | (m) y

Body-in-white 273 -1,3 0.2

Powertrain 273 0 0.5 CGq

Chassis 262 | -13 0.4 O X
Interior 120 -1 0,5 3
Closures 88 -1,3 0.8

Miscellaneous 77 -1,3 0.8

Figura 17 — Distribuicio Massa (Fonte: Salvagni, R. B. , 2024)
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10.1. Rigidez Vertical da Suspensao

A deflex@o da suspensao z, corresponde ao curso da mola quando submetida ao peso proprio do

veiculo M ¢ obtida pela expressao relacionada com a rigidez da mola &:

F=k-z =  z,=— (69)

Considerando a rigidez vertical total da suspensdo de veiculo (k = & M), com valores tipicos
para carro de passeio de 80~120 kN/m, portanto muito menor que a rigidez do pneu (tipico de
500~700 kN/m), pode-se adotar o modelo simples de massa/mola com 1 GL para esta etapa de
ajuste. Para uma suspensao linear, a variagdo AM da carga corresponde uma variacdo Az de

curso:

Az:%AM (70)

Portanto no minimo a rigidez da mola tem que ter capacidade de suportar o acréscimo de carga

dentro da variagdo de curso disponivel:

AMg
Az

k2>

ou  Az<AMe (71)
k

Considerando um veiculo de passeio médio com massa total de 1100 kg e curso vertical da
suspensdo disponivel de Az = 0.12~0.15 metros, obtém-se para uma deflexdo de 60% do curso

disponivel devido ao peso proprio, uma rigidez tipica de:

Mg _  _1100-981
0.6z 0.15-0.6

=119900 N /m (72)
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Considerando o peso dos passageiros e cargas (4 passageiros de 70 kg = 280 kg +100 kg) e um

fator dinamico da carga de 1.3g o curso da suspensdo para esta rigidez atinge:

__ 98113
119900

1480=0.157 m (73)

Considerando uma distribuicdo normal do fator dindmico (16 = 68.2% ; 26 = 95.45% e 30 =
99.73%) em 68% do trajeto ao longo do percurso, o fator dindmico se mantém entre + 1.1g’s e,
portanto um curso maximo sera de 0.145 metros, portanto compativel com o curso total
disponivel. Nos demais 32% do trajeto, a excursdo da suspensdo tem probabilidade de superar o
disponivel sendo necessario a introdu¢do de um batente de fim de curso (coxim elastico de

borracha de alta rigidez).

Na configuracao com carga (1480 kg), a frequéncia natural vertical do veiculo resulta em:

1 1 keq 1 96709
- =— - = 222 08 74
/s 27 " 2z \m /s 27\ 1480 (74

considerando que a rigidez equivalente k.q da suspensdo ¢ determinada pela associa¢do em série

(keq = (kmola K e )/(kmola K e » com a rigidez da mola (119 900 N/m) e do pneu (adotada de

500 000 N/m). Para o veiculo vazio a frequéncia natural vai para 1.49 Hz.

A frequéncia natural também pode ser obtida da deflexdo estatica da suspensao:

f. Llg fn;%Hz (75)

Uma vez que o conforto esta relacionado com frequéncias mais baixas (tipica de 1.2 Hz) o valor

pode ser reduzido utilizando molas com comportamento ndo linear (rigidez progressiva).
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Exemplo: determinar a deflexdo da suspensdo para um veiculo com frequéncia natural de 1.2

-5 VA S S . LIS S (76)

k o (2z-f) (2z-1.2)

Conforme mostrado no exemplo anterior a deflexdo da suspensdo devido ao peso proprio do
veiculo guarda relacdo inversa com a frequéncia de oscilagio ao quadrado. A Figura 18
apresenta esta relacdo. Considerando um fator dindmico de 1.3 a deflexdo da suspensao devido

ao peso proprio pode utilizar aproximadamente 77 % do curso maximo da suspensao.

