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1. INTRODUGAO

Esta monografia resume as notas de aula deste autor na disciplina de Mecanica I (PME3100),
elaborada ao longo do seu aprimoramento didatico junto a equipe de dindmica do Departamento
de Engenharia Mecanica (PME) da Escola Politécnica da Universidade de Sao Paulo (EP-USP).
O texto pressupde que o aluno domine os conhecimentos elementares de algebra vetorial, algebra
linear e de célculo diferencial e integral, adquirido nas disciplinas do primeiro ano basico

(biénio) do curso de engenharia.

A motivagdo do curso ministrado pelo Departamento de Engenharia Mecanica da Escola
Politécnica da Universidade de Sao Paulo (PME) é formar conhecimento fundamental sobre
movimentagdo de particulas e corpos rigidos com objetivo de identificar trajetorias e solicitagdes

para efeito de projeto mecanico.
O curso esta dividido em trés etapas, a saber:

e 1°Parte — ESTATICA
e 2°Parte — CINEMATICA
e 3°Parte — DINAMICA

O conjunto de notas de aula se inicia pelo trato da ESTATICA de particulas, corpos rigidos e
sistemas estruturais que serdo modelados e analisados. Na CINEMATICA, os movimentos e
composi¢do de movimentos sio abordados. Em DINAMICA os teoremas de energia (Teorema
da Energia Cinética - TEC), Newton (Teorema da Resultante - TR) e Euler (Teorema da
Quantidade de Movimento Angular - TQMA) sdo apresentados e utilizados. A notagdo vetorial ¢

utilizada sistematicamente ao longo deste texto (Boulos, 1997).
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2. CONCEITOS BASICOS

Sdao CONCEITOS BASICOS DA MECANICA NEWTONIANA os seguintes topicos:

ESPACO: o espago geométrico Euclidiano corresponde a nogao dos conceitos de ponto (e sua
localizagdo), reta (entidade que une dois pontos), distancia entre pontos e angulos entre retas. As
grandezas basicas de medida sdo o comprimento (medido em metros) e o angulo (medido em

radianos).

TEMPO: refere-se a nocao de sucessao de eventos simultineos, com os conceitos de instante,
ordem e intervalo constante de tempo. O tempo pode ser medido por simultaneidade de variacao
de movimento constante (rotacdo angular do sol ou dos ponteiros de um relégio). A grandeza

basica de medida € o intervalo de tempo, que ¢ quantificado em segundos.

MATERIA: corresponde a idéia basica de quantidade de massa de um corpo, que é medida por

comparagdo com um padrio e expressa em quilogramas.

Sistema Internacional de Unidades (S7) — Sistema consistente utilizado para quantificar as
grandezas de base independentes. As utilizadas de base no S7 sdo: comprimento, massa, tempo,
corrente elétrica, temperatura termodindmica, quantidade de substancia e intensidade luminosa.
As unidades de base correspondentes aos padrdes do SI sdo: metro, quilograma, segundo,

ampere, kelvin, mol e candela.
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3. FORCAS

A observacgao e a experiéncia mostram que o movimento (ou equilibrio) de um corpo se modifica
por efeito da interagdo com outros corpos. As forgas podem ser de CONTATO ou de natureza
de CAMPO com acao a distancia. Chama-se forca a grandeza fisica que quantifica a acao
mecanica de interagdo de um corpo sobre outro. Esta interacao tem efeitos iguais e contrarios em
cada corpo (principio da acdo e reagdo, preconizado na 3° lei de Newton), ocorrendo na regido de

contato ou a distancia devida a gravitacao universal ou forgas de campo.

Na realidade os corpos em contato se deformam localmente, constituindo uma regiao mutua de
contato onde a forca ocorre de maneira distribuida. Entretanto esta distribui¢do pode ser reduzida
a uma resultante com ponto especifico de aplicacdo. A forca ¢ uma entidade que pode ser
observada apenas de forma indireta por “sensores” que percebem sua intensidade por

deformacao EQUIVALENTE (ex. pressionando a ponta dos dedos).

3.1. Representacao da Forga

Verifica-se que a for¢a pode ser adequadamente representada por uma grandeza vetorial, pois
tem magnitude, dire¢do e sentido. Tipicamente a interagdo entre corpos rigidos convexos ocorre

idealizadamente por uma for¢a aplicada em um ponto de contato. Num sistema de coordenadas
tri-ortogonal, a forga F que tem ponto de aplicagio P , sendo descrita na base de coordenadas
Oxyz por um vetor do tipo:

F=Fi+F j+Fk onde (P-O)=xi+yj+zk (1)

conforme representacgao vetorial apresentada em Anexo no item 13.5.
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3.2. Sistema de Forgas

Um sistema de forcas S ¢ composto por conjunto de Ij“l forgas aplicadas em P; pontos especificos

sendoi=1, 2, 3, ..., n, conforme ilustrado na Figura 1.

