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1. INTRODUÇÃO 

 

Esta monografia resume as notas de aula deste autor na disciplina de Mecânica I (PME3100), 

elaborada ao longo do seu aprimoramento didático junto à equipe de dinâmica do Departamento 

de Engenharia Mecânica (PME) da Escola Politécnica da Universidade de São Paulo (EP-USP). 

O texto pressupõe que o aluno domine os conhecimentos elementares de álgebra vetorial, álgebra 

linear e de cálculo diferencial e integral, adquirido nas disciplinas do primeiro ano básico 

(biênio) do curso de engenharia. 

 

A motivação do curso ministrado pelo Departamento de Engenharia Mecânica da Escola 

Politécnica da Universidade de São Paulo (PME) é formar conhecimento fundamental sobre 

movimentação de partículas e corpos rígidos com objetivo de identificar trajetórias e solicitações 

para efeito de projeto mecânico. 

 

O curso está dividido em três etapas, a saber: 

 

 1º Parte – ESTÁTICA 

 2º Parte – CINEMÁTICA 

 3º Parte – DINÂMICA 

 

O conjunto de notas de aula se inicia pelo trato da ESTÁTICA de partículas, corpos rígidos e 

sistemas estruturais que serão modelados e analisados. Na CINEMÁTICA, os movimentos e 

composição de movimentos são abordados. Em DINÂMICA os teoremas de energia (Teorema 

da Energia Cinética - TEC), Newton (Teorema da Resultante - TR) e Euler (Teorema da 

Quantidade de Movimento Angular - TQMA) são apresentados e utilizados. A notação vetorial é 

utilizada sistematicamente ao longo deste texto (Boulos, 1997). 
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2. CONCEITOS BÁSICOS 

 

São CONCEITOS BÁSICOS DA MECÂNICA NEWTONIANA os seguintes tópicos: 

 

ESPAÇO: o espaço geométrico Euclidiano corresponde à noção dos conceitos de ponto (e sua 

localização), reta (entidade que une dois pontos), distância entre pontos e ângulos entre retas. As 

grandezas básicas de medida são o comprimento (medido em metros) e o ângulo (medido em 

radianos). 

 

TEMPO: refere-se à noção de sucessão de eventos simultâneos, com os conceitos de instante, 

ordem e intervalo constante de tempo. O tempo pode ser medido por simultaneidade de variação 

de movimento constante (rotação angular do sol ou dos ponteiros de um relógio). A grandeza 

básica de medida é o intervalo de tempo, que é quantificado em segundos. 

 

MATÉRIA: corresponde à idéia básica de quantidade de massa de um corpo, que é medida por 

comparação com um padrão e expressa em quilogramas. 

 

Sistema Internacional de Unidades (SI) – Sistema consistente utilizado para quantificar as 

grandezas de base independentes. As utilizadas de base no SI são: comprimento, massa, tempo, 

corrente elétrica, temperatura termodinâmica, quantidade de substância e intensidade luminosa. 

As unidades de base correspondentes aos padrões do SI são: metro, quilograma, segundo, 

ampere, kelvin, mol e candela. 
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3. FORÇAS 

 

A observação e a experiência mostram que o movimento (ou equilíbrio) de um corpo se modifica 

por efeito da interação com outros corpos. As forças podem ser de CONTATO ou de natureza 

de CAMPO com ação à distância. Chama-se força a grandeza física que quantifica a ação 

mecânica de interação de um corpo sobre outro. Esta interação tem efeitos iguais e contrários em 

cada corpo (principio da ação e reação, preconizado na 3º lei de Newton), ocorrendo na região de 

contato ou à distância devida à gravitação universal ou forças de campo. 

 

Na realidade os corpos em contato se deformam localmente, constituindo uma região mutua de 

contato onde a força ocorre de maneira distribuída. Entretanto esta distribuição pode ser reduzida 

a uma resultante com ponto específico de aplicação. A força é uma entidade que pode ser 

observada apenas de forma indireta por “sensores” que percebem sua intensidade por 

deformação EQUIVALENTE  (ex. pressionando a ponta dos dedos). 

 

3.1. Representação da Força 

 

Verifica-se que a força pode ser adequadamente representada por uma grandeza vetorial, pois 

tem magnitude, direção e sentido. Tipicamente a interação entre corpos rígidos convexos ocorre 

idealizadamente por uma força aplicada em um ponto de contato. Num sistema de coordenadas 

tri-ortogonal, a força F


 que tem ponto de aplicação P , sendo descrita na base de coordenadas 

Oxyz por um vetor do tipo: 

 

 kFjFiFF zyx


      onde       kzjyixOP


  (1) 

 

conforme representação vetorial apresentada em Anexo no item 13.5. 
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3.2. Sistema de Forças 

 

Um sistema de forças S é composto por conjunto de iF


 forças aplicadas em Pi pontos específicos 

sendo i = 1, 2, 3, ..., n, conforme ilustrado na Figura 1. 

 

 kFjFiFF ziyixii


      e       kzjyixOP iiii


  (2) 

 

 
 
F1 P1 

 
F2 

P2 

 
Fi 

Pi  
F3 

P3 

 
Fn 

Pn 

 
F4 

 
F5 

P5 

P4 

Sistema de 
Forças 

 

Figura 1 – Sistema de Forças 

 

3.3. Resultante de Sistema de Forças 

 

A RESULTANTE R


 de um sistema de forças S formado por ( ii PF ,


)  sendo i = 1, 2, 3, ..., n , 

conforme ilustrado na Figura 2a, é determinada pelo vetor R


 obtido da soma das forças: 

 

 



n

i
iFR

1


 (3) 
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O 

 
F1 P1 

 
R 

O 

 
F2 

P2 

 
Fi 

Pi 

 
F3 

P3 

 
Fn 

Pn 

 
Fi 

Pi 

Sistema de 
Forças 

Resultante 

 
R 

 
F1 

 
F2 

F1y 

F2y 

F1x F2x 

 

Figura 2 – Resultante de um Sistema de Forças 

 

Em um sistema de coordenadas tri-ortogonal e portanto independentes, as componentes do vetor 

resultante (Rx, Ry, Rz) são escalares conforme ilustrado no plano da Figura 2b, obtidos 

diretamente pela soma em cada direção: 

 

 



n

i
xix FR

1

     ;     



n

i
yiy FR

1

     e     



n

i
ziz FR

1

 (4) 

 

Exemplo Elementar: 

 

Determinar a Resultante R


 do sistema de forças S dado por  ii PF ,


 para i = 3: 

 

kjiF

kjiF

kjiF







150

004

321

3

2

1







         aplicadas em      

 
 
 1,0,1

0,1,1

0,2,0

3

2

1







P

P

P

 

Resolução: 

 

kjiR


475   
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Exemplo Espacial: 

Calcule a resultante R


 do sistema de forças S,  ii PF ,


, sendo iFF


1   aplicada em  aaP ,0,1  e 

jFF


2   aplicada em  0,,02 aP , conforme ilustrado na Figura 3: 

 

 

P 

O 

y 

x 

z 

 
F1 

 
F2 

a 

a 

a 

 
R 

 

Figura 3 – Resultante de Sistema e Forças 

 

Resolução: Sistema:  ii PF ,


 forças e respectivos pontos de aplicação:  

 

kjFiF

kjiFF




00

00

2

1




         aplicadas em      

 
 0,,0

,0,

2

1

aP

aaP




 

 jiFRjFFiFF


 21  

 

Portanto basta somar as componentes em cada direção das forças ( 



n

i
xix FR

1

) e obter cada 

componente da resultante  kRjRiRR zyx


 . 
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3.4. Principio da Ação e Reação 

 

Quando dois corpos rígidos se tocam a interação entre eles restringe a inter-penetração através de 

forças ATIVAS e REATIVAS. Considere um bloco pressionado pelo cotovelo contra uma 

parede. As forças externas ao bloco, o mantém em equilíbrio.  

 

 

    
m g 

B 

DFCL 

 
R 

SISTEMA 

 
F B 

 
FAT 

 
N 

 

Figura 4 – Ação e Reação 

 

No caso do cotovelo, a força ativa percebida pelo tecido da pele (sensor de força), tem seu par 

reativo aplicado no bloco e são sempre forças externas aos corpos e sempre associadas aos pares 

ativos e reativos de forças iguais e opostas, conforme a terceira lei de Newton. Existem dois 

grandes grupos de forças:  

 

 FORÇAS DE CONTATO e  

 FORÇAS DE CAMPO.  

 

Forças de contato são decorrentes da ação entre corpos e forças de campo são devido à ação à 

distância entre corpos, portanto sem contato. Dois exemplos de forças de campo são:  a ação 

gravitacional e força de atração magnética. 

 

O ATO DE MOVIMENTO  decorrente de uma força é uma  TRANSLAÇÃO. 
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4. MOMENTO 

 

O Momento de uma força F


 aplicada no ponto P em relação a um pólo O é definido Pelo 

produto vetorial: 

 

   FOPM O


  (5) 

 

Note que o vetor momento OM


 é ortogonal ao plano   formado pelo força F


 e o vetor 

 OPi  , conforme ilustrado na Figura 5. Portanto o momento de uma força se altera em função 

da magnitude da força F


 e posição do pólo  OPi   considerado. 

 

O modulo do vetor OM


 considerando as características do produto vetorial (ver item 13.8) é 

dado por: 

 

 bFFOPMO 


sen  (6) 

 

onde d é chamado de braço de momento dado por FMb O


/ , conforme ilustrado na Figura 5.  

 

 

Q 

 
F 

 
u 

O 

 
k 

 

P 

b 

 

Figura 5 – Momento de Força em Relação a um Pólo 
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Note ainda que se a força for aplicada no ponto Q contido na linha de ação da força (u


), o 

momento não se altera: 

 

          OMFOPFOPPQFOQ


  (7) 

 

Exemplo de Momento de Força 

Considere a força  PF ,


 conforme ilustrado na figura. Determine o momento em relação ao 

pólo Q (0, 0, a). 

 

P 

O 

y 

x 

z 

  
F 

a 

a 

a 

Q 

 

 

Resolução:  Sistema: jaPjFFPF


),(  

    iaF

F

aa

kji

jFkajaFQPMQ








00

0  

 

Análise dimensional: é sempre conveniente realizar a análise dimensional da resposta para 

verificar a consistência do resultado. Considerando que a força “F”  tem unidade de Newtons e a 

coordenada “a”  tem unidade em metros, a resposta consistente do momento neste caso deve ter 

unidade de Newtons  metro. 
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4.1. Momento de um Sistema de Forças 

 

Para um conjunto S de forças aplicadas ( ii PF ,


), o Momento das forças em relação ao pólo O é 

dado por: 

 

   



n

i
iiO FOPM

1


 (8) 

 

Note que o momento de cada força, com ponto de aplicação próprio, deve ser calculado 

individualmente e depois somado. 

 

1º Exercício de Momento: 

 

Determinar a Resultante R


 do sistema de forças S dado por  ii PF ,


 e o Momento de S em 

relação a O(1, 1, 0).  

kjiF

kjiF

kjiF







150

004

321

3

2

1







         aplicadas em      

 
 
 1,0,1

0,1,1

0,2,0

3

2

1







P

P

P

 

kjiR


475    Resultante 

 

Cálculo do Momento em relação a O (1, 1, 0) utilizando  



n

i
iiO FOPM

1


 e a regra da mão 

direita conforme apresentado no ANEXO 13.8: 

     
     
      ikjikjiFOPM

kjikjiFOPM

kjikjikjiFOPM

O

O

O







6150110

0004000

333321011

33
3

22
2

11
1







 

Momento kjiMO


333   
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2º Exercício de Momento: 

Calcule o momento OM


 do sistema de forças S em relação ao pólo O, indicado na Figura 6: 

 

 

P1 

O 

y 

x 

z 

 
F1 

 
F2 

a 

a 

a P2 

Q 

 

Figura 6 – Sistema e Forças 

 

Resolução: Sistema: forças e pontos de aplicação: iFF


1  aplicada em  aaP ,0,1  e jFF


2  

aplicada em  0,,02 aP . Determinar o momento em relação ao pólo O (0, 0, 0): 

 

    jFajFjaiFkaiaM

FOPM

O

n

i
iiO










21

1  

Considere agora o pólo Q (0, 0, a) e calcule novamente o momento: 

 

  iFajFkajaiFiaM

FQPM

Q

n

i
iiQ










21

1  

 

Portanto a mudança de pólo pode alterar a magnitude do momento como também pode mudar a 

sua direção. 
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4.2. Binário de Forças 

 

Existe um par especial de forças ( 21 e FF


) aplicadas em pontos ( 21 e PP ) chamado de BINÁRIO 

DE FORÇAS, que tem resultante nula e momento diferente de zero (torque). São 

obrigatoriamente forças colineares, idênticas e opostas ( FFF


 21 ), mas não alinhadas (d), 

conforme ilustrado na Figura 7. O momento do binário de forças tem direção perpendicular ao 

plano formado pelas forças e independe do pólo selecionado (verifica-se pela fórmula de 

mudança de pólo).  

 

 kFjFiFF ziyixii


       aplicadas em:       kzjyixOP iiii


  (9) 

 0
2

1




i
iFR      e        0

2

1




i
iiO FOPM  (10) 

     2211 FOPFOPMO


  (11) 

            FOPOPFOPFOPMO


 2121  (12) 

     dFPPFMFPPMO 


senou 2121           RMd


/  (13) 

 

 

 

 
F1 

O 

 
k 

 

P1 

d 

P2 
 
F2 

 

Figura 7 – Binário de Forças 
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Propriedades: 

 0e0


 OMR        O sistema é equivalente a um binário de forças. 

 QO MMM


         O momento do binário não depende do pólo selecionado. 

 O momento do binário de forças não se altera se o ponto de aplicação da força for 

transportado ao longo de sua direção de atuação (note que o braço d do binário não se altera). 

 

Exemplo de Binário de Forças 

Considere o sistema de forças  ii PF ,


 com características de binário e determine a resultante e o 

momento em relação aos pólos O (0, 0, 0) e ao pólo Q (0, C, 0). 

 

 
  ibOAjaFAF

OOjaFOF








22

11

),(

0),(

 

 

        

          kabjajcibjajcFQAFQOM

kabjaibFOAFOOFOPM

jajaFFFR

Q

i
iiO

i
i





















21

21

2

1

21

2

1

0

0

 

 

O momento de um binário de forças, portanto é uma entidade que pode ser observada apenas de 

forma indireta, pois tem forças, mas resultante nula e momento diferente de zero. 

O ATO DE MOVIMENTO decorrente de um binário de força é uma ROTAÇÃO. 