DEFLEXAO SUSPENSAO DO VEICULO

(DEVIDC AQ PESO PROPRIO)

Deflexao (mm)

Frequencia (Hz)

Figura 18 — Deflexdo da Suspensio devido ao Peso Proprio

Tipicamente o fator dindmico utilizado para projeto de suspensdo veicular ¢ de 130%

(F, =1.3mg ) ou seja, variagdo de + 0.3 g de movimento, devido as irregularidades da pista.
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10.2. Fator de Amortecimento

O fator de amortecimento { (adimensional zeta) da suspensdao do veiculo, que corresponde a
razdo entre a constante do amortecedor ¢ dividido pelo amortecimento critico ¢, (quando nao ha

mais oscilagdo), ¢ determinado pela formula:

(77)

Para os valores utilizados no exemplo anterior (m = 1.480 kg e k = 96.709 N/m) para o veiculo

carregado e considerando um amortecedor com constante ¢ = 5.982 N s/m, tem-se:

é’—i— c 5982
¢, 2mk 2,/1480-96709

=025 = 25% (78)

10.3. Ajuste Vertical

O ajuste do fator de amortecimento adequado para a suspensdo depende da concep¢do do
veiculos. Em geral veiculos de passeio devem ser mais confortaveis e trafegar de forma suave
sobre as irregularidades do pavimento (ride). Em contra partida um veiculo esportivo deve
manter a maximo possivel a roda em contato com a pista, garantindo aderéncia e, portanto

dirigibilidade (handling) e seguranca.

Para realizar este ajuste pode-se utilizar modelo vertical do veiculo com 2 GL, conforme
mostrado na Figura 19a. Em geral a rigidez de cada pneu identificada como k; (200~220 kN/m,
que depende da pressdo interna), ¢ muito maior que a rigidez total da suspensdo, identificada
como k;.(80 kN/m) na Figura 19a. Como a massa ndo suspensa (eixo e roda) ¢ da ordem de

7~8% da massa do chassi uma representagdo de 1 GL simplificada pode ser utilizada para
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descrever a movimentagdo do chassi (massa suspensa m; >> m, e rigidez equivalente em série)
conforme proposto na Figura 19b, e outra representagdo para descrever o movimento da
suspensao (massa nao suspensa e rigidez equivalente em paralelo), conforme proposto na Figura

19c.

Para descrever os modelos simplificados de cada caso, utiliza-se das equacdes diferenciais de
segunda ordem adotando a hipotese que m; >> m,, com a rigidez equivalente da associagdo em
série e paralelo das molas (dissipagdo do pneu desprezada ¢, =0), keq = (k1 * ko) / (k1 + k> ) para

0 primeiro caso € k.q = k1 + k> para o segundo caso:

mzZ +cz+ k,z =0 (79)

m,z, + ¢ z,t (kz +k1)22: 0 (80)

Z4
Z4 V ©

Z
ms
) X
k2 Co

a) | c) E

Figura 19 — Modelo (a) Simplificado: Suspensao em Série (b) e Suspensiao em Paralelo (¢)

[

A solucdo tipica da equagdo diferencial homogénea ¢ do tipo:
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i=-2¢w i-w’x onde g:ciz (81)

onde C (zeta) ¢ o fator de amortecimento { = ¢ /2mam,), @ , ¢ a freqliéncia natural ndo

amortecida € @ 4 ¢ a freqiiéncia amortecida obtida de @, =, +/1-¢* . Disto resulta para o

modelo da massa suspensa (chassi) e para o modelo da massa nao suspensa (suspensao):

/. 1 k; para configuragio em SERIE k., (k k 2) e __ 4 (82)
chassi — 272' m +0. sz (kl + kz) chassi 2m

(k, +k,)

Soup = Py m, 2. m, (k, +k,)

Exemplo: Determine as frequéncia naturais de movimento vertical do chassis e do cubo da roda
para um veiculo com as seguintes caracteristicas: m; = 1415 kg; m, = 185 kg; k; = 68 kN/m; k, =

