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1. INTRODUÇÃO 

 

 

O estudo do comportamento dinâmico de veículos inicia-se pelo desenvolvimento de modelos 

vibratórios simplificados de representação unidirecional dos movimentos do veículo. Em geral 

três tipos de modelos simplificados são utilizados para o estudo inicial do comportamento 

dinâmico do veículo: 

 

 Modelo da Dinâmica Longitudinal; 

 Modelo da Dinâmica Vertical; 

 Modelo da Dinâmica Lateral. 

 

Estes modelos consideram preliminarmente apenas um corpo rígido (chassis) e com apenas um 

grau de liberdade (1 G.L.) e tem finalidade especifica, permitindo investigar apenas alguns 

aspectos do comportamento dinâmico do veículo. Considerando um número maior de graus de 

liberdades (por exemplo: 2 GL) o mesmo enfoque permite elaborar modelos mais complexos, 

que produzem resultados mais detalhados. Os modelos de múltiplos corpos do veículo completo 

(Multibody Systems - MBS) podem ser utilizados para estudos tridimensionais mais avançados 

do desempenho veicular de forma mais detalhada mas muito mais complexa. 

 

A suspensão do veículo é o componente agregado ao chassi com a finalidade de atenuar (filtrar) 

as irregularidades encontradas pelas rodas, no tráfego pela pista de rolamento. A elasticidade da 

suspensão constitui em conjunto com a massa do veículo, um sistema massa/mola com 

frequência natural própria. A excitação é considerada como uma entrada externa. As 

irregularidades podem ter pequeno comprimento de onda (ex. rua de paralelepípedo), 

comprimento de onda médio (ex. ondulação do asfalto) ou ter longo comprimento de onda (ex. 

relevo do terreno). Cada comprimento de onda de irregularidade excita frequências distintas, 

com valores magnificados pela velocidade de tráfego. Existem também as vibrações internas 

devido ao motor que possui excentricidades e assimetrias, que se constituem em 

desbalanceamento (função da velocidade de rotação do motor), de média frequência de vibração 
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e detonações devida à combustão interna do motor e eventualmente ruídos devido aos gases de 

escamento (ruído oscilatório de alta frequência). 

 

Para o estudo de cada faixa de vibração, um modelo específico deve ser utilizado em função da 

frequência de cada aspecto tratado. Para oscilação do veículo o modelo de corpo rígido (baixa 

freqüência) com suspensão flexível pode ser utilizado. Para freqüências médias (harshness) a 

suspensão primária, componentes do conjunto propulsor (power-train) e pneu, devem ser 

considerados. Para freqüências altas (noise) detalhes de contato do pneu e solo, vibrações de 

motor, escapamento, passagem aerodinâmica do ar, etc, devem ser considerados. 

 

Na engenharia automotiva o termo NVH (noise/vibration/harshness) tem sido utilizado para a 

classificação das vibrações do veículo em três faixas distintas: 

 

 Ruído audível (noise) – vibrações de freqüências elevadas entre 100 e 20.000 Hz. 

 Oscilação do veículo - Ride (vibration) – vibrações de baixa freqüência entre 0,1 e 25 Hz 

 Rumor (harshness) – vibrações de freqüências médias entre 25 e 100 Hz 

 

As oscilações que os passageiros de um veículo estão submetidos, dependem da resposta 

dinâmica do veiculo (características da suspensão e massa do corpo) e do conteúdo em 

comprimento de onda (frequência de excitação) da irregularidade da via, por onde o veículo 

trafega. Esta frequência de excitação depende do comprimento das irregularidades do pavimento 

e da velocidade de tráfego do veículo. A expressão que correlaciona estes efeitos é dada por: 

 

 fV   (1) 

 

onde V a velocidade longitudinal de movimentação do veículo em [m/s],  é o comprimento de 

onda da irregularidade do pavimento (excitação em [m]) e f é a frequência natural do veículo em 

[Hz]. Pode-se iniciar os estudos de dinâmica veicular com um modelo simples de um grau de 

liberdade vertical com excitação pela base. Desta forma no domínio da frequência é possível 

identificar as acelerações do veículo devido ao comprimento de onda das irregularidades e 

quantificar a magnitude da oscilação e o conforto (ex. norma ISO 2631). 
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A expectativa do sistema de transporte associada com os requisitos dos passageiros exige que o 

projeto dos veículos tenha bom desempenho das seguintes características básicas: 

 

 Movimentação rápida (alta capacidade e aceleração longitudinal); 

 Veículos dirigíveis  (alta capacidade e aceleração lateral); 

 Capacidade de tráfego confortável (alta capacidade de atenuação da entrada); 

 Tráfego eficiente e seguro. 

 

Para estudar estas propriedades é necessário quantificar suas variações. Para isto modelos físicos 

de representação serão elaborados cuja solução numérica permitirá quantificar seu desempenho. 
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2. MODOS DE MOVIMENTO 

 

Um veículo considerado como um corpo rígido, possui seis graus de liberdade de movimento 

(três translações e três rotações). Cada graus de liberdade é caracterizado por um modo de 

movimento. Os movimentos de translação e rotação de um corpo rígido, conforme ilustrado na 

Figura 1 e na Figura 2, são assim descritos (termo em inglês entre parêntesis): 

 

 

y 

x 

z 

 

Figura 1 – Movimentos de Translação do Veículo (Barbosa, 2011) 

 

 AVANÇO – Movimento de translação na direção longitudinal do veículo (surge X); 

 DERIVA – Movimento de translação na direção lateral do veículo (sway Y); 

 GALOPE – Movimento de translação na direção vertical do veículo (bounce Z); 

 INCLINAÇÃO - Ângulo de rotação na direção longitudinal do veículo (roll - ); 

 ELEVAÇÃO - Ângulo de rotação na direção lateral do veículo (pitch - ); 

 DIREÇÃO - Ângulo de rotação na direção vertical do veículo (yaw - ). 
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  
  

  

 

Figura 2 – Movimentos de Rotação do Veículo (Barbosa, 2011) 

 

A variação de movimento de cada grau de liberdade é identificada como: 

 

 Velocidade de AVANÇO – Velocidade de translação na direção longitudinal do veículo ( x ); 

 Velocidade de DERIVA – Velocidade de translação na direção lateral do veículo ( y ); 

 Velocidade de GALOPE – Velocidade de translação na direção vertical do veículo ( z ); 

 Velocidade de ROLAGEM - Velocidade de rotação na direção longitudinal (roll -  ); 

 Velocidade de ARFAGEM - Velocidade de rotação na direção lateral do veículo (pitch -  ); 

 Velocidade de GUINADA - Velocidade de rotação da direção do veículo (yaw -  ). 