 

Proposição: 

 

Considere uma força F


 aplicada no ponto P. Qual o lugar geométrico dos pólos (pontos) para os 

quais o módulo do momento dessa força não se altera (invariante)?  
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Resposta: Um cilindro de raio d idêntico ao braço de momento, em torno da linha de ação da 

força. 

 

 

 
F 

 
u 

O 

P 

d 

 
MO 

 

Demonstração: O momento da força F


 em relação ao pólo O é:   FOPM O


  e tem 

módulo igual à:   sen FOPMO


 ; mas para  =   tem-se que    dOP  sen   que 

é um circulo em torno do ponto P. Como o momento não se altera para pólos ao longo da linha 

de ação da força F


, resulta em um cilindro de raio d (c.q.d.), conforme ilustrada na figura. O 

valor do momento será mínimo quando d = 0, ou seja, pólos coincidentes com a linha de ação da 

força geram momento nulo. 

 

Proposição: 

Tente quebrar um palito de comida oriental (hashi) aplicando 

forçamentos com as duas mãos, apenas nas extremidades. 

Qual a estratégia mais fácil de quebrar ? 

 

 

Dai-me um ponto de apoio e levantarei o mundo  (Arquimedes, Grécia  -  287-212  aC). 
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4.3. Forças Concorrentes (Teorema de Varignon) 

 

Vetores que representam forças no espaço 3  podem ser: 

 

 PARALELOS; 

 CONCORRENTES; 

 REVERSOS. 

 

O momento de um sistema S de forças concorrentes ( ii PF ,


), em relação a um pólo O qualquer, 

é igual ao momento, em relação ao mesmo pólo, da resultante do sistema de forças R


, aplicada 

no ponto de concurso das forças (Ponto A). Demonstração: Considere o sistema de forças 

concorrentes no ponto A, conforme ilustrado na Figura 8a. O momento em relação ao pólo O é 

dado por: 

 

  



n

i
iiO FOPM

1


 (14) 

 

 

O 

 
F1 

P1  
F2 

P2 

 
Fi 

Pi 

 
F3 

P3  
Fn 

Pn 

Sistema de Forças 
Concorrentes 

Resultante 

 
R 

A 

O A 

(A – O) 

 

Figura 8 – Momento de Forças Concorrentes 
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Note ainda que o momento não se altera quando o ponto de aplicação da força permanece sobre a 

linha de ação da força, por exemplo sobre o ponto de concorrência A. Portanto, conforme 

ilustrado na Figura 8b, obtêm-se: 

 

       ROAMFOAMFOAM O

n

i
iO

n

i
iO


 

 11

 (15) 

c.q.d. 

 

 

4.4. Mudança de Pólo 

 

Pode ser necessário determinar o Momento do sistema de forças em relação a outro pólo distinto. 

Considere outro pólo Q qualquer, tal que: 

 

    



n

i
iiQ

n

i
iiO FQPMFOPM

11

e


 (16) 

 

Tomando      OQQPOP ii   e fazendo a diferença entre os momentos em cada pólo: 

 

 

   

      

     

   

  RQOMM

ROQFOQMM

FOQFQPFQPMM

FOQQPFQPMM

FOPFQPMM

OQ

n

i
iOQ

n

i

n

i
i

n

i
iiiiOQ

n

i

n

i
iiiiOQ

n

i
ii

n

i
iiOQ























 

 





 

 



1

1 11

1 1

11

0

 (17) 

 

Desta forma conclui-se que: 

a) Se 0


R     OQ MM


  o momento do sistema de forças independe do pólo escolhido; 

b) Se 0


R     OQ MM


  se e somente se   RQO


// ; 
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c) Se OQ MM


   para qualquer Q      0


 RQO       0


R ; 

d) IRMRM OQ 


    a projeção do momento do sistema sobre a resultante é invariante 

para mudanças de pólo. O escalar I é chamado de INVARIANTE ESCALAR do sistema de 

forças. 

 

   RQOMM OQ


     Fórmula de Mudança de Pólo (18) 

 

Exercício 

Considere o momento em relação ao pólo O (0, 0, 0), jFaMO


  do sistema de forças ( ii PF ,


) 

com resultante  jiFR


  apresentado na Figura 6. Determine o momento QM


 em relação ao 

pólo Q (0, 0, a). Resolução: Utilizando a fórmula de mudança de pólo: 

 

 
 

    iFaijjFajiFkajFaM

RQOMM

Q

OQ








 (19) 

 

 

4.5. Momento em Relação a um Eixo 

 

Considera-se um eixo passando por um ponto O e orientado pelo versor u


. Defini-se como 

momento do sistema de forças  ii PF ,


 em relação ao eixo uO


 (ou torque) o escalar Mu tal que 

(ver detalhes de produto escalar no item 13.7): 

 

 uMM Ou


  (20) 

 

Algumas propriedades são importantes: 

 

a) Uma força paralela ao eixo uO


 não acrescenta momento ao eixo. 
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b) O valor absoluto do momento de uma força ortogonal a um eixo é o produto do módulo 

da força multiplicado pela distância da linha de ação da força ao eixo. 

c) Só fornecem momentos em relação ao eixo, forças ortogonais ao eixo e reversas com ele. 

d) O sinal do momento em relação a um eixo pode ser identificado pela regra da mão 

direita. 

 

Exemplo: Considere o Momento do sistema de forças  ii PF ,


 calculado em relação ao outro 

ponto Q pertencente ao eixo u


. Utilizando a fórmula de mudança de pólo, obêm-se: 

 

 
 

   0








uMuRQOMuM

RQOMM

OOQ

OQ
 (21) 

 

Note que   uQO


//  portanto   uRQO


 .  

 

Vejam as deduções das propriedades de momento em relação a um eixo em França (2011). 
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5. SISTEMAS EQUIVALENTES 

 

DEFINIÇÃO: dois sistemas de forçamentos são equivalentes se tiverem a mesma Resultante e 

o mesmo Momento em relação a um pólo. Neste caso, as solicitações devem produzir o mesmo 

Ato de Movimento a um corpo.  

 

Considere o Sistema de Forças A iF


 para i = 1, 2,..., n, aplicadas em pontos Pi, conforme 

ilustrado na Figura 9: 

 

 kzjyixPkFjFiFF iiiiziyixii


 e  (22) 

 

 

 

O 

 
F1 P1  

RB 

O 

 
M

B
O  

F2 
P2 

 
Fi 

Pi 

 
F3 

P3 

 
Fn 

Pn 

 
F4 

 
F5 

P5 

P4 

Sistema A Sistema B 

 

Figura 9 – Sistemas Equivalentes 

 

O Sistema A, conforme ilustrado na Figura 9a possui Resultante e Momento em relação ao pólo 

O descritos por: 

 

 



n

i
iA FR

1


      e         MFOPM

n

i
ii

A
O








2

1

 (23) 
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Note que as forças 54 e FF


 formam um binário de Resultante nula e Momento 

  454 FPPM


  com módulo FdFPPM  454


. 

 

O Sistema B  (conforme ilustrado na Figura 9b) será equivalente ao Sistema A se a resultante e o 

momento em relação ao mesmo pólo forem idênticas: 

 

 A
O

B
OAB MMRR


 e  (24) 

 

A resultante BR


 deve ser aplicada no ponto O chamado de pólo de redução do sistema de forças.  

 

Propriedades: 

 

a) O ato de movimento de um corpo não se altera, se substituirmos as forças aplicadas em um 

mesmo ponto pela resultante delas aplicada nesse mesmo ponto, e reciprocamente. 

b) O momento de binário de forças não é alterado se o ponto de aplicação da força for 

transportado ao longo de sua direção de atuação (note que o braço d do binário não se altera). 

c) Teorema: Todo sistema de forças é equivalente a uma única força aplicada num ponto e um 

momento de binário. 

 

 

Exemplo 1: Sistema Nulo 

Sistema Equivalente: qual o Sistema B equivalente ao Sistema A, apresentado na Figura 10a. 

Resolução: Sistema A de forças ( 21 e FF


) paralelas, iguais e opostas aplicadas em pontos 

coincidentes ( 21 e PP ). Diagrama de forças. Resultante e Momento em relação ao pólo O do 

Sistema A: 0;0


 MR . Sistema B: 0;0


 MR  (Figura 10b). 
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 
F1 

O 

 
k 

 

P2 

 
F2 

O 

 
k 

 

         
M = 0 

         
R = 0 

         
M = 0 

         
R = 0 

Sistema A Sistema B 

P1  
F 

 
F 

 

Figura 10 – Sistemas Equivalente - Nulo 

 

Aplique forças similares alinhadas com os dedos sobre o seu celular apoiado sobre a mesa. O 

que acontece? 

 

Exemplo 2 – Binário de Forças 

Sistema Equivalente: qual o Sistema B equivalente ao Sistema A, apresentado na Figura 11a. 

Resolução: Sistema A de forças ( 21 e FF


) paralelas, iguais e opostas (binário de forças) 

aplicadas em pontos ( 21 e PP ). Diagrama de forças. Resultante e Momento em relação ao pólo O 

do Sistema A: kFdMR


 ;0 . Sistema B: kFdMR


 ;0  (Figura 11b). 

 

 

 
F1 

O 

 
k 

 
P1 

d 

P2 

 
F2 

O 

 
k 

 

 
M          

M = d F 

         
R = 0 

         
M = d F 

         
R = 0 

Sistema A Sistema B 

 

Figura 11 – Sistemas Equivalente - Binário 
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Agora aplique forças similares com os dedos não alinhados (afastados de d) sobre o seu celular 

apoiado sobre a mesa. O que acontece? Qual o ato de movimento? 

 

Exemplo 3: Uma Força 

Considere o sistema de força A com ( 11 , PF


) aplicada no disco de centro O, conforme 

apresentado na Figura 12a. Pode-se obter o Sistema B equivalente ao Sistema A, com o 

introdução de duas forças alinhadas iguais e contrárias aplicadas no ponto O (portanto com 

Resultante e Momento nulos). Resolução: Sistema A com ( 11 , PF


). Adicionar duas forças 

alinhadas, iguais e opostas 23 e FF


 aplicadas no ponto O que não afetam o sistema pois tem 

Resultante e Momento nulos, conforme Figura 12b. O Sistema A possui: kFrMiFR O


 ;1 . 

Note que o par 21 e FF


 forma o binário kFrMO


 . Finalmente o Sistema B resulta em: 

kFrMiFR O


 ;1 , portanto equivalente, conforme ilustrado na Figura 12c. 

 

 
 
MO               

MO = r F1 k 

          
R = F1 i 

Sistema A Sistema B 

 
F1 

 
k 

 

r 
O 

 
F1 

 
k 

 

r 

 
F3 

 
F2 O 

 
k 

 

r 

 
F3 

O 

P1 

 

Figura 12 – Sistemas Equivalente 

 

Note que o sistema de forçamento “tende” a produzir um ato de movimento de translação na 

direção x  devido a força 3F


 e uma rotação na direção z, devido ao binário OM


. 
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5.1. Redução de Sistema de Forças 

 

Reduzir um sistema de forças corresponde a obter outro sistema equivalente, que tenha um 

número mínimo de forças. Da definição de sistemas equivalentes, constata-se que o sistema 

reduzido mínimo consiste de uma única força (Resultante) aplicada num ponto O qualquer e um 

momento idêntico ao momento das forças do sistema original, em relação ao mesmo pólo. 

 

Casos possíveis de redução de sistemas de forças: 

 

1) 0e0


 OMR        O sistema é equivalente a zero (Tipo 1). 

2) 0e0


 OMR        O sistema é equivalente a um binário de momento OM


 (Tipo 2). 

3) 0e0  IR


    O sistema é equivalente a uma única força resultante aplicada em ponto 

específico (Tipo 3). 

4) 0e0  IR


    O sistema é equivalente a uma força resultante e um momento (Tipo 4). 

 

Portanto um sistema de forçamentos, composto por forças e momentos, é equivalente a uma 

única força resultante aplicada no pólo de redução e um binário de momento. Para sistema com 

INVARIANTE NULO o sistema será equivalente a uma única força aplicada em um ponto 

específico. 

 

O ATO DE MOVIMENTO decorrente de um sistema de forçamentos na sua constituição mais 

ampla é uma ROTO-TRANSLAÇÃO. 

 

 

Exemplo de Redução Sistema de Forças 

Considere o sistema S de forças  ii PF ,


 conforme ilustrado na Figura 13, com as seguintes 

características e determine a resultante o momento em relação aos pólos O e G. Verifique a qual 

sistema de forças mais simples o sistema original é redutível. Neste caso qual a linha de 

aplicação da resultante e qual o momento mínimo? 
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 
 
  iaOAkajaiaFAF

kajaiaOGiaFGF

kaOCkajaiaFCF













2),(

2),(

),(

33

22

11

 

 

 

A 

O y 

x 

z 

 
i  

j 

 
k 

 
F1 

 
F2 

a 

2 a 

P2 

C 

a 

B 

D 

E 

F 

G 

 
F3 

 

Figura 13 – Sistema de Forças S 

 

 

RESOLUÇÃO: Sistema S de forças  ii PF ,


. Diagrama de forças: conforme a figura, 

Referencial e pólo: Oxyz. Teoremas:  iFR


,    iiO FOPM


,  RMI O


 . 

 

a) A Resultante é obtida da soma das componentes em cada direção independente: 

jaiaR

kajaiaF

iaF

kajaiaF

















23

2

1

 

 

b) O Momento das forças é calculado em relação ao pólo indicado: 
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     

           

kajaiaM

jakajakaiajaM

kajaiaiaiakajaiakajaiakaM

FOAFOGFOCM

O

O

O

O









222

222222

321

4

22

22









 

 

c) Para que o sistema de forças seja redutível a uma única força o Invariante Escalar deve ser 

nulo: 

    04 33222  aajaiakajaiaRMI O


 

 

Portanto o sistema original S é do tipo 3, redutível a uma única força R


 desde que aplicada no 

local Q tal que o momento do novo sistema S´ seja:    OO MROQM


 . Então identifica-se 

as coordenadas do ponto Q com: 

       kajaiajaiakqjqiqMROQ zyxO


222 4  

 kajaiaiqajqakqakqa zzyx


222 4      separando nas três direções: 

 













2

2

2

4aqqa

aaq

aaq

k

j

i

yx

z

z







        














aqq

aq

aq

yx

z

z

4

         para qy = a           kajaiaOQ


 5  

 

O novo sistema S´ , que é equivalente a S, é composto de uma única força aplica e Q:   QR,


. 

Note que a Resultante pode ser aplicada em qualquer ponto Q  ao longo da direção de R


. 