676 kN/m; que resultam em:

. k
k, = (&, -,) =61.785  fiui = — LI % oom fmpzi LTy
(k, +k,) 272\ 'm, +0.5m, 27\ m,

m; +0.5-m,
k

eq

Ajuste da elasticidade: z, =

10.4. Ajuste Fator de Amortecimento

Se o objetivo do projeto da suspensao for evitar o sobre-sinal (over-shoot) entdo o fator de
amortecimento recomendado em cada modelo deve ser unitario (§ = 1). Desta forma resultam

para conforto e seguranga dois valores distintos para o amortecedor c;:
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_ k, _ k +k
o (St =2, m, k,, =2 e " =2 nu(kﬁle)ﬂ% (84)
1 2

Exemplo: para um veiculo com massa de m; = 1400 kg (modelo 1/4 = 350 kg) rigidez de uma
mola de k; = 20 kN/m, massa nao suspensa de m, = 50 kg e rigidez de um pneu k; = 220 kN/m

obtém-se:

N _ N
e =6928
m/S 1 |Segumn(;a m/S

T =5202

Conforto

(85)

Em geral a frequéncia da massa ndo suspensa ¢ 15~18 vezes maior que a frequéncia da massa

suspensa. A rigidez de cada pneu ¢ aproximadamente de 220 kN/m e da suspensdo como um

todo 80 kN/m (aprox. 10~12 vezes maior). Resulta portanto para conforto um fator de
opt

amortecimento em torno de 67% do valor para seguranga (¢ |5 =0.67-c¢” |50 )

Conforto Seguranga

10.5. Minimizagao de Disturbio Vertical

Pode-se minimizar a oscilagdo z(t) do sistema quando submetido a um distirbio buscando o
estado de equilibrio o mais rapido possivel (minimizar a oscilagao). Para tanto toma-se a resposta
do sistema amortecido que ¢ uma exponencial complexa (oscilagio @ { e decaimento o) e o
desvio & (oscilagdo em torno do valor médio) ¢ a area da oscilagdo z(t) que deve ser minimizada

(Rill, 2009):

Ir
2= = 2= [ze)dt - Min (86)

t=0

que resulta em fator de amortecimento de £ = 0.7 para conforto e £ = 0.5 para seguranca. Disto

resulta nas seguinte expressoes:

44



DINAMICA VEICULAR

opt _ opt - | ‘ i
G Conforto ™~ 2 mlkeq ¢ G Seguran¢a m, kl + k2 (87)

Este efeito pode ser apreciado na Figura 20 que compara o ganho das vibragdes em fungao do

fator de amortecimento.

Transmissibilidade

o TR:147
= e

1_4 B - .
12| - e

08 S

06 e

04 zeta:05 R
02 : . : :

Magnitude TR

100 T T T T T

80 | =1

J‘/’,lF
40 ;_,]/Fase: 325°
o
e

Fase (°)

20
0 — I I L L
0 0.5 1 15 2 25 3

Razao de Frequéncia (r)

Figura 20 — Efeito do Amortecedor na Transmissibilidade

Exemplo: Determinar o valor do amortecimento ¢; do amortecedor da suspensdao para um
veiculo com massa total de 1400 kg (modelo 1/4 veiculo = 350 kg) e rigidez do pacote de molas
80 kN/m (cada mola com 20 kN/m) conforme modelo agrupado do chassis (Figura 21a) e da

suspensao (Figura 21b):

Utilizando a expressao apresentada na equacao 45, obtém para os valores fornecidos:

(88)

Conforto Seguranga

(T SN e s 3464
m/s m/s

que correspondem a 70% e 50% do valor necessario para minimizar o sobre-sinal.
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Z

Figura 21 — Modelo Chassis (a) e Suspensiao (b)

Note que as faixas de frequéncia de resposta do chassis (acelerancia em torno de 1.2 Hz) e
resposta da suspensdo (ganho em torno de 12 Hz) sd3o bem distintas, conforme apresentado na

Figura 22.