 

Devido à forma de distribuição de massa do corpo e os tipos de vínculos que a suspensão do 

veículo possui, os movimentos podem ocorrer sincronizados e dependentes. Disto resulta em 

modos acoplados de movimento (ex. movimento lateral e angular longitudinal: sway ou 

movimento vertical e angular lateral acoplado) (movimento vertical e angular de arfagem 

acoplada: front-end-bounce). Para veículos simétricos há possibilidade dos modos serem 

desacoplados.  Neste texto apenas o modelo vertical será abordado. 
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3. MODELO VERTICAL DO VEÍCULO 

 

O veículo pode ter seus movimentos verticais representados por um modelo unidirecional 

simplificado de um sistema mecânico do tipo massa/mola/amortecedor de um grau de liberdade 

com excitação pela base. A Figura 3 mostra uma representação gráfica desta proposição, 

conhecida como modelo de um quarto de veículo. O veículo é representado como um corpo 

rígido de massa m e a suspensão como um dispositivo linear composto por uma mola de rigidez 

k associada em paralelo com um amortecedor de constante c (modelo de representação 

conhecido como Kevin-Voigth). A excitação pela base corresponde à irregularidade da via que 

pode, simplificadamente, ser descrita por uma função periódica. 

 

 

 

c k 

m 

u 

x V 

 

uo s 

so 

F 

 

Figura 3 – Veículo excitado pela base 

 

A equação diferencial de segunda ordem do sistema mecânico massa/mola/amortecedor com 

1GL na direção vertical  x com excitação imposta na base de magnitude u é descrita por: 

 

 0)()(  uxkuxcxm          ou        ukucxkxcxm    (2) 
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onde m é a massa do veículo, k a rigidez vertical da suspensão e c a constante de amortecimento 

e u a excitação aplicada na base. A excitação vertical posicional u(s) pode ser descrita por uma 

função periódica do tipo: 

 

 )2()( oo sssinusu    (3) 

 

Note que a posição do veículo ao longo da pista, para velocidade constante é:  s = so + V t. 

Portanto u(s) = f (s / V). 

 

 

4. SISTEMA MASSA-MOLA 

 

Iniciando por um sistema mecânico simplificado de um grau de liberdade do tipo massa-mola 

com expressão de movimento obtida pelos teoremas da mecânica (TR e/ou TQMA) e descrita por 

uma equação diferencial ordinária (ODE) de segunda ordem do tipo: 

 

 )()()( tFtxktxm          ou         
m

F
x

m

k
x   (4) 

 

Na condição de equilíbrio estático para 0x , a suspensão fica sujeita a apenas a ação da 

gravidade que resulta na deflexão estática da suspensão determinada por: 

 

 
m

mg
x

m

k
est               

k

mg
xest   (5) 

 

Considerando o sistema massa-mola homogêneo, ou seja, sem forçamento externo (F = 0), a 

resposta livre para condições iniciais diferentes de zero será periódica e portanto uma possível 

solução analítica da equação diferencial homogênea pode ser descrita por uma função periódica 

do tipo: 

 

 )cos()(   tAtx  (6) 
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Tomando as derivadas de ordem superior da função periódica candidata a solução tem-se: 

 

 )sen()(   tAtx         e      )cos()( 2   tAtx  (7) 

 

Substituindo segunda derivada na equação diferencial homogênea e considerando as condições 

iniciais de 0 = 0  para  t0 = 0: 

 

 0 x
m

k
x           0)cos()cos(2   tA

m

k
tA  (8)  

 0)cos(2 







  tA

m

k
              02 

m

k
               

m

k
2  (9)  

 

 m

k


 (10)  

 

onde   = (k/m)0.5  é a frequência natural não amortecida (em rad/s). Verifica-se portanto que a 

solução da equação diferencial. 

 

Uma possível solução da equação diferencial, ainda homogênea, para condições iniciais (CI) não 

nulas, pode ser obtida por uma função periódica de soma de senos e co-senos com diferentes 

magnitudes, do tipo: 

 

 )cos()sen()( tBtAtx    (11) 

 

Obtém-se a derivadas de ordem superior da soma como: 

 

 
)cos()sen()(

)sen()cos()(
22 tBtAtx

tBtAtx












 (12) 
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Considerando as condições iniciais (CI) de 00000 )(;)(;0 VtVxtxt   x(t0) = 0 e V(t0) = 0 

utilizadas nas duas equações anteriores para  t0 = 0 pode-se determinar os parâmetros A e B da 

equação de x(t): 

 

 )cos()sen()( tBtAtx       para  00 t         Btxx  )( 00         0xB   (13) 

 )sen()cos()( tBtAtx      para  00 t         AtxV  )( 00
         


0x

A


  (14) 

 

onde as constantes dependem das condições iniciais (CI) de posição e velocidade, sendo B = xo e 

A = Vo / . Substituindo na expressão de x(t) obtêm-se: 

 

 
)cos()sen()( 0

0 txt
x

tx 





 (15) 

 

que é a solução da equação diferencial do sistema massa-mola com frequência natural n para 

qualquer instante de tempo t devido às condições iniciais 0x  e 0x . 
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5. FORÇAMENTO HARMÔNICO 

 

Considere agora o corpo do sistema massa/mola com 1 GL submetido a um forçamento externo 

harmônico F(t) com frequência e de magnitude F0, conforme ilustrado na Figura 3, descrito 

por: 

 

 )()()( tFtxktxm          onde         )cos()( 0 tFtF e  (16) 

 

A solução da equação diferencial é obtida por uma resposta natural do sistema (resposta 

homogênea devido apenas às condições iniciais) acrescida do comportamento forçado, chamado 

de solução particular (devido à ação continuada do forçamento periódico externo forçando uma 

vibração em regime permanente). 

 

Desta forma, a solução da equação homogênea (movimento natural com frequência n devido a 

condições iniciais sem excitação externa) e a solução particular (movimento forçado com 

frequência e), são fornecidas respectivamente por: 

 

 )cos()sen()( tBtAtx nnh          e       )cos()( tXtx ep   (17) 

 

Utilizando a solução particular de amplitude máxima X (devido à força aplicada F(t)) e suas 

derivada aplicadas na equação diferencial do sistema, obtêm-se: 

 

 )cos()( tXtx ep       e     )cos()( 2 tXtx eep   (18) 

 )cos()cos()cos( 0
2 tFtXktXm eeee            0

2 FXkXm e    (19) 

   0
2 FmkX e             

22
0

1)( rmk

F
X st

e 








 (20) 
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onde kFst /0  é a deflexão estática devido a força F0 e ner  /  é a razão entre a frequência 

de excitação e a natural. 

 

Assim a solução total (solução homogênea mais a particular) é obtida por: 

 

 
)(

)cos()sen()()()(
2

0

e

nnph
mk

F
tBtAtxtxtx





  (21) 

 

Utilizando novamente as condições iniciais de x(t0) = 0 e V(t0) = 0 na equação anterior para  t0 = 

0 obtêm-se as constantes em função das condições inicias: 

 

 
)( 2

0
0

emk

F
xB


      e     

n

x
A


0


  (22) 

 

Finalmente a historia temporal da posição da massa é descrita, para qualquer instante de tempo, 

pela soma xh(t) e xp(t): 

 

 )cos()cos()sen()(
2

0
2

0
0

0 t
mk

F
t

mk

F
xt

x
tx e

e

n

e

n

n








 
























 (23) 
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6. SISTEMA AMORTECIDO 

 

Para um sistema mecânico do tipo massa, mola e amortecedor, a equação diferencial de 

movimento para o sistema com forçamento externo periódico com amplitude F0 e frequência e 

resulta em: 

 

 )(cos)()()( 0 tFtxktxctxm e   (24) 

 

ou alternativamente: 

 

 
m

tF
x

m

k
x

m

c
x e )cos(0 

   (25) 

 
m

tF
xxx e

nn

)cos(
2 02 

        onde:   
m

k
n 2     e    

ncr m

c

mk

c

c

c




22
  (26) 

 

onde  (zeta) é o fator de amortecimento  = c /(2mn), n  é a freqüência natural não amortecida 

e d  é a freqüência amortecida obtida de 21   nd . 