 

Exemplo:  Sistema de Forças Concorrentes 

 

O sistema S de forças  ii PF ,


 concorrentes, conforme ilustrado na Figura 13, tem resultante não 

nula e invariante escalar nulo. Demonstração: o momento de uma força é sempre o mesmo para 

pólos ao longo da linha de ação da força, inclusive o ponto A de concorrência. Portanto o 

momento em relação ao pólo O é dado por: 
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   

   

   0

1

11















RROARMI

ROAMFOAM

FOAMFOPM

O

O

n

i
iO

n

i
iO

n

i
iiO







       Portanto sistema do tipo 3. 

 

 

O 

 
F1 

P1  
F2 

P2 

 
Fi 

Pi 

 
F3 

P3  
Fn 

Pn 

Sistema de Forças 
Concorrentes 

Resultante 

 
R 

A 

O A 

(A – O) 

 

Figura 14 – Sistema de Forças Concorrentes 

 

Exemplo:  Sistema de Forças Coplanares 

O sistema S de forças  ii PF ,


 coplanares, com resultante não nula tem invariante escalar nulo. 

Demonstração: a resultante das forças será contida nesse plano. Tomando um pólo pertencente a 

plano da linha de ação das forças, o momento será ortogonal a esse plano.  

RMRMI OO


 para0 .       Portanto sistema do tipo 3. 

 

Exemplo:  Sistema de Forças Paralelas 

Considere o sistema S de forças  ii PF ,


 paralelas uhF ii


 . A resultante e o momento em 

relação ao pólo O serão:  uhFR ii


    e       uhOPFOPM iiiiO


  . 

Finalmente o invariante escalar:  RMRMI OO


//para0 .       Portanto sistema do tipo 3. 
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6. EIXO CENTRAL 

 

Existe um conjunto de pontos formando um eixo, sobre o qual o momento de um sistema de 

forças produz um MOMENTO MÍNIMO. Tal eixo é denominado EIXO CENTRAL. Para 

determinar a localização de tal eixo vamos apresentar a resolução da equação vetorial com uma 

incógnita.  

 

 

6.1. Equação Vetorial 

 

Resolução do Produto Vetorial: Determinar a incógnita x


 do produto vetorial: 

 

 bax


  (25) 

 

com x


, a


 e b


 não nulos e   3 ; que é um espaço vetorial de ordem 3 (3 dimensões).  

 

Considere o plano  formado pelos vetores x


 e a


 quaisquer e 

não ortogonais, conforme ilustrado na figura. Observe que o 

vetor b


 será ortogonal ao plano , devido as propriedades do 

produto vetorial, então xb


  e também ab


 , conforme 

ilustrado na figura. Portanto 0


ba  (perpendiculares) e 

contidos no plano , ortogonal ao plano . 

 

 

Pode-se representar o vetor  )( OEx 


 contido no plano 

  como a soma de dois vetores:  um na direção de a


 e 

outro perpendicular a a


 (e  ortogonal a b


, como já 

estabelecido), conforme ilustrado na figura. 

 

 
a 

 
b 

 
x 

     
 a 

      
 (a ^ b) 

 

O 

E 

 

 
a 

 
x 

 

O 

E 
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 )( OEx 


               abax


               com    e      . (26) 

 

Substituindo esta expressão na equação incógnita, tem-se que: 

 

      bababaaba


   (27) 

 

Tomando o módulo dos termos da equação anterior e como os vetores são perpendiculares, 

determina-se o valor para o escalar : 

 

 
2

1

a
baba 


   (28) 

 

Verificando, a solução corresponde ao valor positivo de , obtêm-se finalmente da equação 

incógnita a resolução para x


: 

 

 a
a

ba
x











2  (29) 

 

com o escalar  qualquer     que são as soluções da equação do produto vetorial com uma 

incógnita em x


. Tal solução correspondente à reta   a


 (linha pontilhada mostrada na figura) que 

passa pelo ponto E. Note ainda que a solução particular quando   = 0 , resulta em ax


 .  

 

 

6.2. Eixo de Momento Mínimo 

 

Considere o sistema de forças S com resultante não nula e momento OM


. O lugar geométrico 

dos ponto E  para os quais o momento do sistema é paralelo à resultante ( RhM E


 ) é uma reta 

paralela à R


. Tal reta é única e chamada de EIXO CENTRAL do sistema S.  
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Demonstração: Utilizando a fórmula de mudança de pólo e impondo que RhM E


  obtêm-se: 

 

   REOMM OE


                   RhMROE O


  (30) 

 

A solução de uma equação vetorial com uma incógnita é dada por: 

 

 bax


                                                a
a

ba
x











2

 (31) 

 

    









b

O
a

x

RhMROE                     
22 R

MR

R

RhMR
OE OO







  (32) 

 

que é o ponto E para o qual o momento é mínimo. Portanto os pontos do eixo (E – O) paralelo 

para a resultante são: 

 

   R
R

MR
OE O







 
2  (33) 

 

que é a equação do reta paralela à R


 (EIXO CENTRAL) descrita na forma paramétrica como: 

 

 R
R

MR
OE O













 
 

2  (34) 

 

A determinação do escalar h é obtida pré-multiplicando-se escalarmente os dois lados da 

equação anterior por R


 (o produto triplo com dois vetores paralelos é nulo) obtendo-se: 

 

     0 RhMRROER O


                

22 R

I

R

MR
h O 






 (35) 

 

onde I é o invariante escalar definido anteriormente.  



ESTÁTICA 

RSB Mecânica I – PME3100 LDSV-POLI-USP 

33

 

6.3. Momento Mínimo 

 

O momento de um sistema de forças S é MÍNIMO quando o pólo estiver sobre o EIXO 

CENTRAL. Neste eixo o momento tem a direção da resultante sendo mínimo e determinado 

por: 

 

 RhM E


                 R

R

I
M E







2
 (36) 

 

Demonstração: Considere um sistema de forças S com resultante R


 momento OM


 em relação a 

um pólo O. O momento em relação a um pólo E é obtido pela fórmula de mudança de pólo: 

 

   REOMM OE


  (37) 

 

Utilizando novamente a fórmula de mudança de pólo para outro pólo P, fora do eixo central, terá 

momento: 

 

   RPEMM EP


  (38) 

 

No eixo central vale RhM E


  portanto qualquer ponto P fora do eixo central: 

 

   RPERhM P


  (39) 

 

que mostra que PM


 não é mais paralelo com R


 pois à ele é somada uma componente ortogonal. 

Portanto para qualquer ponto P fora do eixo central, o momento PM


 não é mais o valor mínimo. 
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Exemplo: 

Considere o sistema de forças S, composto de  ii PF ,


 de mesmo módulo, conforme indicado na 

Figura 15. Calcule a resultante R


 do sistema e o momento OM


 em relação ao pólo O. 

Determine a posição do eixo central onde o momento é mínimo e seu valor. Qual o ato de 

movimento que o sistema de forças induziria a um corpo? 

 

 

P1 

O 

y 

x 

z 

 
F1 

 
F2 

a 

a 

a P2 

Q 

 

Figura 15 – Localização do Eixo de Momento Mínimo 

 

Resolução: Sistema: forças e pontos de aplicação: iFF


1  aplicada em  aaP ,0,1  e jFF


2  

aplicada em  0,,02 aP . Resultante e Momento em relação ao pólo Q (0, 0, a): 

 

 

     

 

      iFajFkajaiFkakaiaFQPM

aFjFajiFMRI

jFajFjaiFkaiaFOPM

jiFjFiFFR

n

i
iiQ

O

n

i
iiO

n

i
i





























21
1

2

21
1

1
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Eixo Central: Tomando a Resultante e o Momento em relação ao pólo O (0, 0, 0), tem-se: 

 

   

 jik
a

E

ji
F

jaFjiF
OR

R

MR
OE O


















 










 






2

2 22

 

 

Note que o invariante escalar não é nulo ( 2aFI  ) e portanto o sistema não pode ser reduzido a 

uma única força. O sistema equivalente será portanto ( QR,


) e QM


. Calculando o momento em 

relação ao pólo E (0, 0, a/2) que pertence ao eixo central (onde o momento é mínimo): 

       

   ji
aF

jiF
F

aF
R

R

I
M

jiFajFkajaiFkaiaFEPM
n

i
iiE










22

2/2/2/

2

2

2min

21
1  

 

Verifica-se que o momento em relação ao pólo E pertencente ao eixo central, tem a mesma 

direção da resultante ( ji


 ) e valor mínimo (  jiFaM E


 2/ ). O ato de movimento que o 

sistema de forças induziria a um corpo pode ser composto por uma roto-translação conforme 

ilustrado na Figura 16. 

 

 

P1 

O 

y 

x 

z 

 
F1 

 
F2 

a 

a 

a P2 

Q 
O 

y 
x 

z 

 
F1 

 
F2 

a a 

E 

 
R 

Eixo Central 

O 
y x 

z 

 
F1 

 
F2 

a a E 

Planta Frontal 

 
ME a/2 

 

Figura 16 – Eixo Central e Ato de Movimento 
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7. ESTÁTICA 

 

As ciências Mecânicas se propõem a estudar o comportamento de corpos ou sistema de corpos 

sob a ação de forças. Na ESTÁTICA, o foco se dá nas situações de equilíbrio, ou seja, quando 

não há variações das posições ao longo do tempo. Em geral, os problemas se referem a 

determinar os esforços numa dada configuração do sistema, ou determinar a configuração sob 

um dado conjunto de esforços. 

 

7.1. Forças Externas e Internas 

 

Em relação a um sistema de corpos, são ditas FORÇAS EXTERNAS, aquelas forças que 

provem da interação de contato com outros corpos não pertencente ao sistema considerado. 

FORÇAS INTERNAS são as forças desenvolvidas entre corpos pertencentes ao sistema 

considerado. 

 

7.2. Principio da Ação e Reação 

 

A cada força proveniente da ação de um corpo A sobre um corpo B, corresponde a uma força de 

reação diretamente oposta, portanto com a mesma linha de ação e sentido contrário, proveniente 

da ação do corpo B sobre o corpo A (3º lei de Newton). 

 

7.3. Grau de Liberdade 

 

A definição da posição de um ponto no espaço Euclidiano 3  é obtida de forma inequívoca por 

três escalares ou três graus de liberdade (3 GL). Um corpo requer mais três ângulos de orientação 

(três escalares), correspondendo a seis graus de liberdade, conforme ilustrado na Figura 17. 

 

 kzjyixrOP


11111 )(        e          (40) 
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x 

z 

O 

 

Posição e Atitude 

y 

P1 

P3 

P2 

 

  
k 

 
r G 

 

Figura 17 – Posição e Atitude de um Corpo 

 

Note que o ângulo  (phi) do corpo foi definido no plano Oxy sobre a projeção do corpo, 

denominado “ângulo de direção”. A “elevação” do plano do corpo (versor k


) é quantificada 

pelo ângulo  (teta) formado pela linha média do corpo, medido em relação a linha projetada no 

plano Oxy. Finalmente a rotação própria descrita pelo ângulo  (psi) em torno do eixo 

longitudinal do corpo (linha 3PG  da Figura 17). 

 

7.4. Vínculos 

 

Um corpo rígido pode realizar 2 tipos de movimento: translações em 3 direções ortogonais e 

rotações em três direções possíveis. Vínculos são dispositivos mecânicos que permitem apenas 

alguns movimentos relativos entre corpos. Os vínculos constituem restrições de movimento 

relativo de translação entre corpos realizados por forças. Os vínculos também podem constituir 

restrições de movimento relativo de rotação entre corpos realizada por binários de força 

(momentos). Existem vários tipos de vínculos e possíveis combinações entre eles, conforme 

ilustrado na Figura 18. 

 



ESTÁTICA 

RSB Mecânica I – PME3100 LDSV-POLI-USP 

38

 

Apoio 

A 

B 

Guia Anel 

A 

Articulação 

 

Figura 18 – Tipos de Vínculos Planos 

 

Corpos em contato realizam interação de forças ativas e reativas de contato. Para corpos 

convexos pode haver pelo menos um ponto de contato comum aos dois corpos. Esse tipo de 

vínculo é chamado de apoio simples, conforme ilustrado na Figura 18a. Para corpos confinados 

a movimento em um plano, interligados por um vínculo do tipo anel (pino) pode haver apenas 

movimento relativo de rotação, conforme ilustrado na Figura 18b. Esta restrição de movimento 

é realizada por uma força contida no plano (ou suas correspondentes componentes ortogonais). 

 

Tipos de Vínculos em Sistemas Planos:  

a) APOIO SIMPLES SEM ATRITO: vínculo unilateral que restringe apenas o movimento de 

interpenetração entre corpos e permite a rotação relativa no plano.  

b) APOIO SIMPLES COM ATRITO: vínculo unilateral que restringe o movimento de 

interpenetração entre corpos, o movimento tangencial entre corpos e permite a rotação 

relativa no plano. 

c) ANEL:  Vínculo que restringe os movimentos relativos de translação no seu plano; 

d) ARTICULÇÃO (com pino): Vínculo que restringe os movimentos de translação no seu 

plano; 

e) GUIA unidirecional; Permite apenas um movimento de translação. 

 

Tipos de vínculos de sistemas espaciais: 

f) ENGASTAMENTO: vínculo que restringe todos os movimentos relativos (três translações e 

três rotações) , conforme ilustrado na Figura 19a. 
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g) ARTICULAÇÃO 3D (joystick): Vínculo que permite a movimento de rotação em três 

direções, conforme ilustrado na Figura 19b. 

h) GUIA ARTICULADA:  Vínculo combinado que permite o movimento de translação e de 

rotação em uma direção, conforme ilustrado na Figura 19c. 

 

 

Engastamento 
Articulação 

Guia 
Articulada 

 

Figura 19 - Tipos de Vínculos Espaciais 

 

É possível constituir vínculos combinados interligando ligações básicas, liberando apenas 

determinados tipos de movimento relativo. 

 

7.5. Elementos Vinculares 

 

São chamados de elementos ideais de ligação vinculares os dispositivos que restringem um ou 

mais movimentos.  

 

a) FIOS: Dispositivo de vínculo que restringe o movimento relativo entre suas extremidades 

apenas na sua direção (fio ideal sem massa e inextensível), conforme ilustrado na Figura 20a. 

A restrição é realizada por uma força da direção do fio. 

b) POLIAS: Dispositivo de vínculo que funciona com um fio passante por um disco articulado 

num anel e apenas muda a direção do fio e portanto da sua força (polia ideal sem massa e 

sem atrito no anel), conforme ilustrado na Figura 20b. 

c) BARRA ARTICULADA: Dispositivo de vínculo que restringe o movimento relativo entre 

suas extremidades apenas na sua direção, conforme ilustrado na Figura 20d. No caso de 
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barras com articulações nas extremidades a restrição é realizada por um par de forças que 

ocorre apenas na sua linha entre os pinos (chamadas de barras de treliça). 