2.0
15F :
ZMm
Fb

Response Gain
o

(=]
o
T
E

0.0 .
0 10 15 20 25

Frequency {Hz)

[+

Figura 22 — Ganho Vertical Chassis e Suspensao (fonte: Guillespie)
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10.6. Rigidez Angular da Suspensao (Frontal)

Quando um veiculo trafegando a uma velocidade constante V' e inscreve uma curva circular de
raio R constante (steady state curving), apés as oscilagdes transitorias, entra em regime com uma
inclinagdo lateral ¢ devido a aceleracdo centrifuga contraposta a elasticidade da suspensdo

(binario das molas verticais separadas pela bitola). Dois aspectos podem ser avaliados:

e Inclinacao lateral e

e Seguranca contra o tombamento.

O primeiro topico que causa desconforto e ma impressdo aos passageiros, podendo ser
minimizada com a utiliza¢do de barra anti-rolagem. No segundo caso, o limite de aceleracio
lateral para tombamento ¢ fun¢do da razdo de aspecto entre a altura do centro de massa e a

distancia entre as rodas (R4 = 2hg / 2b).

Tomando o modelo frontal apresentado na Figura 23 e considerando que as molas ja deformadas
devido ao peso proprio do veiculo F, = mg, uma inclinagdo angular ¢ gera o momento de binario
aplicado ao corpo produzido pela variacao de carga vertical que deflete cada mola (F,/2 + AF,4 ¢

F,/2 — AF.). Desta forma o momento ¢:

M,=(D-0)AR,+(E-O)AR,
M,=-bjA(F./2+AF,))k+bjA(F./2-AF, )k (89)
MO :_(Ade +AF;e)b;:_2AF;b;

Para determinar a elasticidade rotacional kg, considera-se a distdncia entre as molas da suspensao
2b e a movimenta¢ao do corpo na direcdo z, de onde vem: tan ¢ = (z / b) e para pequenos
angulos a tangente se confunde com o angulo (z = b ¢ ), sendo que a for¢ca em cada mola ¢

expressa por F'=— (k,/2) z conforme Figura 23a, resultando em:
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Mo=(P-O)AF. = —2Asz—2bk—2Zz
z=bp = 2AFb=k -b’¢ (90)

—

M,=-k,pi = k,=k b’

onde kg = k, b* que representa a rigidez rotacional do sistema de molas lineares de rigidez total

k e semidistancia entre as molas/rodas de b.

DFCL
ma, j¢G
I ng Wz
h
R ET I
0) Fya X o)
o —>
/ Z) / D Fe |E
Rigidez rotacional Faq Fre
da suspensao (a) (b)

Figura 23 — Rigidez Rotacional (Modelo Frontal)

Considerando o modelo simplificado frontal, conforme mostrado na Figura 23a e utilizando o
TOMA com poélo em O, obtém-se a equacao de equilibrio de momentos externos agentes sobre o

corpo:
[7], =50 ©1)

para a condi¢do de regime com aceleragdo angular nula e tomando o pdlo O coincidente com o
plano da pista e utilizando o diagrama de forgas sobre o corpo livre (DFCL) conforme mostrado

na Figura 23b, o calculo do momento para inclinagao pequena (¢~ 0) resulta em:
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SME =(D-O)AR, +(E—O)AR, +(G-O)AR, =0
—b]AAdel;+b]A—AFZ€l€+hGlg/\(—may]—mglg)zo (92)
(AF,, +AF,,)-b+ma,h; =0

Utilizando a expressao das for¢as nas molas obtém-se:

(AF, +AF,,)-b+ma h; =0

93

—kb2-¢+math:0 ®3)
h

¢= kgz ma, (94)