 

A solução da equação diferencial é novamente obtida por uma resposta natural do sistema 

(resposta homogênea que se extingue ao longo do tempo devido ao amortecimento), acrescida do 

comportamento forçado harmônico chamado de solução particular (devido à ação continuada do 

forçamento externo induzindo a uma oscilação em regime permanente), agora neste caso, com 

atraso de fase: 

 

 )cos()sen()( tBtAtx nnh          e       )cos()(   tXtx ep  (27) 

 

Utilizando apenas a resposta particular xp, devido ação externa periódica para o movimento de 

regime forçado (ou seja quando e  ) e suas derivadas: 
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 )cos()(   tXtx ep   ;  )sen()(   tXtx eep
    e  )cos()( 2   tXtx eep

  (28) 

 

Aplicando na equação principal: 

 

   )cos()sen()cos()( 0
2   tFtctmkX eeee  (29) 

 

Utilizando as duas relações trigonométricas: 

 

 BABABA sensencoscos)cos(       e     BABABA sencoscossen)sen(   (30) 

 

e fazendo A = (e t ) e B =   e substituindo na equação anterior, obtêm-se o sistema de 

equações: 

 

 
 
  0cossen)(

sencos)(
2

0
2









ee

ee

cmkX

FcmkX
 (31) 

 

cuja solução é a amplitude X do movimento na frequência forçada e e a respectiva fase   

resultam em: 

 

   2/12222

0

)( ee cmk

F
X

 
        e       












2
arctan

e

e

mk

c




  (32) 

 

que são a Função de Resposta em Frequência (FRF) e a respectivo Ângulo de Fase. Pode-se 

apreciar a resposta do sistema amortecido quando se aplica um degrau unitário (solução 

facilmente obtida por transformada de Laplace), conforme mostrado na Figura 4. 
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Figura 4 – Resposta ao Degrau em função do fator de amortecimento (fonte: Wiki) 
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7. TIPOS DE EXCITAÇÃO 

 

O sistema mecânico pode estar sujeito a diferentes tipos de excitação: 

 

 Excitação harmônica; 

 Excitação periódica (conjunto harmônico); 

 Excitação aplicada na base; 

 Excitação randômica (aleatória); 

 Excitação não periódica, (curta duração – impulso ou impacto, degrau ou pulso, rampa de 

longa duração, etc.). 

 

7.1. Superposição de Excitações 

 

Uma excitação harmônica aplicada ao corpo é caracterizada por uma função periódica do tipo: 

 

 tFF eo sen  (33) 

 

onde Fo é a amplitude da variação e e  a freqüência de excitação imposta. A solução desta 

equação diferencial foi apresentada no item anterior. 

 

Suponha agora que o sistema seja submetido a diversas excitações com diferentes frequência ei 

com amplitude Foi. Utilizando o princípio da superposição de sistemas lineares, a solução para 

cada excitação é a soma de cada termo: 

 

 

)(

.................................

)(

)(

2222

1111

tFxkxcxm

tFxkxcxm

tFxkxcxm

nnnn 











 (34) 
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A excitação pode ser um conjunto de função periódicas com amplitude e período próprio de 

repetição. O somatório de um conjunto de funções harmônicas pode caracterizar uma função 

periódica composta (técnica de Fourier) do tipo: 

 

   )sen()( 0 ieii tFtF   (35) 

 

onde Foi é a amplitude da variação da componente i do somatório, ei a sua i-éssima frequência e 

i a i-éssima fase. 

 

Nos casos de excitação não periódica como a excitação aleatória ou excitação de curta duração o 

sistema será submetido a um impulso ou impacto. A resposta de um sistema com este tipo de 

excitação pode ser obtida por um processo de integração numérica. No caso de não haver 

variação significativa da posição, a colisão corresponde a uma mudança abrupta de velocidade. 

A implementação desta função no processo de integração numérica pode ser realizada pela troca 

do estado do sistema (mudança da velocidade sem mudança da posição). No caso de uma 

excitação randômica de longa duração o sistema será submetido a uma variação suave da 

entrada. Excitação do tipo rampa ou degrau são formas usuais descontinuas para excitação do 

sistema com fácil solução pela técnica de Laplace.  
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7.2. Excitação pela Base 

 

A excitação imposta na base de um sistema veicular do tipo massa-mola-amortecedor, conforme 

ilustrado na Figura 5, corresponde a um deslocamento vertical decorrente da irregularidade do 

pavimento, que pode ser descrita por uma função harmônica periódica posicional (função da 

posição s) ou temporal (função do tempo t) do tipo: 

 

 )2()( oo sssinusu    (36) 

 )/)(2()()( 0  ttVsinutsinutu oeo   (37) 

 

Considerando que a frequência de excitação seja  /2 Ve   e amplitude u0, obtêm-se a 

função temporal da excitação geométrica da via e sua derivada temporal como: 

 

 )()( tsinutu eo         e      )cos()( tutu eeo   (38) 

 

 

 

Veículo excitado pela base 

c k 

m 

u 

x 
V 

 

uo t 

s(t) = V t + so 

to 

V =  fe   e   e = 2  fe 

u(t) = uo sin (e t + ) 

u(t) = uo sin (2  V t / ) 

s = V t 

F(t) 

 

Figura 5 – Sistema excitado pela base 
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Substituindo esse valor de excitação de entrada )(tu , e sua derivada )(tu , na equação diferencial 

de movimento do sistema mecânico de segunda ordem com 1 grau de liberdade, conforme 

mostrado na Figura 5, obtêm-se: 

 

 

   

)()sen()cos(

)(

)(

tFtuktucxkxcxm

tFkuucxkxcxm

tFuxkuxcxm

eoeoe 











 (39) 

 

Aplicando no lado direito da equação a identidade trigonométrica de soma de ângulos 

      sencoscossensen   e fazendo te  , obtêm-se: 

 

    )sen(cos)cos(sen)sen( ttt eee    (40) 

 

Igualando o lado direito das duas equações segundo coeficiente de proporcionalidade Uo, obtêm-

se: 

 

  )sen(cos)cos(sen)sen()cos( ttUtuktuc eeoeoeoe    (41) 

 

de onde se conclui que: 

 

 
0

sen
U

uc oe    ;   
0

cos
U

uk o   ;      e portanto:   
k

c e tan       
k

c e


 arctan  (42) 

 

Finalmente utilizando a relação de Pitágoras ( 1cossen 22   ) obtêm-se: 

 

 22
0 )( kcuU eo    (43) 

 

formando os termos da equação dinâmica homogênea na forma: 

 

 )sen(0   tUxkxcxm e
  (44) 
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que é similar a um sistema massa-mola-amortecedor excitado por uma força vertical periódica 

aplicada ao corpo de frequência e, com fase  e amplitude Uo. 