 

 

Fio Polia Conjunto 

 

-F 

 

F 

 

N 

 

F 

 

R 

 

-F 

 

Figura 20 - Dispositivos Vinculares (fios, polias e barra) 

 

 

7.6. Postulados da Estática 

 

O equilíbrio estático de uma partícula (ou ponto material) vem do principio proposto por Issac 

Newton (1687) sobre a variação da quantidade de movimento para corpos de massa invariante: 

 

  Vm
dt

d
p

dt

d 
               FamV

dt

d
mVm

dt

d
p

dt

d 
  (41) 

 

para o caso particular do Sistema Estático (partícula ou ponto material sem movimento), a 

aceleração deve ser nula e, portanto o somatório de forças agentes será nulo: 

 

 0



i

iF  (42) 

 

Note ainda que para o caso de um agregado de partículas, como veremos mais a frente 

(   ext
OOO MJH



  ), para que não haja movimento angular, exige-se também que o momento 

seja nulo: 
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 0



i

OM  (43) 

 

Portanto um sistema S de pontos materiais, constituindo um corpo rígido (ou agregado de 

partículas com distância invariante) está em equilíbrio estático quando o sistema de forçamentos 

externos à S for equivalente a zero, ou seja, tem resultante e momento nulos: 

 

 0e0


 OMR  (44) 

 

(Note que a resultante e o momento das forças internas é nulo, conforme o Princípio da Ação e 

Reação). 

 

7.7. Diagrama de Forças sobre o Corpo Livre 

 

Para o estudo do equilíbrio estático (ou movimentação dinâmica) de um corpo é necessária a 

identificação de todas as forças ativas incidentes sobre o corpo. Trata-se, portanto de isolar o 

corpo de seus vínculos e discriminar todas as forças ativas externas, de CAMPO e 

VINCULARES que atuam sobre o corpo. Considere o sistema constituído pela barra AB, 

vinculada em A (articulação), conforme apresentado na Figura 21a que está submetida a força 

 BFB ,


 conhecida e ações de campo gravitacional, conforme ilustrado na Figura 21b. Isolando a 

barra dos seus vínculos (A) e aplicando ao corpo as forças externas, de campo e vinculares, 

obêm-se o Diagrama de Forças sobre o Corpo Livre (DFCL), conforme ilustrado na Figura 

21b. 
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 
FB 

 
g 

Sistema 

A 

B 
B 

DFCL 

A 
XA 

YA 

FBx 

x 

y 

O 

FBy 

mg 

m G 

L 

 

 

 

Figura 21 – Diagrama de Forças sobre o Corpo Livre 

 

Observe que as incógnitas decorrentes do vínculo em A, são identificadas com valores positivos 

na base de coordenadas adotadas. Pode-se escrever a partir do DFCL a Resultante das forças 

externas como 



n

i
iFR

1


 e suas componentes para a condição de equilíbrio: 

 

 


































0

sen

cos

0

0

0

0
1

z

BByA

BBxA

z

ByAy

BxAxn

i
i

R

mgFmgFY

FFX

R

mgFYR

FXR

FR 







 (45) 

 

Note ainda que para o corpo permanecer em equilíbrio tem-se que:   0
1




n

i
iiO FOPM


. 

Tomando o pólo am A, tem-se a partir do DFCL que: 

 

 

       

     
  0cos2/sencos

0sencos2/sencos

0
1








kmgLkFFL

jmgjiLjFiFjiL

gmAGRABRAAFAPM

BxBy

ByBx

BA

n

i
iiA









  (46) 
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Exemplo: Barra apoiada 

Considere uma barra homogênea de comprimento L e massa m contida no plano Oxy em 

equilíbrio apoiada no solo e na parede formando um ângulo , conforme ilustrada na Figura 22a. 

Considere o coeficiente de atrito   com o solo e a parede muito lisa. Determine as forças nos 

apoios e o máximo valor de   compatível com a condição de equilíbrio. 

 

 

 
g 

Sistema 

A 

B B 

DFCL 

FBx 

x 

y 

O 

mg 

G L 

   FAx 

FAy  

Figura 22 – Barra Apoiada 

 

Resolução: Sistema: barra de comprimento L com peso mg, em equilíbrio sobre dois vínculos 

em A e B. DFCL: conforme apresentado na Figura 22b. Referencial Oxy e pólo A. Teoremas: 

para o Equilíbrio Estático deve-se ter:  0 iFR


  e    0
1




n

i
iiO FOPM


 

































00

0

0

0
1

z

Ay

BxAx

z

Ayy

BxAxxn

i
i

R

mgF

FF

R

mgFR

FFR

FR


 

Tomando o pólo em A, tem-se a partir do DFCL da Figura 22b que: 

     
     

  0cos2/sen

0sencos2/sencos0

0







kLmgkFL

jmgjiLiFjiL

gmAGRABRAAM

By

Bx

BAA









  

AyBy F
mg

F  cot
2

 

Para força de atrito NFAx   , na iminência do escorregamento atinge o limite máximo 

quando AyAx FF    resultando num ângulo máximo de:    2cota  
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Exemplo: Bicicleta 

Considere a bicicleta de massa m ilustrada na Figura 23a, como um corpo rígido em equilíbrio e 

contido no plano Oxy. Determine as reações verticais nas rodas para carga de um ciclista de peso 

P sobre o selim. 

 

 

 
FA 

 
g 

Sistema DFCL 

x 

y 

O 

G 

2L 
a) b) 

mg 

P 

C D 

E 

F H 

 
FB 

h 
R 

L 

L 

A B 

 

Figura 23 – Bicicleta  

 

Resolução: Sistema: corpo rígido bicicleta, peso mg, em equilíbrio sobre dois vínculos em A e 

B. DFCL: conforme apresentado na Figura 23b. Teoremas: para o Equilíbrio Estático deve-se 

ter:  0 iFR


 

































00

0

0

0
1

z

ByAy

BxAx

z

ByAyy

BxAxxn

i
i

R

mgPFF

FF

R

mgPFFR

FFR

FR


 

 

Note ainda que para o corpo permanecer em equilíbrio tem-se que:   0
1




n

i
iiO FOPM


. 

Tomando o pólo em A, tem-se a partir do DFCL da Figura 23b que: 

       
       

  02

02/20

0







kmgPLkFL

jmgjRLiLjPjRLiLjFiFiL

gmAGRAFRABRAAM

By

ByBx

FBAA







 

  2/mgPFBy              2/mgPFAy   
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8. SISTEMAS DE CORPOS RÍGIDOS ESTÁTICOS 

 

Na mecânica é comum haver sistemas formados com múltiplos corpos com vários tipos de 

elementos de ligação. Os sistemas podem ser planos ou tridimensionais. Pode conter PLACAS, 

BARRAS, FIOS e POLIAS. O sistema pode ser suportado ou acoplado por apoios, pinos, 

articulações, engastamentos, etc. 

 

 

8.1. Sistemas Isostáticos 

 

Um sistema em equilíbrio estático tal que as equações sejam suficientes para determinar as 

reações vinculares incógnitas é chamado de sistema ISOSTÁTICO ou estaticamente 

determinado. Caso contrário é chamado de Sistema HIPERESTÁTICO (ou estaticamente 

indeterminado). Existe sistema que tem um grau de liberdade indeterminado chamado de sistema 

HIPOSTÁTICOS. 

 

 

8.2. Sistema Submetido a Forças 

 

Dois casos importantes de sistemas em equilíbrio submetidos a forças devem ser destacados: 

 

 Sistema em equilíbrio submetido a duas forças externas; 

 Sistema em equilíbrio submetido a três forças externas; 

 

Para o primeiro caso conclui-se imediatamente que as duas forças devem ser iguais e opostas 

(sistema plano).  

Para o segundo caso as forças devem ser coplanares, pois caso uma delas esteja fora do plano 

não haverá componente de resultante nula naquela direção. Portanto sendo coplanares podem ser 
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paralelas ou concorrentes. Sendo duas forças concorrentes num ponto P, a terceira forças deve 

passar também por P para resultar em momento nulo. 

 

 

Exemplo: BARRA DE TRELIÇA 

Uma barra com articulações nas extremidades estará em equilíbrio apenas quando as forças 

externas nas extremidades forem alinhadas. Demonstração: considere a barra AB bi-vinculada 

conforme apresentado na Figura 24. 

 

 

 
FB 

Barra Articulada 
A 

B 

 
FB 

B 

DFCL 

 
FA 

A 

 
FB 

B 

TRELIÇA 

 
FA A 

 

Figura 24 – Barra Bi-Articulada (Barra de Treliça) 

 

Para que a barra esteja em equilíbrio devem valer: 

 

   0e0
11

 


n

i
iiO

n

i
i FOPMFR


 (47) 

 

Da primeira equações obtêm-se que: 0 BA FF


, portanto iguais e contrárias. Da segunda 

equação, considerando o pólo em A têm-se:   0 BA FABM


, portanto, para   0 AB  os 

vetores   BFAB


e  devem ser alinhadas e portanto contidas no plano. 

Uma barra com extremidades articuladas é chamada de BARRA DE TRELIÇA e suporta apenas 

forças iguais e contrárias aplicadas na sua extremidade. 
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Exemplo: Sistema de 3 forças 

Demonstra-se (França , 2011) que um sistema submetido a três forças só está em equilíbrio se as 

forças forem coplanares. Sendo coplanares são necessariamente paralelas ou concorrentes. 

 

 

8.3. Sistema com Múltiplos Elementos 

 

Na mecânica é comum haver sistemas formados com múltiplos tipos de elementos. Os sistemas 

podem ser planos ou tridimensionais. Pode conter PLACAS, BARRAS, FIOS e POLIAS. O 

sistema pode ser suportado ou acoplado por apoios, pinos, articulações, engastamentos, etc. O 

sistema pode ser formado por tríades de barras articuladas nas extremidades formando o que é 

chamado de TRELIÇA. Eventualmente o sistema pode ser constituído por mais de um pórticos 

rígidos, conforme ilustrado no sistema de barras de treliça apresentado na Figura 33. 

 

Exemplo: Sistema com Múltiplos Elementos 

 

O sistema ideal mostrado na figura tem 3 barras e uma polia de massas desprezíveis, o vínculo 

em A é uma articulação, e o vínculo em B é um apoio simples. As barras são articuladas em C. O 

fio que passa pela polia está fixado em E e tem na outra extremidade um peso P. Determine: 

a) as forças que a polia e o fio aplicam nas barras. 

b) as reações vinculares em A e B. 

c) as forças na conexão C entre as barras.  

d) Desenhe as barras indicando todos os esforços atuantes. 
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a 

B 

A C 

D 

E 
P 

a 

a 

a 

 

 

Resolução: Sistema: Polia de centro em D, peso P, barras AB, AD, BE. 

DFCL: conforme figuras. Teoremas: Equilíbrio Estático: 

  0e0   iiOi FOPMFR


   

 

a) Isolando a polia centro em D, obtêm-se: 

PTaTaPM D  00  

  00 xx DF  

PDTPDF yyy 200   

 

b) Observando a estrutura formada pelas barras e utilizando os 

valores da polia:  

PFFFFFF AxBAxAxBx 400   

PFPPFF AyAyy  020  

PFaFaPaPM BBA 402320   

 

c) Isolando a barra ACD e utilizando valores obtidos 

(atenção, não é barra de treliça):  

PCACACF xxxxxx 400   

PCAPACF yyyyy 2020   

PAPCaCaPM yyyA 460320   

T P 

D 

Dx 
Dy 

P T 

A 

C D 

E 

FB 

FAx 

FAy 
P 

2P 

D C A 

2P 

Cy 

Cx 

Ay 

Ax 
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d) Analisando o nó A, obtêm-se: 

PAFAF xAxxx 400   

PFPPFAF

FFAF

ABAyyAB

ABAyyy

54

00




 

 

e) Analisando o nó B:  

PBFBBFF xBxxBx 400   

PBFBBFF yAByyABy 500   

 

f) Portanto as barras AB e BE resultam como as seguintes solicitações:  

 

 

 

 

 

 

FAx 

FAy FAB 

Ax 

Ay 

FB 

FAB 

Bx 

By 

A 

FAB = 5P 

FAB = 5P 

C 

E 

Bx = 4P 

P 

By = 5P 

Cy = 6P 

Cx = 4P 
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Exemplo: Propulsão da Bicicleta 

Considere agora que o ciclista apóia todo seu peso apenas sobre o pedal da bicicleta, que ainda 

permanece em equilíbrio, conforme ilustrado na Figura 25a. Determine as forças na roda traseira 

e a força na corrente.  

 

 

Sistema DFCL 
x 

y 

O 

XB 

d 

a) b) 

P 

D 

E 

G 

 
RE 

R 

B 

d 

YB 
B 

E D 
d 

P 

T 
E 

A 

C 

G F 
F 

 

Figura 25 – Pedal da Bicicleta 

 

Resolução: Sistema: corpo rígido pedal + engrenagem + corrente, tudo em equilíbrio sobre o 

vínculos em E. DFCL: conforme apresentado na Figura 25b que mostra a força P no pedal e a 

reação do mancal fixo no quadro ER


 e a força na corrente T. Teoremas: para o Equilíbrio 

Estático deve-se ter:   































00

0

0

0

z

Ey

Ex

z

Eyy

Exx

Ei

R

PF

TF

R

PFR

TFR

TRPFR


 

 

Para o corpo permanecer em equilíbrio tem-se que   0
1




n

i
iiO FOPM


, tomando o pólo em 

E, e observando o DFCL da Figura 23b, determina-se a tensão na corrente: 

     

P
r

d
TkTrkPd

iTjrjPidREEM EE

1

1

1

00

0







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Para o sistema em equilíbrio composto pela corrente + engrenagem traseira + roda traseira, 

tomando o pólo em D, e observando novamente o DFCL da Figura 23b, que mostra a reação do 

mancal fixo no quadro DR


 e a força na corrente T, determinada no item anterior, onde 

determina-se a força de propulsão na roda traseira: 

   

 

P
R

d

r

r
XT

R

r
XkrTkRX

krTjYiXjR

iTjrRDBRDDM

BBB

BB

BDD

1

22
2

2

2

0

00

0













 

 

Verifique que o sistema de mudança de marcha faz o engrenamento em coroas com diâmetro 

variável (r2 / r1), mudando a magnitude da força de tração na roda XB. Note ainda que para 

produzir maior potência ( VF  ) é necessário aumentar a velocidade da produção da força. 
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8.4. Treliças 

 

Treliças são estruturas rígidas formadas por sequências triangulares de barras retas interligadas 

por articulações, conforme ilustrado na Figura 26. Em geral as forças externas são aplicadas nos 

vértices dos triângulos (nós). As barras articuladas nas extremidades são chamadas de barras de 

treliça e só recebem forças iguais e contrárias alinhadas com ela, conforme apresentado no item 

8.2. Neste texto apenas as treliças planas estáticas serão abordadas. 

 

 

 
FE TRELIÇA 

A G 

barra 
nó 

B 

C 

D 

E 

F 

 
FC 

 

Figura 26 – Treliça Plana 

 

Para análise estática de uma treliça, faz-se inicialmente o DFCL da treliça como um todo (corpo 

rígido estático único) para determinação das forças nos apoios. A subsequente determinação das 

forças internas das barras da treliça em equilíbrio, pode ser realizada por dois métodos: 

 

 Método dos Nós; 

 Método das Seções. 