Assim para uma determinada aceleragdo lateral a, e dimensdes fixas (hg, b), o angulo de
inclinacdo lateral do veiculo ¢ ¢ inversamente proporcional a rigidez £ das molas verticais. Para
veiculo altos como oOnibus de dois andares (kg / b* > 1) ou com desempenho esportivo &
desejavel uma inclinagdo reduzida. Para esta finalidade utiliza-se de barras de torcdo anti-
rolagem que aumentam a rigidez rotacional sem alterar a rigidez vertical da suspensdo. Note que

o aumento da rigidez rotacional altera a frequéncia natural deste modo de movimento
(o, =+kp/J. ). Note ainda que o aumento da rigidez da mola ndo afeta o limite de

tombamento que depende exclusivamente da razdo de aspecto Ra.

10.7. Barra Anti-rolagem

A barra anti-rolagem tem a finalidade de aumentar exclusivamente a rigidez rotacional da
suspensao sem afetar a rigidez vertical do veiculo. Tem o formato de U e articulada em dois
pontos de apoio (4 e B) fixados no chassis de tal forma a permitir apenas movimento angular ().
As forcas F; e F, devido aos movimentos da suspensao z; € z, sdo aplicado nas rodas, conforme

mostrado na Figura 24. A rigidez da barra de anti-rolagem ¢ definida como:
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ko =F/Az (95)

Figura 24 — Barra Anti-Rolagem

Desprezando algum eventual movimento flexional a rigidez da barra de anti-rolagem kar resulta

em:

Fa-2b  64Fa’b - _z GD* 96)
GrD*/32 GrD* A 324%2b

Az=a-Ap=a-

onde G é o modulo de cisalhamento do material, D o didmetro da barra e as dimensdes a e 2b
estdo identificadas na Figura 24. A ligacdo da extremidade da barra anti-rolagem com a
suspensao ¢ feita geralmente por um conjunto de barras e articulagdes coxinizadas. Considerando
apenas que haja uma relagdo de multiplicagdo linear “ i ” entre o deslocamento z e a altura do

roda s do tipo: z; =i s; e z; =is, arigidez do sistema anti-rolagem para o veiculo kar se torna:

ko—p % GD
AR 32 a%-2b

97)
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Exemplo numérico: Para um carro de passeio tipico tem-se: a = 230 mm, 2b = 730 mm, D = 20

mm ¢ i = 2/3. O modulo de cisalhamento do ago ¢ G = 85.000 N/mm2. Estes dados resultam em:

AR —

=154N/mm=15394 N /m (98)

(2)2 7 85000N / mm* (20mm)’

3) 32 (230mm) 730 mm

Esta estimativa ndo considera a flexdo da barra nem a elasticidade dos coxins 4 € B nos apoios

da barra anti-rolagem.

A introducdo da barra anti-rolagem aumenta a rigidez dos movimentos angulares (lower e upper
sway) e aumenta um pouco a resisténcia ao tombamento (projecdo da acdo gravitacional no

plano da pista), pois reduz o angulo de rolagem para uma determinada acao lateral.

Ao introduzir a barra anti-rolagem afeta a frequéncia natural de oscilagdo. Desta forma o fator de

amortecimento do modo tem decréscimo (¢ =c/km).

Para o ajuste da suspensao, considerando o aspecto de conforto, ¢ desejavel que o modo vertical
(dependente da massa) e o0 modo angular (dependente do momento de inércia e distancia entre

extremidades) tenham aproximadamente o mesmo fator de amortecimento.

10.8. Relacao de Frequéncias Vertical/Angular

O sistema de molas da suspensdo do veiculo produz uma rigidez vertical e outra rotacional.
Considere apenas os modos de movimento vertical (bounce) e lateral/angular (lower sway) do

veiculo, com centro instantaneo de rotagdo (CIR) na posicdo indicada na Figura 25.