 

Portanto a magnitude do deslocamento vertical X do sistema massa-mola-amortecedor quando 

excitado pela base, é similar ao forçamento aplicado na massa já apresentado no item 6, sendo 

descrito por: 

 

 
 

 
  2/12222

2/1222

2/12222 )()( ee

e
o

ee

o

cmk

ck
u
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U
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



 





      e     












2
arctan

e

e

mk

c




  (45) 

 

Dividindo o numerador e o denominador por k e lembrando que: mkn /2   e )2/( nmc    e 

fazendo a razão entre a frequência de excitação e natural ner  / , obtêm-se a relação 

chamada de Transmissibilidade de Deslocamento: 

 

 

2/1

222

2

)2()1(

)2(1














rr

r
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o 


       e       












22

3

)14(1

2
arctan

r

r




  (46) 

 

A Figura 6 apresenta a razão normalizada de transmissibilidade da expressão acima e o 

correspondente ângulo de fase, para diferentes fatores de amortecimento . 
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Figura 6 – Transmissibilidade de Deslocamento (Fonte: Rao) 

 

Note no gráfico de transmissibilidade (Figura 7) que para uma determinada amplitude da 

irregularidade (uo) de comprimento de onda eV  /2  coincidente com a frequência natural 

n , a resposta em amplitude será aproximadamente 2,28 vezes para um fator de amortecimento 

de  = 0,25. Para amplitudes moduladas em comprimento de onda (espectral), o resultado da 

transmissibilidade será modulado na mesma proporção. 

 

 

EXEMPLO: Um veículo que trafega a uma velocidade de Vx = 60 km/h, quando submetido a 

uma irregularidade periódica e harmônica do pavimento com amplitude u0 = 0,010 metros e 

comprimento de onda de  = 7 metros. Considere o veículo com massa total de 1.200 kg, sem 

amortecedor e rigidez do conjunto de molas de 68.218 N/m. Determine a amplitude do 

movimento vertical em regime permanente do chassis do veículo. Determine novamente a 

amplitude do movimento para um comprimento de onda de  = 35 metros. 

 

Resolução: a frequência natural vertical do veículo é obtida da expressão:  

m

k
n        nnf 

2

1
       Hz

m

k
fn 2,1

1200

68218

2

1

2

1



 

a frequência de excitação periódica forçada f para  = 7 para Vx = 60 km/h, é dado por: 
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fV              Hz
V

f 38,2
7

6,3/60



            98,1

2,1

38,2


n

e

n

e

f

f
r




 

Simplificando a expressão anterior de transmissibilidade para um fator de amortecimento   nulo 

tem-se:  

2/1

222
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)2()1(

)2(1

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

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
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
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 221

1

r
uX o


           

 
mX 0034,0342,001,0

98,11

1
010,0

22



  

Para comprimento de onda de  = 35 metros ; r = 0,396  e  X = 0,118 metros, conforme ilustrado 

na Figura 7. 

 

 

Figura 7 – Curva de Transmissibilidade (zeta = 0.25) 

 

Outra métrica que pode ser utilizada para a avaliação de resposta em freqüência para 

movimentos verticais é a função de transferência de força ou aceleração (Acelerância). Esta 

função permite identificar a magnificação das acelerações do veiculo para diferentes freqüências 

de excitação Portanto a força transmitida para a base  dada por     TFuxkuxcxm    

tem resposta em frequência, conforme ilustrado na Figura 8, dada por: 
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 (47) 

 

 

Figura 8 – Função de Resposta em Frequência  (fonte: Rao) 

 

Verifica-se, portanto que para um fator de amortecimento da suspensão de   = 0,20  uma 

variação de 2,8 vezes da função FT/kuo. Note ainda que para um fator de amortecimento da 

suspensão de   = 0,35  a resposta do sistema não tem mais amplificação na frequência natural. 
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Figura 9 – Acelerância ou Transmissibilidade de Força 

 

 

8. AVALIAÇÃO DA RESPOSTA EM FREQUÊNCIA 

 

Observa-se experimentalmente que um sistema mecânico submetido a uma excitação externa de 

frequência e , tem seu movimento forçado (após os transitórios) manifestado numa única 

frequência de vibração (tipicamente idêntica a e ). A métrica para avaliação de resposta em 

frequência para movimentos verticais utiliza a função de transferência da magnitude do 

deslocamento vertical sobre a magnitude da excitação pela base. Considere o sistema 

massa/mola/amortecedor submetido a excitação harmônica pela base conforme ilustrado na 

Figura 5. A equação diferencial de segunda ordem a termos constantes para o sistema 

homogêneo resulta em: 

 

 )()()( tFuxkuxcxm                 ukucxkxcxm    (48) 
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A Resposta em Freqüência (RF) do sistema com excitação forçada pela base (Barbosa, 2012) é 

obtida pela transformada de Laplace  “s”  da equação diferencial homogênea em x e u para 

condições iniciais nulas. Assumindo a solução de regime forçado após os transitórios, todo o 

sistema vai oscilar na frequência de excitação e . Na sua forma mais geral, os deslocamentos 

assumem a forma steCtx )( , devido à irregularidade steutu 0)(  , que é uma composição de 

senos e co-senos da forma da identidade de Euler:   sencos  iei  e considerando a 

variável s como um número complexo na forma eis    (transformação de Laplace), obtêm-

se as derivadas de ordem superior como: 

 

 stesXtx )()(        ;     stesXstx )()(        e     stesXstx )()( 2   (49) 

 stesUtu )()(        e     stesUstu )()(   (50) 

 

Fazendo a substituindo na equação anterior e eliminando est, obtêm-se: 

 

 )()()()( 2 sUkscsXkscsm   (51) 

 
kscsm

ksc

sU

sX






2)(

)(
 (52) 

 

Substituindo eis   e fazendo a relação da saída pela entrada dos polinômios algébricos em 

função de s, obtém-se a função de resposta forçada em frequência da amplitude do deslocamento 

X(ie) para a amplitude das irregularidades da entrada U(ie) como: 
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e
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  (53) 
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Figura 10 – Curva de Resposta em Frequência da Transmissibilidade de Deslocamento 

 

Para acelerância com excitação pela base, a função do sistema massa/mola/amortecedor se 

transforma em: 
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 (54) 

 

A função de resposta em aceleração permite identificar a magnificação das acelerações do 

veiculo (conforto) para diferentes frequências de excitação (segundo ISO 2631 ver Figura 11). 
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Figura 11 – Limite de Vibração (Fonte: Rao, 2008) 

 

 

Exemplo: Para o problema anterior com irregularidade periódica e harmônica do pavimento com 

amplitude u0 = 0,010 metros, obtêm-se valor de magnitude de aceleração ligeiramente superior à  

0,01 m/s2  que é o limite de percepção proposto pela norma ISO-2631, conforme ilustrado na 

Figura 11: 

 