 

 

MÉTODO DOS NÓS: O nó (ou pino) é o centro de um sistema de forças concorrentes cujo 

momento em relação a este ponto é nulo, conforme ilustrado na Figura 27a. Desta forma um nó 

(ou pino) está em equilíbrio quando a resultante das forças for nula (veja o DFCL na Figura 

27b). Note que o pino transmite as forças entre a articulação e as barras. 
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  
FAB 

TRELIÇA 

A 

DFCL 

barra 

nó 

A 

B 

C 

 
FAC 

 
FAC 

 
FAB 

XA 
articulação 

pino/nó A 

X’A 

YA 

Y’A 
 
FAC 

 
FAB 

Barra 
AC 

Barra 
AB 

b) a) 
 

Figura 27 – Detalhe do Método dos Nós 

 

Convenção: quando uma barra for submetida a forças de tração, convenciona-se a força com 

sinal positivo. De maneira similar, as forças nos nós, devido às barras (ação e reação), tem sinal 

positivo sempre para fora do nó. 

 

  
FBD 

A 

DFCL 

barra 

nó 

A 

B 

C 

 
FCD 

 
FCE XA 

YA  
FCE 

 
FCD 

 
FBD 

C 

B 

 

Figura 28 – Detalhe do Método das Seções 

 

MÉTODO DAS SEÇÕES: Uma seção da treliça deve no máximo cortar três barras, conforme 

ilustrado na Figura 28a o que resultam 3 forças incógnitas para três equações no sistema estático 

no plano mostrado no DFCL da Figura 28b. 
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Exemplo: Treliça - Método dos Nós 

 

Determine as forças nas barras da treliça, submetida à força iFF BxB


  aplicada no ponto B, 

conforme mostrado na Figura 29a, utilizando o MÉTODO DOS NÓS. 

Resolução: Sistema: Treliça. Referencial: Oxy e Pólo conveniente A. Teoremas: Equilíbrio 

Estático:    0e0   iiOi FOPMFR


 

 

 

  
FB 

A 
DFCL 

B 

C 

 
FB 

B 

A 

YA 

XA 

YC 

L 

L 

L 

60° 

C 

 

Figura 29 – Treliça Plana Simples e DFCL 

 

Para determinar as reações nos vínculos de apoio A e C, isola-se a treliça como um único corpo 

rígido, conforme ilustrado no DFCL da Figura 29b, e para 0 iFR


 escreve-se as seguintes 

expressões: 















0

0

CA

BxA

YY

FX

             














CA

BxA

YY

FX

 

     

 
2/32/30º60sen

0º60senº60cos0

0

BxABxCCBxA

CBxA

CBAA

FYFYkLYkLFM

jYiLiFjiLM

RACFABRAAM













 

Portanto os valores de força para a treliça como um corpo rígido único são: 

                               2/3;2/3; BxABxCBxA FYFYFX   
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Isolando o nó A, conforme ilustrado no DFCL da Figura 30, utilizando novamente 0 iFR


 

e os valores já determinados (note que as reações nos nós são opostas as ações na treliça 

determinadas acima), obêm-se as seguintes expressões: 















0º60sen

0º60cos

ABA

ACABA

FY

FFX

          





















AAB

ABAAC

YF

FXF

2

3
2

1

          

 

 

DFCL 

A 

 
FAC 

 
FAB 

XA 
articulação 

pino/nó A 

X´A 

YA 

Y´A 

 
FAC 

 
FAB 

Barra 
AC 

Barra 
AB 

 

Figura 30 – Detalhe do Nó A 

 

 





















BxBxAB

BxBxBxAC

FFF

FFFF

3

2

2

3
2

1

2

1

  Portanto a barra AC e AB estão sob tração (sinal positivo). 

 

Resolva o mesmo problema anterior considerando agora a força externa aplicada no ponto B, 

mas com sentido para baixo: jFF ByB


 . 
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Exemplo: Treliça - Método das Seções 

 

Determine a força na barras FG da ponte construída na forma de treliça, submetida às 6 forças 

jFF iyi


  aplicadas nos nós superiores, conforme mostrado na Figura 31, utilizando o 

MÉTODO DAS SEÇÕES.  

Resolução: Sistema: Treliça. Referencial: Oxy e Pólo conveniente A. Teoremas: Equilíbrio 

Estático:    0e0   iiOi FOPMFR


 

 

  
FB 

PONTE EM TRELIÇA 

A M 

B 

C 

D 

E 

 
FD 

 
FF 

F H 

 
FH 

 
FJ 

J L 

 
FL 

G I K 

L 

L 
L 

60º 

 

Figura 31 – Ponte de Treliça 

 

Para determinar as reações nos vínculos de apoio A e M, isola-se a treliça como um único corpo 

rígido, submetido a jFnF yi


   cargas verticais e escreve-se as seguintes expressões para n = 

6 segmentos: 















0

0

yMA

A

FnYY

X

             














yMA

A

FYY

X

6

0
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       

 

 

yAyM

MyMy

MDyByA

MByA

MDBAA

FYFY

YLF
L

YLF
L

n

kYLkF
L

kF
L

M

jYiLjFjiLM

RAMRADFABRAAM

33

6
2

366
2

12

06...
2

3

2

06...º60senº60cos0

0...



















 

 

 

  
FB 

A 

DFCL 

B 

C 

D 

E 

 
FD 

 
FF 

F FFH 

G 

L 

L 
L 

60º FGI 

FGH 

 

Figura 32 – Seção da Treliça 

 

Portanto os valores de força para a seção de treliça como um corpo rígido, conforme apresentado 

na Figura 32, para o pólo em G são: 

 

         

      0
2

3

2

1

2

3

2

5
3

0































iFjLjFiLjFiLjFiLjYiL

iFGFFGFFGDFGBRGAM

FHFDBA

HFFDBAG





 

FFFH 3  
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Exemplo: Sistema com dois pórticos treliçados 

 

Considere o sistema constituído por duas treliças formando pórticos rígidos planos distintos, 

conforme ilustrado na Figura 33a. Note que o anel de articulação em E une os corpos rígidos 1 e 

2. 

 

 

A 

DFCL 

B 

C D 

E 

 
FIH 

F 

G 

L 

P 

4P 

H I 

L 

L 

L A B 

C D 

XE 

F 

G 

P 

4P 

H 

I 

 
FHI 

x 

y 

H 

1 

2 

 
FHI 

XE 
YE 

YE 

YA 
XA YB 

 

Figura 33 – Sistema de Pórticos 

 

Para determinar as reações nos nós do sistema isola-se os corpos rígidos: Barra HI, treliça EGH 

(corpo rígido nº 2) e pórtico ABEF  (corpo rígido nº 1) conforme ilustrado nos sistemas de 

treliças apresentado na Figura 33b.  

Resolução: Sistema: Barra de treliça HI, treliça EGH (corpo rígido nº 2) e treliça ABEF (corpo 

rígido nº 1) . Referencial: Oxy. Teoremas: Equilíbrio Estático: 

    0e0   iiOi FOPMFR


 

Iniciando pelo corpo rígido nº 2 (treliça EGH) verifica-se de imediato, utilizando a equação de 

momento em relação ao pólo E que FHI é igual a P. Por decorrência, utilizando a fórmula da 

resultante, obtêm-se: XE = - FHI = -P e YE = P. 

Finalmente, tomando o pólo em A obtêm-se: 
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 

         
      04220

04

0







iPjLiLjYiXjLjYiL

iPAFRAERABRAA

FAPM

EEB

EBA

iiA







 

PYB 6  

Experimente abrir a treliça ABEF utilizando o método das barras e determinar a força na barra 

BD. 

 

 

Exemplo: Quadro da Bicicleta 

Considere a bicicleta de massa m, ilustrada na Figura 34a, como um corpo rígido em equilíbrio, 

contido no plano Oxy. Considere ainda o quadro formado por barras de treliça articuladas nas 

extremidades. Determine as forças nas barras de treliça para carga de um ciclista de peso P sobre 

o selim. 

 

 
 
g 

Sistema DFCL 

x 

y 

O 

FDF 

2L 
a) b) 

mg 

P 

D 

E 

F 
H 

 
FB 

h 
R 

L 

L 

P 

 
FA 

 
FB 

YH 

YD 

G 

mg 

XD 

XH 

YD 

XD 

FDE 

D 

Nó D 

 

Figura 34 - Estrutura da Bicicleta 

 

Resolução: Sistema: quadro estrutural da bicicleta DEFH em equilíbrio. DFCL: conforme 

ilustrada na Figura 34b. Teoremas: Utilizando o método dos nós, para o Equilíbrio Estático do 

nó D deve-se ter:  0 iFR


 






























0

2

2/2

0

0º45sen

0º45cos

z

DDF

DDFDE

z

DFDy

DFDEDx

R

YF

XFF

R

FYR

FFXR

DNó  
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De maneira similar, para o nó H, tem-se: 






























0

2

2/2

0

0º45sen

0º45cos

z

HHE

HHEHF

z

HEHy

HEHFHx

R

YF

XFF

R

FYR

FFXR

HNó  

Finalmente para o nó F tem-se que: 






























0

2/2

2/2

0

0º45sen

0º45cos

z

FDFE

FDFH

z

FDFEy

FDFHx

R

FF

FF

R

FFR

FFR

FNó  

Considerando ainda   2/mgPYY HD    e  0 HD XX , conforme resolução do problema 

anterior, obtêm-se de cada nó: 

 

Nó D:     2/2mgPFDF    (compressão)           2/mgPFDE   (tração) 

Nó H:     2/2mgPFHE    (tração)              2/mgPFHF    (compressão) 

Nó F:     2/mgPFFE    (tração)              2/mgPFFH    (compressão) 

 

Note que apenas as barras diagonais têm os maiores valores em módulo. 

 

Recomendações para resolução de problemas estruturais envolvendo treliças planas: 

a) Considerar inicialmente o sistema como um corpo rígido único estático e determinar as 

reações externas nos apoios. 

b) Método dos Nós: acolher no nó selecionado as forças das barras e forças externas (DFCL). 

A soma vetorial das forças concorrentes no nó deve ser nula (condição de equilíbrio - 2 

equações). 

c) Alternativa: Método das barras: Isola-se uma parte da estrutura secionando três barras. 

Obêm-se um sistema de três equações de equilíbrio (Resultante e Momento nulos) para três 

forças incógnitas na direção de cada barra. 

d) Adotar uma convenção de sentido das forças: por exemplo: forças nos nós devido às barras 

sempre para fora do nó (portanto força de tração na barra). Forças nas barras secionadas 

para fora e alinhadas (força de tração na barra). Se o sinal obtido na resolução das equações 

for negativo a barra estará submetida à compressão. 
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9. CENTRO DE MASSA 

 

Para a conceituação do CENTRO DE MASSA de corpo do ponto de vista da mecânica dos 

sólidos, apresenta-se o conceito de forças distribuídas e forças paralelas e local de aplicação da 

resultante do sistema equivalente. 

 

 

9.1. Sistema de Forças Paralelas 

 

Um sistema de forças distribuídas e paralelas S é composto por conjunto de forças iF


, aplicadas 

em pontos Pi , todas com a mesma direção do versor unitário u


, conforme ilustrado na Figura 

35, tal que:  

 

 uhF ii


  (48) 

 

 

 

O 

 
F1 

P1 

 
F2 

P2 

 
Fi 

Pi 

 
F3 

P3 
 
Fn 

Pn 

Sistema de Forças 
Paralelas 

 
u 

 

Figura 35 – Sistema de Forças Distribuídas Paralelas 
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9.2. Definição de Corpo Rígido 

 

Uma partícula pode ser idealizada como um ponto com dimensões físicas desprezíveis com 

massa não desprezível. Isso implica em ter toda sua massa concentrada em um único ponto 

material. Uma partícula ideal é, portanto um ponto material com massa não nula. Negligenciar 

suas dimensões significa também ignorar seu movimento de rotação. Um conjunto de partículas 

forma um corpo extenso e deformável. Se, entretanto as deformações forem, numa primeira 

aproximação, consideradas desprezíveis face aos movimentos globais do corpo, constitui-se um 

corpo indeformável. Portanto um agregado de partículas com distâncias entre elas invariante com 

respeito ao tempo, constitui um corpo rígido. Neste caso o corpo rígido deve ter 

obrigatoriamente sua atitude, descrita por seu movimento de rotação, considerada. 

 

9.3. Distribuição de Massa 

 

O corpo rígido homogêneo tem a distribuição de massa relacionada com sua forma. Desta 

distribuição duas propriedades são destacadas: 

 

 CENTRO DE MASSA (momento de primeira ordem); 

 MOMENTO DE INÉRCIA (momento de segunda ordem); 

 

O centro de massa corresponde à posição do pólo onde o momento das forças paralelas 

associadas com as partículas do corpo, tem seu valor nulo. 