F=F,i+F,j+F,k e (P-0)=xi+y j+zk )
—> ,_7 —
—)I Ps
F
P, P, N !
O\fz
P; N
Fs
P3/
Sistema de
E; Forgas

Figura 1 — Sistema de Forg¢as

3.3. Resultante de Sistema de Forgas

A RESULTANTE R de um sistema de forgas § formado por (Fi, P) sendoi=1,2,3,..,n,

conforme ilustrado na Figura 2a, ¢ determinada pelo vetor R obtido da soma das forgas:

R=>F 3)
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. —
PIO/ Fy Fa P
aj
Fi
P, P, 5
) F.
(0] 0\2
P, ’ 2
9
\ F;
P;
— Sistema de
F; Forgas

Resultante

Figura 2 — Resultante de um Sistema de Forcas

Em um sistema de coordenadas tri-ortogonal e portanto independentes, as componentes do vetor

resultante (Rx, Ry, R,) sdo escalares conforme ilustrado no plano da Figura 2b, obtidos

diretamente pela soma em cada direcao:

Exemplo Elementar:

Determinar a Resultante R do sistema de forgas § dado por (F,, B.) para i =3:

F=1i+2j+3k P =(0,2,0)
F, =47 +0 ] +0k aplicadasem P, =(1,1,0)
Fy=07+5] +1k P =(1,0.1)
Resolucio:

R=5i+7j+4k

(4)
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Exemplo Espacial:
Calcule a resultante R do sistema de forgas S, (13[, B), sendo ﬁ; =Fi aplicada em A, (a,O,a) €

}7“2 =Fj aplicada em P, (O,a,O), conforme ilustrado na Figura 3:

Figura 3 — Resultante de Sistema e Forcas

—

Resolucio: Sistema: ( i, ) forgas e respectivos pontos de aplicagao:

1

Portanto basta somar as componentes em cada direcdo das forgas (R, :zin) ¢ obter cada
i=l

componente da resultante R=R_i + R, J+R. k.
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3.4. Principio da Acdo e Reacéao

Quando dois corpos rigidos se tocam a interacao entre eles restringe a inter-penetragdo através de

forcas ATIVAS ¢ REATIVAS. Considere um bloco pressionado pelo cotovelo contra uma

parede. As forgas externas ao bloco, o mantém em equilibrio.

z|

nl

SISTEMA

Figura 4 — Acdo e Reacio

No caso do cotovelo, a forga ativa percebida pelo tecido da pele (sensor de forca), tem seu par
reativo aplicado no bloco e sdo sempre forgas externas aos corpos e sempre associadas aos pares
ativos e reativos de forgas iguais e opostas, conforme a terceira lei de Newron. Existem dois

grandes grupos de forgas:

e FORCAS DE CONTATO ¢
e FORCAS DE CAMPO.

Forcas de contato sdo decorrentes da agdo entre corpos e for¢as de campo sdo devido a agdo a
distancia entre corpos, portanto sem contato. Dois exemplos de for¢cas de campo sdo: a acao

gravitacional e forca de atracdo magnética.

O ATO DE MOVIMENTO decorrente de uma forca é uma TRANSLACAO.
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4. MOMENTO

O Momento de uma forca F aplicada no ponto P em relagdo a um pélo O ¢é definido Pelo

produto vetorial:

My, =(P-O)AF 5)

—

Note que o vetor momento M, ¢é ortogonal ao plano z formado pelo forca F e o vetor

(P -0), conforme ilustrado na Figura 5. Portanto o momento de uma forga se altera em fungio

da magnitude da forca F e posi¢io do polo (R - 0) considerado.

O modulo do vetor M o, considerando as caracteristicas do produto vetorial (ver item 13.8) ¢é

dado por:
|| =|P—O)-|F|-sen 6 =|F]-b 6)

, conforme ilustrado na Figura 5.

onde d ¢ chamado de braco de momento dado por b= ‘M O‘ / ‘17“

Figura 5 — Momento de For¢a em Relacdo a um Pélo
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Note ainda que se a forca for aplicada no ponto @ contido na linha de acdo da forca (u), o

momento nao se altera:

(©-0)nF =[(@-P)+(P-O)InF=(P-0)rF =M, (7

Exemplo de Momento de Forga

Considere a forca (17“ , P) conforme ilustrado na figura. Determine o momento em relagdo ao

polo Q (0, 0, a).