   
2

22

2

22

2 0133,0
98,11

1
010,098,1

1

1 





 ms
r

urX o
  

 

 



DINÂMICA VEICULAR 

 

RSB LDSV – POLI - USP 29

 

8.1. Determinação das Raízes 

 

Para o sistema homogêneo (sem excitação externa), obtêm-se a equação de segunda ordem em s 

que apresenta as duas raízes complexas conjugadas S1,2 que corresponde a frequência natural 

amortecida: 

 

 0)()( 2  sXkscsm          02  kscsm  (55) 

 
2

2

2,1
4

2

m

mkc

m

c
S


  (56) 

 

8.2. Implementação Numérica 

 

Para a implementação numérica da solução da função de transferência, conforme descrito na 

equação: 
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  (57) 

 

basta descrever os polinômios em s do numerador (num) e outro para o denominador (den), 

utilizar a função tf e os seguintes comandos no ambiente Octave (ou Matlab) para obter os 

gráficos de magnitude e fase apresentados na Figura 12: 

 

num = [(2*zeta*wn)   wn^2]; 
den = [1   (2*zeta*wn)   wn^2]; 
G = tf (num,den); 
bode(G); 
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Figura 12 – Gráfico de Bode 

 

Observação: é necessário ter o módulo de Controle (no Octave utilize: pkg load control) para 

processar os comandos sugeridos (no Matlab utilizar o toolbox:   Control). 
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9. AMORTECEDOR COM BUCHA ELÁSTICA 

 

Tipicamente o amortecedor veicular é fixado em suas extremidades entre o chassis e a 

suspensão, com parafusos envolvidos por buchas elásticas, conforme ilustrado na Figura 13. A 

finalidade das buchas é permitir a articulação do amortecedor durante a excursão da suspensão e 

reduzir vibrações de frequências elevadas. 

 

 

Figura 13 – Amortecedor com bucha elástica de fixação 

 

Como efeito indireto, a bucha elastomérica também introduz uma elasticidade em série com o 

amortecedor, que contribui para a redução de vibrações de frequências elevadas. Um modelo 

para representação completa deste componente está apresentado na Figura 14 sendo conhecido 

como modelo visco-elástico de Maxwell. Os deslocamentos dos componentes elástico e 

dissipativo podem ser descritos por duas variáveis distintas  s e u  respectivamente (Rill, 2009). 

 

 

 

Amortecedor e Bucha 
Elástica em Série 

c 

u 
s 

k F(t) 

 

Figura 14 – Amortecedor e Mola em Série 
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Para cada elemento do componente elástico/dissipativo tem-se as forças proporcionais a 

deslocamentos e velocidades conforme: 

 

 skFmola          e          sucFamort    (58) 

 

Como os componentes estão em série, a mesma força F(t) aplicada no amortecedor passa pela 

bucha elástica (mola), portanto  FFF amortmola
ˆ  , portanto igualando as equações obtêm-se 

uma equação diferencial linear de primeira ordem em u: 

 

  sucsk                ucsksc                s
k

c
su

k

c
   (59) 

 

onde a razão entre o amortecimento e a elasticidade corresponde a constante de tempo T = c / k 

de um sistema de primeira ordem em u. 

 

A resposta estacionária s(t) em frequência do componente de Maxwell para excitação harmônica 

u(t) do tipo: 

 

 tutu sen)( 0       e  portanto       tutu  cos)( 0  (60) 

 

pode ser determinada inserindo a resposta temporal que será na mesma frequência forçada de 

frequência  tal que: 

 

  tbtauts  cossen)( 0        e portanto        tbtauts  sencos)( 0   (61) 

 

Substituindo essas expressões na equação de primeira ordem, obtêm-se: 
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 (62) 

 

Separando os termos em seno e co-seno resulta em: 
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Fazendo a substituição: 
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Assim a curva de resposta em frequência em , da função de força elástica Fmola , é dada por 
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Esta expressão pode ser transformada utilizando soma de senos e co-senos em: 

 

   tmolaFFmola senˆ  (66) 

 

onde a magnitude da força é: 
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A rigidez dinâmica 0/ uFmolakdyn   e o ângulo de fase  do componente mola/amortecedor em 

série (modelo visco-elástico de Maxwell) está apresentada na Figura 15, para k = 400N/mm e 

diferentes intensidade de amortecimento (c1 até c4). 

 

 

 

Figura 15 – Resposta em frequência da Rigidez Dinâmica do Componente 

Mola/amortecedor em Série (Fonte: Rill, 2009) 

 

Com o aumento da frequência, a componente amortecedor/mola muda de um desempenho 

dissipativo puro, kdyn  0 e Ψ ≈ 90◦ para um comportamento elástico puro, kdyn ≈ k e Ψ  0. A 

faixa de frequência onde o componente de Maxwell fornece rigidez e amortecimento, é 

controlada pelo valor da constante de amortecimento c. 

 

De maneira similar a curva de resposta em frequência em , da função de força viscosa 

dissipativa Famort , é dada por 

 

 

    
     

 
    









































t
ck

t
ck

ck
cuFamort

tbtacuttbtacuFamort

ttbtacusucFamort














sen
/

cos
/

/

sencos1cossencos

cossencos

22

2

22

2

0

00

0


 (67) 



DINÂMICA VEICULAR 

 

RSB LDSV – POLI - USP 35

 

Esta expressão pode ser transformada utilizando a expressão de soma de senos e co-senos 

(    sensencoscoscos  ) em: 

 

   tamortFFamort cosˆ  (68) 

onde a magnitude da força é: 
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A rigidez dinâmica 0/ˆ uamortFcdyn   e o ângulo de fase  do componente mola/amortecedor em 

série (modelo visco-elástico de Maxwell). 
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10. AJUSTE BÁSICO DA SUSPENSÃO 

 

O ajuste básico da suspensão do veículo para os movimentos verticais conhecido como vertical 

TUNING, pode ser feito com o modelo simplificado de 1 graus de liberdade. Duas propriedades 

importantes devem ser estimadas: 

 

 Rigidez da mola da suspensão e 

 Fator de amortecimento. 

 

As propriedade inerciais típicas de veículos comerciais está resumida na Tabela 1. 

 

Tabela 1 - Propriedades Inerciais (SI) 

 Tipo 

Componente 

Carro Passeio 
Médio 

Carro Grande SUV 

 

Veículo 
Comercial 

Caminhão 

Eixo Dianteiro 80 kg 100 kg 125 kg 120 kg 600 kg 

Eixo Traseiro 80 kg 100 kg 125 kg 180 kg 1100 kg 

Chassis 1100 kg 1400 kg 1950 kg 3200 kg 14300 kg 

Posição             a) 
CG                   b) 

1.10 m 

1.40 m 

1.10 m 

1.40 m 

1.45 m 

1.38 m 

1.90 m 

1.40 m 

2.90 m 

1.90 m 

Momento Inércia 1500 kgm2 2350 kgm2 3750 kgm2 5800 kgm2 50000 kgm2 

Distribuição de 
Massas 

Concentradas 

545 kg 

126 kg 

429 kg 

600 kg 

200 kg 

600 kg 

914 kg 

76 kg 

960 kg 

925 kg 

1020 kg 

1255 kg 

3592 kg 

5225 kg 

5483 kg 

Curso Suspensão 127~152 mm 175~205    

 

Alternativamente pode-se buscar informações sobre outros veículos na Internet como ilustrado 

na Figura 16. 
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Figura 16 – Distribuição de Massas por Subsistemas (Fonte: Internet) 

 

Um exemplo de distribuição de massa para o sedan médio de tração dianteira, com massa total 

de 1093 kg, distância entre eixos de 2600 mm e distribuição do centro de massa das partes 

medido a partir da roda dianteira é apresentado na Figura 17 (Salvagni, R. B.  2024). 