A frequéncia natural do movimento vertical (ay) e a freqiiéncia natural do movimento angular

(ar), sdo dadas por:
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@, =Nkim e w,=\ky!Jp

(99)

Tomando R4 =2 hg /2 b como a razao entre a altura e a largura do retangulo frontal da caixa do

carro e lembrando que a rigidez torcional da suspensdao € o momento angular em relagdo ao

centro de massa e ao CIR sao dados por:

4b> +4h; -
ko=kb* e J, :m% Jor =T +mh? (100)
Jer = Jg + mhg?
Movimento M Jo
Movi ) Angular o = K B
ovimento R=
Vertical @
G
he
ki2 = ><CIR *
[r j]
Movimentos
2b Vertical e Angular
Figura 25 — Relagao de Freqiiéncia de Movimentos (Vertical e Angular)
e substituindo na expressao da freqiiéncia rotacional, resulta em:
k kb 3 b’ 3
C()R = R = P ou _ﬁ == C()V —2 (101)
J o J i +mh mb +4 h; 1+4RA

Considerando que a caixa do veiculo seja retangular (242 =2b — RA = 1), obtém-se:
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@p :\/g w, =0,77 o, (102)

Portanto a freqliéncia de rotacdo ¢ 77% da freqliéncia vertical para uma caixa homogénea
retangular. Note que para Onibus de dois andares ou vagdes esbeltos (R4 = 1,4) a freqiiéncia
rotacional € reduzida para 58% do valor da freqiiéncia vertical. O modo de movimento de
rotacao (lower sway) tem em geral freqiiéncia natural de movimento menor que o modo vertical

em razdo inversa ao R4 do retangulo frontal da caixa.

Esta determinagdo pode ser comparada com dados reais levantados sobre veiculos reais feita por
Heydinger (1999, conforme apresentado na Figura 26, para a razdo normalizada do momento de
inércia de rolagem (I) e o momento restitutivo (mb?) é comparada com a massa total do

veiculo:

1
R=—x 103
s (103)
0.8
o)
0T N 0 @ O
& 0" o O 02 A
- O A 0 A
g © m] . OCARS
~x0.6
- . - 0 O VANS
OTRUCKS
ASUVS
0.5
1000 1500 2000 2500 3000
Vehicle Mass (kg)

Figura 26 — Raziao entre Momento de Inércia e Massa (Fonte: Heydinger 1999)
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10.9. Relagao do Fator de Amortecimento Vertical/Angular

O fator de amortecimento conforme mostrado no item 6 pode ser explicitado para cada modo.

Assim tém-se o fator de amortecimento para o modo vertical Cy e para o modo rotacional Cg:

Cr Cr

g = = e (o= 104

Cror 2 g

Por similaridade no caso do R4 = 1 e fator de amortecimento ser de 30% onde w, =0,77 @, ¢

—e B2
c,=¢,b":

= e b ¢ 2mb e 2m-b’
*o2Jw, 27,(0770,) 2me, 1547, 77 1.54J,
m-b* m-b*

1
=1.7 =1.7 =1.7 105
o Jg v m-ib2+héj§V (1+h§/b2j¢V (105)

gR El7[ﬁjé} :085§V

Note que se houver a inclusdo da barra anti-rolagem a frequéncia do modo angular aumenta e a

relacdo entre os fatores de amortecimento diminui.

10.10. Limite de Tombamento

O limite para eventual tombamento lateral ¢ obtido quando a resultante R dos esforcos ativos tem
sua linha de acdo para fora da largura da base do veiculo, conforme mostrado na Figura 27.
Utilizando o TOMA com polo em O, na situacdo de equilibrio no limite obtém-se

aproximadamente:

54



DINAMICA VEICULAR

J,o=M,=0
(G-0)Amg +(G-0)Ami, =0
(bj+hGl€)/\—mgl€+(—bj+hG IE)Amayjzo (106)
—bmg?+thaJ, i=0
a, :ig
hG

Figura 27 - Tombamento

a,=—g| ou |V, =< —.g (107)

Portanto quanto menor a altura 4g do centro de massa e quanto maior a largura da base 2b, maior
serd a capacidade do veiculo em suportar aceleragdo lateral a, sem tombar. Por exemplo, em

curva onde a, = V*R determina-se a velocidade limite.