Resoluciio: Sistema: (F,P) = F=Fj P=aj

—

k
—dl=aFi
0

A;[Q :(P—Q)Aﬁz(aj—aE)AFj

Il
S ©
N R~

Anadlise dimensional: é sempre conveniente realizar a andlise dimensional da resposta para
verificar a consisténcia do resultado. Considerando que a forca “F” tem unidade de Newtons e a

coordenada “a” tem unidade em metros, a resposta consistente do momento neste caso deve ter

unidade de Newtons x metro.
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4.1. Momento de um Sistema de Forcas

Para um conjunto § de forgas aplicadas (Fi, P), o Momento das forgas em relagdo ao pole O ¢

dado por:

i, =Y [(R-0)nF] (8)

Note que o momento de cada for¢ca, com ponto de aplicagdo proprio, deve ser calculado

individualmente e depois somado.

1° Exercicio de Momento:

—

Determinar a Resultante R do sistema de forcas S dado por (E,B) e 0 Momento de § em

relagdo a O(1, 1, 0).

F=1i+2j+3k P =(0,2,0)
F,=4i+0j+0k aplicadasem P, =(1,1,0)
R =(1,0,1)

F,=0i+5]+1k
R

=5i+7j+ 4k | Resultante

Calculo do Momento em relagdo a O (1, 1, 0) utilizando M, = Z(B - O)/\ F. e aregra da mio
i=l

direita conforme apresentado no ANEXO 13.8:

bl

My =(B-O)AF, = (17 +17+0k )a(1T +27 +3F)=37 +3 -3
M2 =(P,—O)AF, =07 +0 7 +0k)a (47 +07+0F)=0
M3 =(B—O)AF, =07 ~17 +1k)A(07 +5 +1F)=—67

Momento ]VIO =—3f+3j—3E
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2° Exercicio de Momento:

Calcule 0 momento M o do sistema de forcas .S em relagdo ao polo O, indicado na Figura 6:

Figura 6 — Sistema e Forcas

Resolucéo: Sistema: forcas e pontos de aplicagdo: 13l = Fi aplicada em P, (a,O,a) e 132 =Fj

aplicada em P, (0, a, 0). Determinar o momento em relagdo ao polo O (0, 0, 0):

o= (P -O)nF
i=l1

M, :(af+al€)AEf+(aj)Asz:aFj

Considere agora o polo @ (0, 0, a) e calcule novamente 0 momento:

Portanto a mudanga de pdlo pode alterar a magnitude do momento como também pode mudar a

sua diregao.
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4.2. Binario de Forgas

Existe um par especial de forcas (F, e F, ) aplicadas em pontos (2 e P,) chamado de BINARIO

DE FORCAS, que tem resultante nula e momento diferente de zero (torque). Sao

obrigatoriamente forcas colineares, idénticas e opostas (17“1 = —}7“2 = F), mas nio alinhadas (d),
conforme ilustrado na Figura 7. O momento do binario de forcas tem dire¢dao perpendicular ao
plano formado pelas forcas e independe do polo selecionado (verifica-se pela formula de

mudanga de p6lo).

E:Fx[f+Fyij+FZ[I€ aplicadas em: (B—O):xl.z?+yl.]+zilg 9)
R=F=0 ¢ #,=Y[r-0)nF]-0 (10)

i=l i=1
M, =(R-O)AF +(P,-O)AF, (11)
My=(R~0)nF +(P,~0)n[-F)=[(R-0)-(P,-O)In F (12)

- ‘ -

My=(R-PB)AF ou |M|=|F|-(R-P)sen0=|F|-d = d=|M/|f  (3)

Figura 7 — Binario de Forcas
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Propriedades:

e R=0 ¢ M,#0 = O sistema é equivalente a um binario de forgas.
o M=M 0= M o = O momento do bindrio ndo depende do pdlo selecionado.

e O momento do bindrio de forgas ndo se altera se o ponto de aplicagdo da forca for

transportado ao longo de sua dire¢ao de atuagdo (note que o braco d do binério ndo se altera).

Exemplo de Binario de Forgas

Considere o sistema de forgas (E. , ,.) com caracteristicas de bindrio e determine a resultante e o

momento em relagdo aos polos O (0, 0, 0) e ao pdlo @ (0, C, 0).