 

 

Figura 17 – Distribuição Massa (Fonte: Salvagni, R. B. , 2024) 
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10.1. Rigidez Vertical da Suspensão 

 

A deflexão da suspensão z0 corresponde ao curso da mola quando submetida ao peso próprio do 

veículo M é obtida pela expressão relacionada com a rigidez da mola k: 

 

 zkF               
k

gM
z


0  (69) 

 

Considerando a rigidez vertical total da suspensão de veículo (k = 2 M), com valores típicos 

para carro de passeio de 80~120 kN/m, portanto muito menor que a rigidez do pneu (típico de 

500~700 kN/m), pode-se adotar o modelo simples de massa/mola com 1 GL para esta etapa de 

ajuste. Para uma suspensão linear, a variação M da carga corresponde uma variação z de 

curso: 

 

 M
k

g
z   (70) 

 

Portanto no mínimo a rigidez da mola tem que ter capacidade de suportar o acréscimo de carga 

dentro da variação de curso disponível: 
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  (71) 

 

Considerando um veiculo de passeio médio com massa total de 1100 kg e curso vertical da 

suspensão disponível de z = 0.12~0.15 metros, obtêm-se para uma deflexão de 60% do curso 

disponível devido ao peso próprio, uma rigidez típica de: 
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Considerando o peso dos passageiros e cargas (4 passageiros de 70 kg = 280 kg +100 kg) e um 

fator dinâmico da carga de 1.3g o curso da suspensão para esta rigidez atinge: 

 

 M
k

g
z              mz 157.01480

119900

3.181.9



  (73) 

 

Considerando uma distribuição normal do fator dinâmico (1 = 68.2% ; 2 = 95.45% e 3 = 

99.73%) em 68% do trajeto ao longo do percurso, o fator dinâmico se mantêm entre  1.1g’s e, 

portanto um curso máximo será de 0.145 metros, portanto compatível com o curso total 

disponível. Nos demais 32% do trajeto, a excursão da suspensão tem probabilidade de superar o 

disponível sendo necessário à introdução de um batente de fim de curso (coxim elástico de 

borracha de alta rigidez). 

 

Na configuração com carga (1480 kg), a frequência natural vertical do veículo resulta em: 
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 (74) 

 

considerando que a rigidez equivalente keq da suspensão é determinada pela associação em série 

    pneumolapneumolaeq kkkkk  /  com a rigidez da mola (119 900 N/m) e do pneu (adotada de 

500 000 N/m). Para o veículo vazio a frequência natural vai para 1.49 Hz. 

 

A frequência natural também pode ser obtida da deflexão estática da suspensão: 
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 (75) 

 

Uma vez que o conforto está relacionado com frequências mais baixas (típica de 1.2 Hz) o valor 

pode ser reduzido utilizando molas com comportamento não linear (rigidez progressiva). 
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Exemplo: determinar a deflexão da suspensão para um veículo com frequência natural de 1.2 

Hz: 
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Conforme mostrado no exemplo anterior a deflexão da suspensão devido ao peso próprio do 

veículo guarda relação inversa com a frequência de oscilação ao quadrado. A Figura 18 

apresenta esta relação. Considerando um fator dinâmico de 1.3  a deflexão da suspensão devido 

ao peso próprio pode utilizar aproximadamente 77 % do curso máximo da suspensão. 

 

 

Figura 18 – Deflexão da Suspensão devido ao Peso Próprio 

 

 

Tipicamente o fator dinâmico utilizado para projeto de suspensão veicular é de 130% 

( mgF 3.10  ) ou seja, variação de   0.3 g de movimento, devido às irregularidades da pista. 
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10.2. Fator de Amortecimento 

 

O fator de amortecimento  (adimensional zeta) da suspensão do veículo, que corresponde a 

razão entre a constante do amortecedor c dividido pelo amortecimento crítico ccr (quando não há 

mais oscilação), é determinado pela fórmula: 
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  (77) 

 

Para os valores utilizados no exemplo anterior (m = 1.480 kg e k = 96.709 N/m) para o veículo 

carregado e considerando um amortecedor com constante c = 5.982 N s/m, tem-se: 
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7099648012
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  (78) 

 

 

10.3. Ajuste Vertical 

 

O ajuste do fator de amortecimento adequado para a suspensão depende da concepção do 

veículos. Em geral veículos de passeio devem ser mais confortáveis e trafegar de forma suave 

sobre as irregularidades do pavimento (ride). Em contra partida um veículo esportivo deve 

manter a máximo possível a roda em contato com a pista, garantindo aderência e, portanto 

dirigibilidade (handling) e segurança. 

 

Para realizar este ajuste pode-se utilizar modelo vertical do veículo com 2 GL, conforme 

mostrado na Figura 19a. Em geral a rigidez de cada pneu identificada como k2 (200~220 kN/m, 

que depende da pressão interna), é muito maior que a rigidez total da suspensão, identificada 

como k1.(80 kN/m) na Figura 19a. Como a massa não suspensa (eixo e roda) é da ordem de 

7~8% da massa do chassi uma representação de 1 GL simplificada pode ser utilizada para 
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descrever a movimentação do chassi (massa suspensa m1 >> m2 e rigidez equivalente em série) 

conforme proposto na Figura 19b, e outra representação para descrever o movimento da 

suspensão (massa não suspensa e rigidez equivalente em paralelo), conforme proposto na Figura 

19c. 

 

Para descrever os modelos simplificados de cada caso, utiliza-se das equações diferenciais de 

segunda ordem adotando a hipótese que m1 >> m2, com a rigidez equivalente da associação em 

série e paralelo das molas (dissipação do pneu desprezada c2 = 0), keq = ( k1 * k2 ) / ( k1 + k2 ) para 

o primeiro caso e keq = k1 + k2 para o segundo caso: 

 

 011111  =  z kz  + cz m eq  (79) 

   02122122 =  zkk+ z  + cz m   (80) 
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Figura 19 – Modelo (a) Simplificado: Suspensão em Série (b) e Suspensão em Paralelo (c) 

 

A solução típica da equação diferencial homogênea é do tipo: 
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 xxx nn
22         onde    
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c

c

cr 2
  (81) 

 

onde  (zeta) é o fator de amortecimento  = c /(2mn),   n é a freqüência natural não 

amortecida e  d é a freqüência amortecida obtida de 21   nd . Disto resulta para o 

modelo da massa suspensa (chassi) e para o modelo da massa não suspensa (suspensão): 
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Exemplo: Determine as frequência naturais de movimento vertical do chassis e do cubo da roda 

para um veículo com as seguintes características: m1 = 1415 kg; m2 = 185 kg; k1 = 68 kN/m; k2 = 