 

 

9.4. Centro de Massa 

 

O centro de massa G de um corpo rígido (agregado de partículas) é o ponto onde o momento de 

um sistema de forças paralelas equivalente associado tem valor nulo. O momento de um sistema 

de forças em relação ao pólo O é dado por: 
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  



n

i
iiO FOPM

1


 (49) 

 

Vamos localizar o ponto C tal que o momento do campo de forças paralelas uhF ii


  em relação 

a esse pólo seja nulo. Utilizando a formula de momento de forças em relação ao pólo C: 

 

  



n

i
iiC uhCPM

1

0


                0
1















uCPh
n

i
ii  (50) 

 

Para que a direção u


 seja qualquer, exige-se que: 

 

   0
1






n

i
ii CPh                0

1






n

i
ii OCOPh    ou    

 












n

i
i

n

i
ii

h

OPh

OC

1

1   (51) 

 

Considere agora o sistema de partículas de massa mi do agregado de particular S, submetidas ao 

campo de forças gravitacional gmF igi


  e o centro de massa  OG   do corpo com partículas 

Pi: 

  
 












n

i
i

n

i
ii

m

OPm

OG

1

1  (52) 

 

Para a localização do centro de massa em relação a origem O:   kzjyixrOG GGGi


  

conforme ilustrado na Figura 36, ter-se-á 

 

  

 


i

ii

m

rm
OG



 (53) 
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Pi 

O 

xi 

yi 

zi 

 
ri 

y 

x 

z 

 
i  

j 

 
k 

G 

 

Figura 36 – Localização do Centro de Massa 

 

Para um corpo de massa total m a posição do centro de massa (G – O), descrito num sistema de 

coordenadas cartesianas Oxyz , é obtida pelo somatório em cada coordenada independente: 

 

 
m

xm
x

ii

G

 
      ;      

m

ym
y

ii

G

 
      e      

m

zm
z

ii

G

 
  (54) 

 

9.5. Propriedade do Centro de Massa 

 

a) Propriedade Proporcional Inversa: O local do centro de massa G de um corpo rígido 

constituído de duas partículas (mi, Pi ), é o ponto que divide o segmento (P1 – P2 ) em partes 

inversamente proporcionais. 

 

b) Propriedade de Simetria: Se as partículas Pi de um corpo rígido pertencerem a um plano  

ou reta r, o centro de massa G pertencerá a esse plano ou reta. 

 

c) Propriedade Associativa: O centro de massa G de um sistema de corpos rígidos coincide 

com o centro de massa determinado pela soma do produto da massa e posição de cada parte do 

sistema. 
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d) Propriedade de Plano de Simetria: Se as partículas Pi que constituem o corpo rígido, 

admitirem um plano  de simetria material, para massas idênticas, o centro de massa G 

pertencerá a esse plano.  

 

e) Propriedade do Centro de Simetria: Se as partículas Pi pertenceram a um centro de simetria 

material, o centro de massa G coincidirá com esse centro. Ex. anel, disco ou esfera. 

 

 

Exemplo: Centro de Massa de Partículas 

 

Considere duas partículas P1 e P2 de massas m1 = 1m e m2 = 4m, separadas da distância L, 

conforme ilustrado na figura. Determinar a posição do centro de massa.  

 

 

P1 

 
u G 

L 

P2 

 
 

 

 

Resolução: adotando o sistema de coordenadas 


uP1  tem-se do somatório do momento de 

primeira ordem das partículas P1 e P2 de massas m1 = 1m e m2 = 4m, medido a partir o ponto P1 

na direção u


: 

 

 


i

ii

m

rm
OG



             
 

L
m

mLm

mm

mumu
uG

5

4

5

40

21

2211 






  

 

Exemplo: Integração 

 

Determinar a posição do centro de massa de uma placa no formato triangular com densidade de 

área , conforme dimensões mostradas na figura à esquerda. 
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x 

O x 

y 

a 

b 

x 

O xG 

yG 

y 

a 

b 

h 
G 

dx 

h =b – x b / a 

 

 

Resolução: Sabendo que a massa total da placa triangular é 2/ bam , pode-se substituir o 

somatório discreto por uma integral de faixas infinitesimais de largura dx de altura h e massa 

elementar dxhdm   , para cada altura ( axbbh / ) função da posição x, ao longo da base 

do triangulo retângulo de comprimento a, conforme mostrado na figura à direita: 

 

m

xm
x

ii

G

 
           

   

ba

dxxabxb

ba

dxxh

ba

xhdx

m

xdm
x

aaaa

G
5.0

/

5.05.0
0000

















        

  a
a

abab

ba
x

a

b
x

b

ba
dxxabdxxb

ba
x

aaaa

G
3

1

32

2

32

2
/

2 32

0

3

0

2

0

2

0
























    

O mesmo vale para a outra direção onde obtêm-se por similaridade:  byG
3

1
  

 

Exemplo: Centro de Massa de Sistema de Corpos 

 

Considere a placa triangular AED com massa 3m, as barras AB e CD têm massa m (cada uma) e 

a barra BC tem massa 2m. Todos os sólidos são homogêneos. 

a) Determine as coordenadas do baricentro da placa triangular AED. 

b) Determine as coordenadas do baricentro da barra ABCD. 

c) Determine as coordenadas do baricentro do sólido composto pela placa AED e pela barra 

ABCD. 



ESTÁTICA 

RSB Mecânica I – PME3100 LDSV-POLI-USP 

67

 

x 

y 

B 

A 

D 

C a 

a 

b 

c 

E 

 

 

Resolução: Utilizando a expressão da posição do centro de massa:  

 


i

ii

m

rm
OG



 e a 

propriedade de simetria obtêm-se: 

a) Placa triangular:    0;0;
3

 PPP zy
c

x  por simetria e problema plano. 

b)  Barra:     0;
4

3

4

3

2
2

2
2;0 




 BBB z

b

m

mb

mmm

b
mbm

b
m

yx     

c)  Conjunto:   0;
7

3

7

3

43
4

3
403

;
7743

04
3

3










 SSS z

b

m

mb

mm

b
mm

y
c

m

mc

mm

m
c

m
x  

 

Caso uma das placas tenha um furo, pode-se considerar uma parte adicional com massa negativa. 

 

Exemplo: Massa Distribuída 

 

Determinar a posição do centro de massa G de uma barra esbelta homogênea na forma de arco de 

circunferência de raio R com ângulo central 2, conforme ilustrado na figura à esquerda.  
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x 
O 

y 

R 

 

 
x 

O 

y 

R 
ds 

 

0 

L 

x 

 

 

Resolução: Por simetria yG = 0. Dividindo o arco em pequenos segmentos de comprimento ds na 

posição , e sabendo que a barra tem densidade linear de massa  , obtêm-se a massa elementar 

do elemento de arco dsdm   . Substituindo o somatório discreto por uma integral de arcos 

infinitesimais ds de posição angular  ao longo do comprimento angular 2 , obtêm-se: 

 

 

L

Rds

ds

xds

dm

xdm
x

L

L

L

m

m

G









 






 0

0

0

0

0
cos




 

Tem-se ainda que dRds   para o intervalo - até . Trocando o intervalo de integração 

obtêm-se: 





















sen
sen

2
coscos

1 22

R
R

R
d

L

R
RdR

L
xG 














   
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10. HIDROSTÁTICA 

 

Um sistema de forças paralelas aplicadas a todos os pontos de uma superfície é um caso 

particular de forças distribuídas. Em geral, forças que atual em todos os pontos de uma linha, 

superfície ou volume são ditas distribuídas. O termo tensão é geralmente entendido como uma 

medida da intensidade da forças por unidade de área. Forças distribuídas num volume são 

chamadas de forças de volume como o peso do corpo, já visto no item 9.1. A HIDROSTÁTICA 

estuda a distribuição da força (pressão) exercida por fluidos perfeitos em repouso e pesados 

(submetidos à ação de forças de campo) sobre superfícies de confinamento. 

 

10.1. Forças Distribuídas Sobre uma Superfície 

 

Adotando por simplicidade uma superfície plana π com sistema de forças iF


 aplicando em cada 

um dos seus pontos Pi.  Sendo as forças normais ao plano tem-se que nF ii


f  aplicada no ponto 

Pi  ao longo de S do plano π representado pelo versor n


  normal a superfície, conforme ilustrado 

na Figura 37. 

 

 

fi 

Pi 
ds 

dV Volume 

 

    
n 

S 

p(S) 

pi 

 

Figura 37 – Forças Distribuída sobre uma Superfície 
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Seja  p(S)  uma função contínua de pontos genéricos Pi  sobre a área S com intensidade: 

 

 
ds

p
f

  (55) 

 

é uma função escalar positiva e contínua de S que é chamada de PRESSÃO  no ponto Pi . Então 

a força que age na área elementar ds pode ser descrita por: 

 

  ndspnF iii


 f  (56) 

 

A resultante R


 do sistema de forças paralelas que agem sobre o plano π de área S, decorrente 

das PRESSÕES HIDROSTÁTICAS será chamada de VOLUME das PRESSÕES dado por: 

 

 nVdsnpFR
S

S
S

i


  )(  (57) 

 

aplicada num ponto qualquer do eixo central (sistema do tipo 3 onde:  0I ; 0CR


 e 0CM


) 

onde p é a pressão hidrostáticas do liquido ideal e V é o volume das pressões. 

 

 

10.2. Ação de um Líquido numa Superfície Submersa 

 

De acordo com a lei fundamental da hidrostática dos líquidos perfeitos a pressão hidrostáticas p 

num ponto a uma profundidade h de um líquido em repouso de peso específico  (gama) é igual: 

 

 hp   (58) 

 

onde  é o peso específico em [Newton/m3]. Note que a massa específica é  (rho) em [kg/m3] 

portanto   = ρ g  e portanto  hgp  . 
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Se o líquido é perfeito, a pressão que ele exerce em cada ponto da superfície é normal a essa. 

Assim para uma superfície planar de área ab a Resultante do sistema é de forças paralelas com 

volume V decorrente da pressão hidrostática p é um prisma com base retangular a b de altura 

p, aplicada no eixo central da superfície. 

 

 

h 

Nível do Líquido 

Volume 

    
n 

p 

a 

largura: b 

Área: a b 

    
R 

 

 

A força total Resultante é dada pelo volume do prisma de área ab (largura b) multiplicada pelo 

peso específico    e sua linha de ação passa pelo centro de massa do volume: 

 

  

 nhbaR

nbapnVR

hp















 (59) 

 

No caso de uma superfície inclinada, conforme ilustrado na Figura 38a, tem-se que a pressão p 

varia linearmente ao longo da profundidade, formando um volume trapezoidal. Para determinar a 

forças resultante do campo de pressões hidrostáticas sobre a face lateral inclinada, que tem o 

formado de um trapézio, é conveniente decompor a pressão em um triângulo e um retângulo, 

conforme ilustrado na Figura 38b. 
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h1 

Nível do Líquido 

L 

largura: b 

h2 

h1 

Nível do Líquido 

Volume � 

p2 

L 

largura: b 

Área: L b 

h2 

    
n 

Volume  

p1 O 

a) b) 

 

Figura 38 – Pressão do Liquido sobre Face inclinada 

 

A pressão tem seus valores definidos pela profundidade h1 e h2 e o volume dado pela soma de 

um retângulo e um triangulo conforme ilustrado na Figura 38b: 

 

   
     

  nhhbLR

bLppVbLpV

nVnVnVR

hphp





2/

2/;

;

21

121

2211

















 

 

O ponto de aplicação da força resultante da pressão do liquido corresponde ao baricentro do 

volume das pressões. 

 

Exemplo: Comporta 

Considere uma comporta AB de comprimento L submersa no fluido em repouso a uma 

profundidade h1 instalada em um canal de profundidade h2. Considerando o canal com largura b, 

articulação em A e apoio simples em B, determinar a força resultante normal equivalente do 

volume das pressões na comporta e a reação no apoio em B. 
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h1 

Nível do Líquido 

L 

Canal de 
largura: b 

h2 

Volume � 

p2 

L 

largura: b 

Área: L b 

    
n 

Volume  

p1 
B 

A 

DFCL 
    
RA 

       
B n 

       
R n 

Comporta de 
comprimento: L 

    
 

A 

B 

 

Figura 39 – Comporta em Canal 

 

Resolução: Sistema: comporta de comprimento L apoiada nos vínculos A e B submersa no 

fluido. Diagrama de forças: Volume das pressões e Reações nos vínculos A e B. Referencial e 

pólo: 


nA . Teoremas: Volume das pressões, Estática da comporta. 

 

   
     

  nhhbLR

bLppVbLpV

nVnVnVRhphp


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2/;

;
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













 

 

O local de aplicação da resultante do volume das pressões é o baricentro do volume, determinado 

por: 

 

             
       

         
    
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 
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

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




























 

 

Fazendo o equilíbrio da comporta em torno do pólo em A obtêm-se da equação de momentos: 
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   
 
 

 

 
Lb

hh
B

nBLnhhbLL
hh

hh

BABRAGM

n

n

A


















3

2

2/
3

2

0

21

21

21

21 



     que é a reação em B na direção n


. 

 

Exemplo: Superfície não plana: 

 

Para o caso de superfícies não planas o conceito de Volume das Pressões pode ser utilizado 

facilitando a solução do problema. Considere um tubo cilíndrico de comprimento L que tem 

como seção uma semicircunferência de raio R e está submetido, na sua face externa, à pressão da 

água a partir da profundidade h1, conforme indicado na Figura 40a. Determinar o vetor 

Resultante das pressões sobre a calota semi-cilindrica. É dado o peso específico da água:   = ρ g. 

 

 
Nível do Líquido Volume 

    
n 

p 

2 R 

largura: b 

2 R 

h 

2 R 
a) b) c)  

Figura 40 – Superfície semi-cilindrica 

 

Inicialmente note que o campo de pressões é sempre perpendicular à superfície circular, 

conforme ilustrado na Figura 40b. Note também que as componentes horizontais da pressão 

sobre a calota se anulam. Considere agora que o volume das pressões sobre a base do semi-

cilindro com área (2R b), na profundidade h = R e largura b, conforme ilustrado na Figura 40c , 

corresponde à:         bRbRhAreapnVRBase
222  


. Finalmente o volume das 

pressões sobre a calota semi-cilindrica será o valor anterior menos a área da calota:  

     bRbRRnVVRCalota 2/22/2 222   


. 

Verifique que para uma profundidade genérica h > R a Resultante será:    

 2/2 RhbRRCalota  


. 
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Princípio de Arquimedes: 

 

"Todo corpo mergulhado num fluido em repouso sofre, por parte do fluido, uma força vertical 

para cima, cuja intensidade é igual ao peso do fluido deslocado pelo corpo." 

Considere um cubo de aresta a mergulhado integralmente num fluido em repouso de peso 

específico:   = ρ g, conforme ilustrado na Figura 41a. 

 

 
Nível do Líquido 

Volume 

    
n 

h 

a 

largura: a 

a) b) c) 

a 

p 

a 

p 

a 

mg 

largura: a 

 

Figura 41 – Superfície semi-cilindrica 

 

Inicialmente note que o campo de pressões é sempre perpendicular à superfície do cubo, 

conforme ilustrado na Figura 41b. Note também que as componentes horizontais da pressão 

sobre os lados opostos do cubo se anulam. Considere agora a força resultante do volume das 

pressões sobre a base inferior do cubo com área (a2), na profundidade h = a e largura a, 

conforme ilustrado na Figura 40c , corresponde à: 

       32 aahAreapnVR  


.  