(F,0) = F=aj (0-0)=0
(F),A) = F,=-aj  (4-0)=bi

M, =ZZ‘,[(P,-—0)/\1777.]=(0—0)/\13l +(4=O)AFE,=0+bi A(-aj)=abk

=
I
—_
Q
|
Q
A —
>
S]]
+
—_
'
|
1Q
N—
>
=
1l
|
o
<
N —
>
Q
<
+
=
N-l
|
o
<
SN—
>
|
Q
<
N—
1l
Q
S
=

O momento de um bindrio de forgas, portanto ¢ uma entidade que pode ser observada apenas de
forma indireta, pois tem forcas, mas resultante nula e momento diferente de zero.

O ATO DE MOVIMENTO decorrente de um binario de forca é uma ROTACAO.

Proposicao:

Considere uma forga F aplicada no ponto P. Qual o lugar geométrico dos pélos (pontos) para os

quais o modulo do momento dessa for¢a ndo se altera (invariante)?
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Resposta: Um cilindro de raio d idéntico ao bragco de momento, em torno da linha de agdo da

forga.

Demonstracio: O momento da forca F em relagdo ao polo O é: M, =(P-O)AF e tem

modulo igual a: ‘]VIO‘ = |(P—O)|-‘F‘-sent9 ; mas para 0 = m tem-se que |(P—0)-sen6’ =d que
¢ um circulo em torno do ponto P. Como o momento ndo se altera para po6los ao longo da linha

de acdo da forca F, resulta em um cilindro de raio d (c.q.d.), conforme ilustrada na figura. O
valor do momento serd minimo quando d = 0, ou seja, polos coincidentes com a linha de acao da

for¢a geram momento nulo.

Proposicao:

Tente quebrar um palito de comida oriental (hashi) aplicando
forcamentos com as duas maos, apenas nas extremidades.

Qual a estratégia mais facil de quebrar ?

Dai-me um ponto de apoio e levantarei o mundo (Arquimedes, Grécia - 287-212 aC).



ESTATICA

4.3. Forcgas Concorrentes (Teorema de Varignon)

Vetores que representam forgas no espago R° podem ser:

e PARALELOS;
e CONCORRENTES;
e REVERSOS.

O momento de um sistema § de for¢cas concorrentes (ﬁl., P), em relacdo a um polo O qualquer,

¢ igual a0 momento, em relacio a0 mesmo polo, da resultante do sistema de forcas R, aplicada
no ponto de concurso das forcas (Ponto A). Demonstracdo: Considere o sistema de forgas

concorrentes no ponto A, conforme ilustrado na Figura 8a. O momento em relagdo ao polo O ¢

dado por:
Mo = (P, -0
i=1
-
/ ) ;
P, )
—
F,
(0] A\“ , (A-0)
""" ‘z? e N B S — A
- = \O\ﬁ °
P = Fi P
p ¢ Sistema de Forgas Resultante

Concorrentes

Figura 8 — Momento de Forcas Concorrentes




ESTATICA 19

Note ainda que o momento nao se altera quando o ponto de aplicagdo da for¢a permanece sobre a
linha de ag¢do da forca, por exemplo sobre o ponto de concorréncia A. Portanto, conforme

ilustrado na Figura 8b, obtém-se:

4.4. Mudanca de Pélo

Pode ser necessario determinar o Momento do sistema de for¢as em relagdo a outro polo distinto.

Considere outro pdlo @ qualquer, tal que:

Mo=3 (R-O)AF, e My=3 (R-0)rF, (16)

My~M,=3 (B=Q)AF, =Y (B-0)AF, =) (0-O)rF, (17

o
p—
wn
1)
=
H
o
=
Il
=
S
w2
)
o
w2
o)
=i
)
=1
=3
)
w2
)
—_
Q
|
Q
A —
=
=~
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c) Se MQ :A7IO para qualquer 0 = (O—Q)/\R =0 = R=0;
d M 0 ‘R=M o .R=1 .. aproje¢io do momento do sistema sobre a resultante é invariante

para mudangas de podlo. O escalar I ¢ chamado de INVARIANTE ESCALAR do sistema de

forgas.