676 kN/m; que resultam em: 
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Ajuste da elasticidade:    
eqk

mm
z 21

1

5.0 
  

 

10.4. Ajuste Fator de Amortecimento 

 

Se o objetivo do projeto da suspensão for evitar o sobre-sinal (over-shoot) então o fator de 

amortecimento recomendado em cada modelo deve ser unitário ( = 1). Desta forma resultam 

para conforto e segurança dois valores distintos para o amortecedor c1: 
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Exemplo: para um veículo com massa de m1 = 1400 kg (modelo 1/4 = 350 kg) rigidez de uma 

mola de k1 = 20 kN/m, massa não suspensa de m2 = 50 kg e rigidez de um pneu k2 = 220 kN/m 

obtêm-se: 

 

 
sm

N
c Conforto
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/
5292| 1

1        e      
sm
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/
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Em geral a frequência da massa não suspensa é 15~18 vezes maior que a frequência da massa 

suspensa. A rigidez de cada pneu é aproximadamente de 220 kN/m e da suspensão como um 

todo 80 kN/m (aprox. 10~12 vezes maior). Resulta portanto para conforto um fator de 

amortecimento em torno de 67% do valor para segurança ( 1
1

1
1 |67.0|   

Segurança
opt

Conforto
opt cc ) 

 

 

10.5. Minimização de Distúrbio Vertical 

 

Pode-se minimizar a oscilação z(t) do sistema quando submetido a um distúrbio buscando o 

estado de equilíbrio o mais rápido possível (minimizar a oscilação). Para tanto toma-se a resposta 

do sistema amortecido que é uma exponencial complexa (oscilação   e decaimento ) e o 

desvio  (oscilação em torno do valor médio) é a área da oscilação z(t) que deve ser minimizada 

(Rill, 2009): 

 

  tietz  )(             Mindttz
Ft

t

 
0

22 )(  (86) 

 

que resulta em fator de amortecimento de  = 0.7 para conforto e  = 0.5 para segurança. Disto 

resulta nas seguinte expressões: 
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 eqConforto
opt kmc 11 2|          e         2121 | kkmc Segurança

opt   (87) 

 

Este efeito pode ser apreciado na Figura 20 que compara o ganho das vibrações em função do 

fator de amortecimento. 

 

 

Figura 20 – Efeito do Amortecedor na Transmissibilidade 

 

Exemplo: Determinar o valor do amortecimento c1 do amortecedor da suspensão para um 

veículo com massa total de 1400 kg (modelo 1/4 veículo = 350 kg) e rigidez do pacote de molas 

80 kN/m (cada mola com 20 kN/m) conforme modelo agrupado do chassis (Figura 21a) e da 

suspensão (Figura 21b): 

 

Utilizando a expressão apresentada na equação 45, obtêm para os valores fornecidos: 
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que correspondem a 70% e 50% do valor necessário para minimizar o sobre-sinal. 
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Figura 21 – Modelo Chassis (a) e Suspensão (b) 

 

Note que as faixas de frequência de resposta do chassis (acelerância em torno de 1.2 Hz) e 

resposta da suspensão (ganho em torno de 12 Hz) são bem distintas, conforme apresentado na 

Figura 22. 

 

 

Figura 22 – Ganho Vertical Chassis e Suspensão (fonte: Guillespie) 
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10.6. Rigidez Angular da Suspensão (Frontal) 

 

Quando um veículo trafegando a uma velocidade constante V e inscreve uma curva circular de 

raio R constante (steady state curving), após as oscilações transitórias, entra em regime com uma 

inclinação lateral  devido à aceleração centrífuga contraposta a elasticidade da suspensão 

(binário das molas verticais separadas pela bitola). Dois aspectos podem ser avaliados: 

 

 Inclinação lateral e 

 Segurança contra o tombamento. 

 

O primeiro tópico que causa desconforto e má impressão aos passageiros, podendo ser 

minimizada com a utilização de barra anti-rolagem. No segundo caso, o limite de aceleração 

lateral para tombamento é função da razão de aspecto entre a altura do centro de massa e a 

distancia entre as rodas (RA = 2hG / 2b). 

 

Tomando o modelo frontal apresentado na Figura 23 e considerando que as molas já deformadas 

devido ao peso próprio do veículo Fz = mg, uma inclinação angular   gera o momento de binário 

aplicado ao corpo produzido pela variação de carga vertical que deflete cada mola (Fz/2 + Fzd e 

Fz/2 – Fze). Desta forma o momento é: 
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2
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Para determinar a elasticidade rotacional kR, considera-se a distância entre as molas da suspensão 

2b e a movimentação do corpo na direção z, de onde vem:  tan  = (z / b) e para pequenos 

ângulos a tangente se confunde com o ângulo (z = b  ), sendo que a força em cada mola é 

expressa por F = – (kz / 2) z  conforme Figura 23a, resultando em: 

 



DINÂMICA VEICULAR 

 

RSB LDSV – POLI - USP 48

 
2

22

2
22)(

bkkikM

bkFbbz

z
k

bFbFOPoM

zRRO

z

z
z













  (90) 

 

onde kR = kz b
2  que representa a rigidez rotacional do sistema de molas lineares de rigidez total 

k  e semidistância entre as molas/rodas de b. 
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Figura 23 – Rigidez Rotacional (Modelo Frontal) 

 

Considerando o modelo simplificado frontal, conforme mostrado na Figura 23a e utilizando o 

TQMA com pólo em O, obtém-se a equação de equilíbrio de momentos externos agentes sobre o 

corpo: 

 

   ext
OO MJ


  (91) 

 

para a condição de regime com aceleração angular nula e tomando o pólo O coincidente com o 

plano da pista e utilizando o diagrama de forças sobre o corpo livre (DFCL) conforme mostrado 

na Figura 23b, o calculo do momento para inclinação pequena (  0) resulta em: 
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Utilizando a expressão das forças nas molas obtêm-se: 
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 y
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bk

h
2

  (94) 

 

Assim para uma determinada aceleração lateral ay e dimensões fixas (hG, b), o ângulo de 

inclinação lateral do veículo   é inversamente proporcional à rigidez k das molas verticais. Para 

veiculo altos como ônibus de dois andares (hG / b2 > 1) ou com desempenho esportivo é 

desejável uma inclinação reduzida. Para esta finalidade utiliza-se de barras de torção anti-

rolagem que aumentam a rigidez rotacional sem alterar a rigidez vertical da suspensão. Note que 

o aumento da rigidez rotacional altera a frequência natural deste modo de movimento 

( CIRRn Jk / ). Note ainda que o aumento da rigidez da mola não afeta o limite de 

tombamento que depende exclusivamente da razão de aspecto Ra. 

 

 

10.7. Barra Anti-rolagem 

 

A barra anti-rolagem tem a finalidade de aumentar exclusivamente a rigidez rotacional da 

suspensão sem afetar a rigidez vertical do veículo. Tem o formato de U e articulada em dois 

pontos de apoio (A e B) fixados no chassis de tal forma a permitir apenas movimento angular (). 