Note que no equilíbrio do corpo totalmente submerso, o volume de liquido deslocado pelo cubo 

deve ser igual a peso próprio (mg), ou seja, para corpos com densidade igual a do fluido. Essa 

relação vale para qualquer profundidade, pois ao submergir, haverá campos de pressões 

adicionais idênticos na face superior e na face inferior do cubo. 



ESTÁTICA 

RSB Mecânica I – PME3100 LDSV-POLI-USP 

76

 

Exemplo: Barragem 

 

A Figura 42a mostra a seção transversal de uma barragem de gravidade com altura D, projetada 

para suportar uma lâmina d´água de altura h . Sabe-se que não há infiltração de água entre o solo 

e a barragem e o coeficiente de atrito nessa interface é . São dados os pesos por unidade de 

volume da água, A, e do material da barragem B. A largura da barragem é L (perpendicular ao 

plano da figura). Determinar o mínimo valor que deve ter a dimensão a da barragem para que ela 

não escorregue. Sabendo que o coeficiente de atrito entre a barragem e o solo é ; qual o mínimo 

valor que deve ter a dimensão a da barragem para que ela não tombe? 
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Figura 42 – Barragem 

 

Resolução: Sistema: barragem com vínculo de apoio distribuído; Diagrama de Pressões e 

DFCL; Referencial e Pólo Oxy; Teoremas: Centro de Massa, Resultante do Volume das 

Pressões hidrostáticas, Equilíbrio Estático. 

a) a posição do centro de massa da barragem em relação ao sistema Oxy indicado na Figura 42b; 

     
 

     
 

D
aDaD

DaDDaD
y

a
aDaD

aaDaaaD
x

G

G

12

5

2/2

3/2/22/

12

23

2/2

3/222/22/2













 

b) a Resultante das pressões hidrostáticas sobre a barragem conforme a Figura 42c; 

  2/2/ 2LhhLhAreapnVR AA  


 

c) a posição do baricentro dessas pressões, em relação ao sistema Oxy indicado; 
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3/;3 hyax BB   

d) o mínimo valor que deve ter a dimensão a da barragem para que ela não escorregue, sabendo 

que o coeficiente de atrito entre a barragem e o solo é ;. Para essa condição atFR


  sendo o 

peso da barragem aDLmgP B 2 : 

D

h
aaDLLhPR

B

A
BA






4
22/

2

min
2 


 

e) o mínimo valor que deve ter a dimensão a da barragem para que ela não tombe. Neste caso a 

reação normal será aplicada no ponto O. Para não tombar o momento do peso próprio da 

barragem deve ser maior ou igual ao momento da resultante da pressão hidrostática. Assim, 

tomando o momento em relação ao pólo O, obtêm-se: 

       
D

h
aLh

h
aDLaRymgxM

B

A
ABBGO

23
2/

3
2

12

23 3

min
2




 




















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11. ATRITO 

 

Observações experimentais constatam que um corpo em repouso apoiado sobre um plano 

submetido a uma força tangencial aplicada F


 (ou momento M


), permanecerá imóvel até a 

força (ou momento) atingir um valor limite a partir da qual o corpo inicia seu movimento. No 

plano de contato, o movimento pode ser de translação com direção determinada, de rotação de 

rolamento com eixo alinhado com o plano ou pivotamento quando o eixo de rotação é 

perpendicular ao plano. Desta forma classifica-se os tipos de movimento como: 

 

 Movimento de Escorregamento; 

 Movimento de Rolamento; 

 Movimento de Pivotamento. 

 

Para cada caso de tendência ao movimento, uma relação específica é identificada e relatada a 

seguir. 

 

11.1. Atrito de Escorregamento 

 

Quando o corpo em repouso apoiado sobre o plano for submetido a uma força tangencial 

aplicada F


com direção definida, haverá uma força de retenção na direção oposta que impede o 

movimento (princípio da ação e reação – 3ª Lei de Newton). Tal força é chamada de força de 

atrito Fat. Uma relação linear entre a força ativa e a força de atrito é observada, conforme 

apresentado na Figura 43. Note, entretanto que a relação linear ocorre apenas até o limite de 

aderência a partir do qual o movimento se inicia e a força tende a ficar constante. 
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Fat 

 
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 

 
F 

 
|F| 

Fat 

N 

|Fat|   N 

 

Figura 43 – Relação entre a força ativa e a força de atrito 

 

Conforme proposto por Coulomb (1736-1806) a força de atrito não ultrapassa um valor 

proporcional a força normal N de contato de forma que: 

 

 NFat   (60) 

 

O escalar   é chamado de coeficiente de atrito estático, sendo função da rugosidade superficial e 

das características dos materiais dos corpos envolvidos. Em escala macroscópica o atrito é dito 

seco se as superfícies não forem lubrificadas. Na iminência do movimento a força de atrito Fat 

atinge seu limite máximo a partir do qual o movimento de deslizamento se inicia: 

 

 NFat   (61) 

 

Se houver contaminação ou lubrificação das superfícies o valor do coeficiente de atrito se reduz. 

Para movimento com escorregamento intenso há possibilidade formação de substrato de auto 

contaminação e o coeficiente de atrito também diminui (coeficiente de atrito dinâmico - D). 

 

Cone de atrito – Para uma reação normal N, o valor máximo da forças de atrito é N. Isso 

significa que se a força aplicada F


 for interior ao cone (abertura  = arctan ) conforme 

ilustrado na Figura 44, não haverá escorregamento ( NFat   ). 
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Figura 44 – Cone de atrito no Movimento de Deslizamento 

 

Plano inclinado – o valor máximo de inclinação de um plano para o que um corpo não 

escorregue para baixo é dado por: MAX = arctan . 

 

 

11.2. Momento de Atrito de Rolamento 

 

Quando um cilindro é propelido a rolar sobre uma superfície, surge um binário reativo cujo 

momento se opõe à tendência ao movimento de rotação. Este binário chama-se de binário de 

atrito de rolamento Matr. Considere um disco submetido a uma força F que tenta induzir o 

rolamento sobre um superfície plana, conforme ilustrado na Figura 45a. A explicação física do 

aparecimento do binário restritivo supõe que a superfície de apoio se deforme, de maneira que o 

ponto de contato C se dá a uma distância  a frente do ponto que seria de contato se a superfície 

não se deformasse, conforme ilustrado na Figura 45b (Giacaglia, 1982). Neste caso o coeficiente 

de atrito de rolamento é definido como uma distância . Note que no caso real, mesmo materiais 

duros (por exemplo: roda de aço do metrô) haverá sempre um deformação mesmo que muito 

pequena. 
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Figura 45 – Atrito de Rolamento 

 

Antes de iniciar o movimento, verifica-se pelas fórmulas de equilíbrio ( 00  CMeR


), 

utilizando o diagrama de forças sobre o corpo livre, conforme ilustrado na Figura 45b, verifica-

se que: 

 

 

   













0

0

0

PFRM

NP

FF

C

at



                














PFR

PN

FFat



 (62) 

 

Portanto quando há tendência ao rolamento, devido ao momento ativo externo ( FR  ) haverá 

uma resistência a este movimento caracterizado por um momento de atrito de rolamento Matr tal 

que: 

 

 NM atr   (63) 

 

Na iminência do movimento o momento de atrito de rolamento Matr atinge seu limite máximo a 

partir do qual o movimento de rolamento se inicia: 

 

 NM atr   (64) 
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Exemplo: Disco Sobre Plano 

 

Considere um disco de raio R e peso P, apoiado sobre um plano com inclinação ., conforme 

ilustrado na Figura 46a. Qual o máximo valor de  compatível com o equilíbrio (Giacaglia, 

1982). Considere os coeficiente de atrito de escorregamento  e coeficiente de atrito de 

rolamento . 

 

Resolução: a) Sistema: Disco de raio R e peso P e vínculo de apoio em C b) DFCL; c) 

Referencial: Cxy; d) Teoremas: para a condição estática tem-se: 0


 iF ; 0


CM ;  

NFat     e  NM atr    
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Figura 46 – Disco no Plano Inclinado 

 

As forças externas aplicadas ao disco em equilíbrio são obtidas do DFCL, ilustrado na Figura 

46b, incluindo a força de atrito atF  aplicada no ponto C e momento de atrito de rolamento 

NM atr   aplicado no disco devido ao afastamento   da aplicação da força normal N, 

resultando nas seguintes equações estáticas para o problema plano: 










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
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


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
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Logo tem-se que o ângulo de inclinação máximo do plano será o mínimo entre os valores 

obtidos:     R/,mintan    

 

 

11.3. Momento de Atrito de Pivotamento 

 

De maneira genérica, dois corpos convexos em contato elástico com tendência ao movimento 

relativo angular devido a forçamentos ativos, desenvolvem forças e momentos reativos de 

contato aplicadas mutuamente na superfície comum de contato. Sendo os corpos convexos, 

haverá um plano tangente   no ponto de contato. Quando o corpo é propelido a pivotar sobre um 

superfície do outro, surge um binário cujo momento se opõe à tendência ao movimento de 

pivotamento. Este binário chama-se de binário de atrito de pivotamento Matp. Esta hipótese é 

baseado na existência de uma área de contato do corpo elástico deformado onde há distribuição 

da força ativa normal de contato e reações tangenciais de atrito formando binário.  

 

Quando um corpo tende a girar em direção definida kz


 , conforme ilustrado na Figura 47 

ocorre o binário de atrito de pivotamento kMM atpatp


 . Este valor é obtido pela integração das 

forças tangenciais que se opõem à tendência ao pivotamento (França, 2011) resultando em: 

 

 NRM atp 
3

2
 (65) 
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Figura 47 – Atrito de Pivotamento 



ESTÁTICA 

RSB Mecânica I – PME3100 LDSV-POLI-USP 

84

 

De maneira similar aos casos anteriores, na iminência do movimento o momento de atrito de 

pivotamento Matp atinge seu limite máximo a partir do qual o movimento angular de pivotamento 

se inicia: 

 

 NRM atp 
3

2
 (66) 

 

 

Exemplo: Bloco Deslizando ou Tombando 

 

O bloco homogêneo de peso P e largura 2a está em repouso sobre um plano horizontal, 

conforme ilustrado na Figura 48a. Calcular a máxima força horizontal F aplicada na altura h, 

compatível com o equilíbrio do bloco (França, 2011).  
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Figura 48 – Bloco Deslizando ou Tombando 

 

Resolução: a) Sistema: bloco de massa m e vínculo de apoio distribuído AB; b) Diagramas: 

DFCL; c) Referencial: Oxz e pólo em B; d) Teoremas: NFat  . Na iminência do movimento 

(sistema estático) valem: 0 iFR


; e   0 iiG FOPM


 e  NFat  . Note que para 

o apoio distribuído a posição da resultante da reação normal N tem posição que pode variar (x). 

Analisando o DFCL da Figura 48b e considerando o pólo em B, constata-se no equilíbrio 

estático que: 
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




























NxmgaFh

mgN

FF

NxmgaFhM

mgN

FF at

B

at

0

0

0

 

Da segunda equação obtêm-se que mgN  . Da primeira equação considerando a iminência da 

tendência ao deslizamento, obtêm-se (utilizando NFat  ): mgFdeslisa  . Da terceira equação 

de momento, considerando a tendência ao tombamento, a reação normal N do plano sobre o 

bloco resulta aplicada na extremidade B tal que:  x = 0, obtêndo-se portanto:  hmgaFtombam / . 

Portanto a valor da força máxima na iminência do movimento será o mínimo entre os dois casos 

(tombamento e deslizamento):    mghmgaF ,/minmax   

 

Exemplo: Cilindro Deslizando ou Rolando 

 

Um trator equilibra o tronco cilíndrico homogêneo de peso P e largura L ao longo da rampa 

inclinada (inclinação ). Nota-se que o cilindro tem dois pontos de contato, com a rampa em C e 

a pá do trator em E, que possuem o mesmo coeficiente de atrito 1 , conforme ilustrado na 

Figura 49a (França, 2011). Determinar os valores do coeficiente de atrito   para que o cilindro 

esteja na iminência de:  

a) rolar para cima sem escorregando sobre a rampa  ou  

b) escorregar para cima na rampa  (sem escorregar na pá). 
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Figura 49 – Cilindro Rolando ou Escorregando 
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Resolução: a) Sistema: cilindro com vínculo de apoio em C e E; b) Diagramas: DFCL; c) 

Referencial: Oxz e Pólo em G; d) Teoremas: Equações de equilíbrio e relação de Coulomb 

NFat  . Na iminência do movimento (sistema estático) valem:  0 iFR


;  

  0 iiG FOPM


  e  NFat  .  

As forças externas aplicadas ao cilindro em equilíbrio são obtidas do DFCL, , conforme ilustrado 

na Figura 49b, resultam para o problema plano nas seguintes equações: 





























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






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sen

0

0cos

0sen

 

 

a) Na iminência de rolar no plano (ponto C) e, portanto escorregar na pá (ponto E) tem-se: 

  





sen1

sen
mgN

TTT
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NTT

NTT
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
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    
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 451tan   

b) Na iminência de escorregar no plano (ponto C) tem-se:   451tan   

No caso de  451tan    o cilindro estará na iminência de escorregar em qualquer 

contato. 

 

Exemplo: Movimento do Carretel 

 

Considere um carretel com raio interno menor r, rolando sobre uma guia plana AB, apoiado no 

ponto C, conforme ilustrado na Figura 50a. O carretel está submetido a uma força horizontal ( F


, 
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E ) aplicada pelo fio ideal, que se enrola na parte externa do carretel de raio R, a partir do ponto 

D. Considerando o coeficiente de atrito em C, suficiente para não escorregar e R > r, determinar 

para qual lado ocorre o movimento? 
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Figura 50 – Carretel submetido a Força 

 

Resolução: a) Sistema: carretel com vínculo de apoio em C e fio DE; b) Diagramas: DFCL; c) 

Referencial: Oxz e Pólo em G; d) Teoremas: NFat  . Na iminência do movimento (sistema 

estático) valem: 0 iFR


;   0 iiG FOPM


  e  NFat  .  

As forças externas aplicadas ao carretel em equilíbrio são obtidas do DFCL, ilustrado na Figura 

50b, resultam nas seguintes equações: 





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Considerando que não há escorregamento F = Fat e sendo (R > r) a equação de momento terá 

valor positivo, portanto tendência à rotação anti-horária ou movimento do carretel para esquerda, 

rolando em torno do ponto C de contato. 
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Exemplo: Contato Múltiplo 

 

Considere o carretel de massa m e centro de massa G que possui distribuição de massa tal que o 

momento de inércia em relação ao seu pólo A é dado por 4/5 2mRJ Ay   (Psub 2017). Sobre o 

carretel, enrola-se um fio ideal sujeito à ação das forças de módulo F constante, mas 

desconhecido. O carretel apóia-se constantemente sobre um suporte em formato “V”. O 

coeficiente de atrito dinâmico entre as superfícies nos pontos D e E é µ e o ângulo θ vale π/4 

radianos, conforme ilustrado na Figura 51. Nessas condições, pede-se o valor das forças 

constantes F aplicadas aos fios e capazes de proporcionar ao carretel uma aceleração angular de 

módulo α. 