Esta relagao de estabilidade ¢ definida pela SAE como Static Stabilty Factor (SSF) em Heydinger
(1999) que publicou resultado de um levantamento elaborado para veiculos de passeio e veiculos
de carga nas condi¢des apenas com o motorista e totalmente carregado, conforme mostrado na

Figura 28. O indice de seguranga contra o tombamento ¢ determinado como uma funcao
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dimensional construtiva do veiculo, correspondente a razdo entre a distancia entre as rodas no

mesmo eixo (2b) e a altura do centro de massa hg:

SSF =—

(108)

Ou seja, quanto maior o indice de seguranca contra o tombamento SSF mais seguro ¢ o veiculo

contra o tombamento. Valor tipicos para carros de passageiros encontra-se em torno de 1,4 e para

caminhdes em torno de 1,2 e 1,1 para veiculo totalmente carregado (GVWR), conforme Figura

28.

Vehicle Mass (kg)

15 | :
o o CARS
1.4 - u
leﬂof_____A, ¢ GVWR CARS
13 (@] VANS ||
N o_a @ GVWR VANS
0n1.2 )
1.1 =S
o
1.0
0.9
1000 1500 2000 2500 3000 3500

Figura 28 — Indice de Seguranca contra o Tombamento (Fonte: Heydinger 1999)

Considerando a aceleragdo lateral em uma curva de raio R como a, =V?*/R identifica-se a

velocidade maxima em curva que evita o tombamento:
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v_»b
Rt
V= igR
hs (109)

= 1 N obtém-se a relacdo dimensional

Considerando ainda que a forca de atrito lateral seja: |F),

e o coeficiente de aderéncia para evitar tombamento:

R h
G (110)
b
—>u
h

G

Para suspensdo flexivel a inclinacdo lateral ¢ da estrutura do veiculo acrescenta uma

componente alterando a expressao para:

(111)

ma, - h; =(F,—F,)b+mg-seng-h,

57



DINAMICA VEICULAR

11. Referencias Bibliograficas

1. Barbosa, R. S. (2012) Vehicle Vibration Response Subjected to Longwave Measured
Pavement Irregularity. Journal of Mechanical Engineering and Automation 2012, Vol.: 2,

n°® 2, pp. 17-24, DOI: 10.5923/j.jmea.20120202.04.

2. Barbosa, R. S. (2011) Vehicle Dynamic Response Due to Pavement Roughness. Journal of
the Brazilian Society of Mechanical Science & Engineering - Associacdo Brasileira de
Ciéncias Mecanicas — ABCM, Vol. 33, No. 3, pp. 302-307.

3. Barbosa, R. S. (2011) Vehicle Dynamic Safety in Measured Rough Pavement. Journal of
Transportation Engineering, ©ASCE, Vol. 137, No. 5, pp. 305-310 DOL:

10.1061/(ASCE)TE.1943-5436.0000216,.

4. Rao, S. S. (2008) Vibragdes Mecanicas. Editora Pearson Prentice Hall, 4* edition, Traducao
2008, pp. 424.

5. Rill, G. (2009) Vehicle Dynamics. University of Applied Sciences, Lecture Notes, p. 200.

6. Pacejka, H. B. (2002) Tire and Vehicle Dynamics. Publisher: SAE International. 2nd Edition.
p. 642.

7. Genta, G. (1997) Motor Vehicle Dynamics: Modeling and Simulation. Publisher: World
Scientific Publishing Company. p. 556.

8. Gillespie, T. D. (1992) Fundamentals of vehicle dynamics. Society of Automotive Engineers
— SAE, Warrendale, PA, p. 519.

9. Heydinger G. J. et al. (1999) Measured Vehicle Inertial Parameters — NHTSA’s Data. SAE,
pp- 33.

58