As forças F1 e F2 devido aos movimentos da suspensão z1 e z2 são aplicado nas rodas, conforme 

mostrado na Figura 24. A rigidez da barra de anti-rolagem é definida como: 
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 zFkAR  /  (95) 
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Figura 24 – Barra Anti-Rolagem 

 

Desprezando algum eventual movimento flexional a rigidez da barra de anti-rolagem kAR resulta 

em: 
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onde G é o modulo de cisalhamento do material, D o diâmetro da barra e as dimensões a e 2b 

estão identificadas na Figura 24. A ligação da extremidade da barra anti-rolagem com a 

suspensão é feita geralmente por um conjunto de barras e articulações coxinizadas. Considerando 

apenas que haja uma relação de multiplicação linear “ i ” entre o deslocamento z e a altura do 

roda s do tipo: z1 = i s1  e  z2 = i s2  a rigidez do sistema anti-rolagem para o veículo kAR se torna: 
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Exemplo numérico: Para um carro de passeio típico tem-se: a = 230 mm, 2b = 730 mm, D = 20 

mm e i = 2/3. O modulo de cisalhamento do aço é G = 85.000 N/mm2. Estes dados resultam em: 
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 (98) 

 

Esta estimativa não considera a flexão da barra nem a elasticidade dos coxins A e B nos apoios 

da barra anti-rolagem. 

 

A introdução da barra anti-rolagem aumenta a rigidez dos movimentos angulares (lower e upper 

sway) e aumenta um pouco a resistência ao tombamento (projeção da ação gravitacional no 

plano da pista), pois reduz o angulo de rolagem para uma determinada ação lateral. 

 

Ao introduzir a barra anti-rolagem afeta a frequência natural de oscilação. Desta forma o fator de 

amortecimento do modo tem decréscimo ( mkc / ). 

 

Para o ajuste da suspensão, considerando o aspecto de conforto, é desejável que o modo vertical 

(dependente da massa) e o modo angular (dependente do momento de inércia e distância entre 

extremidades) tenham aproximadamente o mesmo fator de amortecimento. 

 

 

10.8. Relação de Frequências Vertical/Angular 

 

O sistema de molas da suspensão do veiculo produz uma rigidez vertical e outra rotacional. 

Considere apenas os modos de movimento vertical (bounce) e lateral/angular (lower sway) do 

veículo, com centro instantâneo de rotação (CIR) na posição indicada na Figura 25. 

 

A frequência natural do movimento vertical (V) e a freqüência natural do movimento angular 

(R), são dadas por: 
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 mkV /     e    CIRRR Jk /  (99) 

 

Tomando RA = 2 hG / 2 b como a razão entre a altura e a largura do retângulo frontal da caixa do 

carro e lembrando que a rigidez torcional da suspensão e o momento angular em relação ao 

centro de massa e ao CIR são dados por: 
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Figura 25 – Relação de Freqüência de Movimentos (Vertical e Angular) 

 

 

e substituindo na expressão da freqüência rotacional, resulta em: 
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Considerando que a caixa do veículo seja retangular (2h = 2b    RA = 1), obtêm-se: 
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 VVR  77,0
5

3
  (102) 

 

Portanto a freqüência de rotação é 77% da freqüência vertical para uma caixa homogênea 

retangular. Note que para ônibus de dois andares ou vagões esbeltos (RA = 1,4) a freqüência 

rotacional é reduzida para 58% do valor da freqüência vertical. O modo de movimento de 

rotação (lower sway) tem em geral freqüência natural de movimento menor que o modo vertical 

em razão inversa ao RA do retângulo frontal da caixa. 

 

Esta determinação pode ser comparada com dados reais levantados sobre veículos reais feita por 

Heydinger (1999, conforme apresentado na Figura 26, para a razão normalizada do momento de 

inércia de rolagem (Ixx) e o momento restitutivo (mb2) é comparada com a massa total do 

veículo: 

 

 
2bm

I
R xx


  (103) 

 

 

 

Figura 26 – Razão entre Momento de Inércia e Massa (Fonte: Heydinger 1999) 
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10.9. Relação do Fator de Amortecimento Vertical/Angular 

 

O fator de amortecimento conforme mostrado no item 6 pode ser explicitado para cada modo. 

Assim têm-se o fator de amortecimento para o modo vertical V e para o modo rotacional R: 
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Por similaridade no caso do RA = 1 e fator de amortecimento ser de 30% onde VR  77,0  e 

2bcc VR  : 

 

 

 

   

VVR

V

G

V

G

V

G

R

G

V

GV

V

VG

V

RG

R
R

RA

bhhbm

bm

J

bm

J

bm

J

bm

m

c

J

bc

J

c










85.0
1

1
7.1

/1

1
7.17.17.1

54.1

2

54.1

2

277.022

2

2222

22

222

































 (105) 

 

Note que se houver a inclusão da barra anti-rolagem a frequência do modo angular aumenta e a 

relação entre os fatores de amortecimento diminui. 

 

 

10.10. Limite de Tombamento 

 

O limite para eventual tombamento lateral é obtido quando a resultante R dos esforços ativos tem 

sua linha de ação para fora da largura da base do veículo, conforme mostrado na Figura 27. 

Utilizando o TQMA com pólo em O, na situação de equilíbrio no limite obtêm-se 

aproximadamente: 
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Figura 27 - Tombamento 
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Portanto quanto menor a altura hG do centro de massa e quanto maior a largura da base 2b, maior 

será a capacidade do veículo em suportar aceleração lateral ay sem tombar. Por exemplo, em 

curva onde ac = V2/R  determina-se a velocidade limite.  

 

Esta relação de estabilidade é definida pela SAE como Static Stabilty Factor (SSF) em Heydinger 

(1999) que publicou resultado de um levantamento elaborado para veículos de passeio e veículos 

de carga nas condições apenas com o motorista e totalmente carregado, conforme mostrado na 

Figura 28. O índice de segurança contra o tombamento é determinado como uma função 
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dimensional construtiva do veículo, correspondente a razão entre a distância entre as rodas no 

mesmo eixo (2b) e a altura do centro de massa hG: 

 

 
Gh

b
SSF   (108) 

 

Ou seja, quanto maior o índice de segurança contra o tombamento SSF mais seguro é o veículo 

contra o tombamento. Valor típicos para carros de passageiros encontra-se em torno de 1,4 e para 

caminhões em torno de 1,2 e 1,1 para veículo totalmente carregado (GVWR), conforme Figura 

28. 

 

 

Figura 28 – Índice de Segurança contra o Tombamento (Fonte: Heydinger 1999) 

 

Considerando a aceleração lateral em uma curva de raio R como RVay /2  identifica-se a 

velocidade máxima em curva que evita o tombamento: 
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Considerando ainda que a força de atrito lateral seja: NFat   obtêm-se a relação dimensional 

e o coeficiente de aderência para evitar tombamento: 
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Para suspensão flexível a inclinação lateral   da estrutura do veículo acrescenta uma 

componente alterando a expressão para: 

 

   GzezdGy hmgbFFhma  sen  (111)  
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