 

 

G 

 
 

 
 

R 
2R 

D 

A 

B 

E 

DFCL 

G 

C 
mg 

F 

R 
2R 

D E NE 

x 

z 

 
F 

 
F 

C 

 
 

 
g B F 

FE 

FD 

ND 

A 

 

R 

 
g 

 

Figura 51 – Carretel submetido a Binário de Forças 

 

Resolução: a) Sistema: carretel com vínculo de apoio em D e E e força F no fio ideal em B e C; 

b) Diagramas: DFCL; c) Referencial: Oxz e Pólo em G; d) Teoremas: NFat  . Na 

iminência do movimento (sistema estático) valem: 0 iFR


;   0 iiG FOPM


  e  

NFat  .  

Utilizando o TR e as forças externas aplicadas ao carretel são obtidas do DFCL, ilustrado na 

Figura 51b, resultam nas seguintes equações: 
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
















0
2

2

2

2

2

2

2

2

0
2

2

2

2

2

2

2

2

mgFNFNF

FNFNFFF

EEDDz

EEDDx

 

 

Considerando que há escorregamento entre as superfícies em contato devido ao momento do 

binário de forças, podemos reescrever as equações como: 

   
   











211

011

mgNNF

NNF

EDz

EDx




 

 

Resolvendo o sistema de equações obtêm-se: 

 
 

 
 22 12

12
e

12

12



















mg
N

mg
N ED  

 
 

 
 22 12

12
e

12

12





















mg
F

mg
F ED  

 

Aplicando o TQMA em relação ao centro de massa G obêm-se: 

GGy MJ


                 EDGy FGEFGDFGCFGBjJ


   

EDGy RFRFRFRFJ 22    

 

Fazendo a mudança de pólo do momento de inércia dado 4/5 2mRJ Ay  : 

4/222
, mRJmRJJmdJJ GyAyGyGAGyAy   

 

Substituindo na equação anterior e resolvendo para a força F: 

 
  
















2

2

1

11

2

2
2

4 




mg
FR

mR
            81

2
2





 mRmg
F 


  
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11.4. Direção da Força de Atrito 

 

A direção da força de atrito é sempre contrária à direção da tendência ao movimento (VCx) 

decorrente da ação de uma força ou binário de forças e portanto pode ser determinada pelo 

diagrama de força do corpo livre, conforme ilustrado na Figura 52. O corpo pode estar submetido 

a uma força  GF,


 conforme ilustrado na Figura 52a ou um momento de binário M


 (ver Figura 

52b) ou ambos. Para cada caso de combinação de forçamentos obtêm-se uma direção específica 

para a força de atrito: 

 

 








000e0

000e0

atCxx

atCxx

FVMF

FVMF




 (67) 

 

  

G 

 
F 

C 

mg 

N 
Fat 

VGx 

R 

G 

 
M 

C 

 
 

mg 

N 
Fat 

 
 

R 

 
 

a) b) 
x 

z 

x 

z 

 

Figura 52 – Direção da Força de Atrito 

 

Quando o corpo está submetido simultaneamente à força ativa externa  GF,


 e o momento de 

binário M


, valem as seguintes relações: 

 

 














00/

00/

00/

atCxx

atCxx

atCxx

FVrMF

FVrMF

FVrMF

 (68) 
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Pode haver o caso em que uma única força seja aplicada no ponto D :  DF,


, conforme ilustrado 

na Figura 53a. O sistema equivalente será  GF,


 e um binário FRM 


, conforme ilustrado na 

Figura 53b. 

 

  

G  
F 

C 

mg 

N 
Fat 

VGx 

R 

G 

 
M 

C 

 
 

mg 

N 
Fat = 0 

 
 

R 

 
 

a) b) 
x 

z 

x 

z 

 
F D 

 

Figura 53 – Sistema Equivalente 

 

Como para o sistema equivalente  00/  atCxx FVrMF    ou seja, quando a 

força  DF,


 é aplicada em D, a translação e o rolamento ocorrem sem desenvolver força de 

atrito. 
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13. Anexo A – Notação Vetorial 

 

Existem grandezas físicas que tem intensidade e podem ser descritas por um único valor, por 

exemplo 70 kg de massa. Estas grandezas são denominadas grandezas ESCALARES. Por outro 

lado existem grandezas com intensidade, direção e sentido. Estas grandezas são denominadas 

grandezas VETORIAIS, como por exemplo uma força. 

 

 

13.1. Vetor 

 

Dois pontos A e B com posições definidas formam a reta  AB   que tem direção e magnitude, 

conforme ilustrado na Figura 54. Tal reta constitui um vetor r


 descrito como: 

 

   urAB


   (69) 

 

onde u


 é o vetor unitário (chamado de versor) que caracteriza a direção da reta  AB  ,  é a 

magnitude ou comprimento da reta e o sinal “+” caracteriza o sentido do vetor r


. 

 

 

B 

A 

 
r 

 
u 

 

 

Figura 54 – Pontos A e B formando um Vetor  
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13.2. Reta 

 

Uma reta r


 é definida a partir de um ponto A com direção definida u


. Qualquer ponto B 

pertencente a esta reta é identificado pela seguinte equação: 

 

 uAB


   (70) 

 

onde  é um escalar  , dado por r


  com magnitude ou módulo 222 zyxr 


 na 

direção unitária do versor  rru


/ . 

 

13.3. Plano 

 

Um plano  é definido por uma reta r


 (dois pontos A e B) e um ponto adicional (C) conforme 

ilustrado na Figura 55. Tomando as duas retas concorrentes o plano  tem orientação definida 

pelo produto vetorial: 

 

     vrACABk


  (71) 

 

 

B 
A  

r 

 
u 

C 

 
k 

 

 

Figura 55 – Descrição de um Plano 

 

Por uma reta passam infinitos planos. Dois segmentos de retas podem ser: 

 

 Concorrentes (formam um plano e se cruzam em ponto definido); 
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 Paralelos (formam um plano mas não se cruzam); 

 Reversos (não formam um plano e não se cruzam). 

 

13.4. Versores 

 

Considere o sistema de coordenadas Oxyz, com eixos ortogonais independentes, ilustrado na 

Figura 56. A orientação de cada eixo x, y e z do sistema de coordenadas cartesiano é identificado 

por vetores unitários chamados de VERSORES. Utiliza-se a seguinte notação de versores 

unitários keji


,  conforme ilustrado na Figura 56. 

 

 

 

O 
y 

x 

z 

 
i 

 
j 

 
k 

 

Figura 56 – Sistema de Coordenadas e Versores 

 

Vetores que representam no espaço 3  podem ser: 

 

 PARALELOS; 

 CONCORRENTES; 

 REVERSOS. 
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13.5. Representação Vetorial 

 

A representação de um vetor está associado ao sistema de coordenadas adotado. Considere o 

sistema de coordenadas Oxyz, cartesiano no espaço 3 , orientados segundo a base de versores 

unitários  keji


,   independentes. O vetor r


 que caracteriza a posição do ponto P no espaço 3  

é representado nesta base por três escalares (x, y, z) sendo respectivamente um em cada direção, 

conforme apresentado na Figura 57: 

 

   kzjyixrOP


     ou       T
zyxzyxr  ,,


 (72) 

 

 

P 

O 

x 

y 

z 

 
r 

y 

x 

z 

 
i 

 
j 

 
k 

 

Figura 57 – Representação de Vetor 

 

outras formas de representação podem ser utilizadas. Por exemplo espessar o vetor na forma 

matricial (que considera implicitamente uma determinada base) ou em outra base: 

 

    


















z

y

x

zyxOP
T

,,       ou        321 EeEeEerOP zyx


  (73) 
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O MAGNITUDE do vetor, que corresponde ao seu comprimento (ou módulo), é obtido por sua 

norma: 

 

 222 zyxr 


 (74) 

 

Note que o norma ou módulo do vetor r


 é invariante e independe da base que o descreve. 

 

Para o vetor  AB   onde  AAA zyxA ,,  e  BBB zyxB ,,  tem-se: 

 
        

     222

,,

ABABAB

ABABAB

zzyyxxr

zzyyxxABr









 (75) 

 

 

13.6. Rotação de Base 

 

Se o vetor posição r


 for expresso em outra base, apenas suas componentes se alteram (o módulo 

permanece inalterado). Considerando por simplicidade apenas um movimento plano, na base 

Ee1e2 e na base Oxy rotacionada do ângulo  . Pode-se expressar a posição do ponto P como: 

 

         jirjyixrOPeerr xyE


  sencossencos 21 (76) 

 

 

e1 

 

e2 

E  O 

y 

x 

P 

  
i 

  
j 

 

 

  
r 

 

Figura 58 – Rotação de Base 
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Observe que as coordenadas em cada base são distintas para o mesmo vetor. Representa-se a 

conversão dos versores das bases na forma matricial como: 

 

 




























2

1

cossen

sencos

e

e

j

i











 (77) 

 

 

13.7. Produto Escalar 

 

Na geometria analítica o PRODUTO ESCALAR entre dois vetores veu


, é um escalar que 

corresponde a projeção de um vetor sobre o outro, conforme ilustrado na Figura 59a. Lembrando 

que o produto escalar de dois versores unitários ortogonais é dado por: 

 

 

1;0;0

0;1;0

0;0;1







kkjkik

kjjjij

kijiii







 (78) 

 

Portanto o produto escalar de dois vetore é obtido por: 

 

 

   

cos

...

e

3

1
332211

312111321321

321321












vuvu

vuvuvuvuvuvu

kviujviuiviukvjvivkujuiuvu

kvjvivvkujuiuu

i
ii









 (79) 

 

onde  é o ângulo formado entre os dois vetores. 
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13.8. Produto Vetorial 

 

O PRODUTO VETORIAL dos vetores veu


, nesta ordem, é o vetor único vu


  3  

(Carmo, 1976) caracterizado por: 

 

   ),,(det vuwvuw 


 (80) 

 

para qualquer sistema de coordenadas unitário 3w


. O determinante ),,(det vuw  significa 

que se expressa na base natural {ei} no 3  onde:  i = 1, 2 e 3. 

 

 

3

21

21

2

31

31

1

32

32

321

321

321

3

1

3

1

3

1

),,det(

e;

e
vv

uu
e

vv

uu
e

vv

uu
vu

vvv

uuu

www

vuw

evveuueww
i

ii
i

ii
i

ii





 






 (81) 

 

onde: 332211 eweweww 


  é uma base unitária:  1321  www . 

 

Propriedades: 

 

a) vuvu


    (produto vetorial ou cruzado); 

b) uvvu


    (ordem dos termos afeta o produto); 

c)   vwbvuavwbua


  (propriedade distributiva); 

d) 0 vu


   (somente se u e v forem linearmente dependentes - alinhados); 

e)     0 vvuuvu


 (pois       0 uvuuuvu


 pois são paralelos); 

 

Decorre de e) que o produto vetorial não nulo é normal ao plano gerado por vu


e . O produto 

vetorial tem modulo idêntico à área do paralelogramo formado pelos dois vetores vu


e  e tem 
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direção perpendicular ao plano formado por eles, conforme ilustrado na Figura 59b, sendo obtido 

na base  keji


,   por: 

 

 

     kvuvujvuvuivuvuvu

vvv

uuu

kji

vu







122131132332

321

321det




 (82) 

 

 sen vuvu


 (83) 

 

onde  é o ângulo formado entre os dois vetores, conforme ilustrado na Figura 59b. 

 

 

  
u 

  
v 

 

        
h = |v| sen  

e2 

E e1 
  
u 

  
v 

 

  
|v| cos  

e2 

E e1 

Produto 
Escalar 

Produto 
Vetorial 

a) b) 
 

Figura 59 – Produto Escalar e Vetorial 

 

Note que o Produto Escalar corresponde a magnitude da projeção do vetor v


 sobre o versor 

unitário u


 ( cos vuvu


), conforme ilustrado na Figura 59a. O Produto Vetorial é um 

vetor de magnitude corresponde à área do paralelogramo formado pelos vertores vu


e  

( sen vuvu


) que tem a direção ortogonal ao plano formado por vu


e , conforme 

ilustrado na Figura 59b. 

 

Finalmente se os vetores:  u(t) = (u1(t), u2(t), u3(t))  e  v(t) = (v1(t), v2(t), v3(t))  variáveis no 

tempo, são diferenciáveis no intervalo (a, b) do 3 , com t  (a, b) decorre que: 
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  
dt

vd
tutv

dt

ud
tvtu

dt

d






 )()()()(  (84) 

 

 

REGRA DA MÃO DIREITA: O produto vetorial pode ser apreciado no espaço e realizado de 

forma facilitada utilizando a regra da mão direita, conforme ilustrado na Figura 60.  

 

 

a) 

 

 
 

 
i 

 
j 

 
k 

+ 

 

 

b) 

 

Figura 60 – Regra da Mão Direita 

 

Note que o produto vetorial é um vetor perpendicular ao plano formado pelos outros dois 

vetores, conforme ilustrado na Figura 60a. Deste forma tem-se que o produto vetorial dos 

versores ortogonais kabjbia


  (veja na Figura 60a) resultando o sentido anti-horário como 

positivo conforme ilustrado na Figura 60b. Utilizando novamente o determinante para os 

versores jei


 confirma-se que: 
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 e  (85) 
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O PRODUTO MISTO de três vetores cba


e,  é um escalar que corresponde ao volume do 

paralelepípedo com área da base formada pelo produto vetorial (termos entre parêntesis) vezes a 

altura (produto escalar): 

 

      acbbaccba


  (86) 

 

A sequência dos vetores pode ser permutada e basta que dois vetores sejam alinhados (produto 

vetorial nulo) para que o produto misto seja nulo. 

 

DUPLO PRODUTO VETORIAL 

 

      cbabcacba


  (87) 

 

Note que o produto vetorial  cb


  será um vetor perpendicular ao plano formado por eles. Ou 

seja, não terá componentes na direção deste plano. Portanto o produto vetorial  cba


  não 

terá componentes na direção de a


 , conforme o lado direito da equação. 

 

Na forma matricial: 

 

      cããcba 


 (88) 

 

onde  a~  é a representação matricial anti-simétrica do vetor [a]. 

 

 