My,=M,+ (O - Q)/\ R| Férmula de Mudanca de Pélo (18)

Exercicio
Considere o momento em relagdo ao polo O (0, 0, 0), M o, =aF j do sistema de forcas (E, P)
com resultante R = F - (f + ]) apresentado na Figura 6. Determine o momento M o em relagdo ao

polo @ (0, 0, a). Resolucdo: Utilizando a formula de mudanga de poélo:

M,=M,+(0-Q)AR
_ L. S . . (19)
My=aFj—aknF-([+])=aF-(j-j+i)=aFi

4.5. Momento em Relagdao a um Eixo

Considera-se um eixo passando por um ponto O e orientado pelo versor u. Defini-se como
momento do sistema de forgas (E,E) em relagdo ao eixo Ou (ou torque) o escalar M, tal que

(ver detalhes de produto escalar no item 13.7):
M, =M,-u (20)
Algumas propriedades sdo importantes:

a) Uma forca paralela ao eixo Ou nao acrescenta momento ao €ixo.
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b) O valor absoluto do momento de uma forga ortogonal a um eixo ¢ o produto do modulo
da for¢a multiplicado pela distancia da linha de agao da forca ao eixo.

¢) So6 fornecem momentos em relagao ao eixo, forgas ortogonais ao eixo e reversas com ele.

d) O sinal do momento em relagdo a um eixo pode ser identificado pela regra da mao

direita.

Exemplo: Considere 0 Momento do sistema de forgas (E,B) calculado em relagdo ao outro

ponto Q pertencente ao eixo u . Utilizando a férmula de mudanca de p6lo, obém-se:

1)

Note que (O—Q)//ii portanto (O—Q)AR L ii.

Vejam as dedugdes das propriedades de momento em relacdo a um eixo em Franga (2011).
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5. SISTEMAS EQUIVALENTES

22

DEFINICAO: dois sistemas de forcamentos sio equivalentes se tiverem a mesma Resultante ¢

o mesmo Momento em relagdo a um polo. Neste caso, as solicitagdes devem produzir o mesmo

Ato de Movimento a um corpo.

Considere o Sistema de Forcas 4 Fl para i = 1, 2,..., n, aplicadas em pontos P;, conforme

ilustrado na Figura 9:

F;:inl?-i_Fyij—’_F'z[]; €

P=xi+y j+z,k (22)

—
P F,oAR o
1 F 1 P 4 i I:5
—)I Ps
F,
P, P, N
) F.
b o) O\z
—
\ / £
P;
E Sistema A

ﬁ
Rs
ﬁ
M
(0]
Sistema B

Figura 9 — Sistemas Equivalentes

O Sistema A4, conforme ilustrado na Figura 9a possui Resultante ¢ Momento em relacio ao po6lo

O descritos por:

=

~
'

Il
es]!

(@]

Il
—_

(23)




ESTATICA 23

Note que as forcas F, e F, formam um binario de Resultante nula e Momento

M =(P,— P,)A F, com médulo ‘M‘=|P4—P5|/\‘F4‘=d'F.

O Sistema B (conforme ilustrado na Figura 9b) sera equivalente ao Sistema A4 se a resultante € o

momento em relagdo ao mesmo podlo forem idénticas:
R,=R, e M}=M} (24)
A resultante R , deve ser aplicada no ponto O chamado de pdlo de reducdo do sistema de forgas.

Propriedades:

a) O ato de movimento de um corpo ndo se altera, se substituirmos as for¢as aplicadas em um
mesmo ponto pela resultante delas aplicada nesse mesmo ponto, e reciprocamente.

b) O momento de binario de forcas ndo ¢ alterado se o ponto de aplicagdo da forga for
transportado ao longo de sua dire¢ao de atuagdo (note que o braco d do binério ndo se altera).

c¢) Teorema: Todo sistema de forgas ¢ equivalente a uma unica for¢a aplicada num ponto e um

momento de binario.

Exemplo 1: Sistema Nulo
Sistema Equivalente: qual o Sistema B equivalente ao Sistema A, apresentado na Figura 10a.
Resolucio: Sistema A4 de forgas (1[7“1 e }7“2) paralelas, iguais e opostas aplicadas em pontos

coincidentes (£ e P,). Diagrama de forcas. Resultante ¢ Momento em relagdo ao polo O do

Sistema A: R=0; M =0. SistemaB: R=0; M =0 (Figura 10b).
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~{
S| A
1l 1
o ©

~|

Sistema B

Sistema A

Figura 10 — Sistemas Equivalente - Nulo

Aplique forcas similares alinhadas com os dedos sobre o seu celular apoiado sobre a mesa. O

que acontece?

Exemplo 2 — Binario de Forgas
Sistema Equivalente: qual o Sistema B equivalente ao Sistema A4, apresentado na Figura 11a.
Resolucio: Sistema 4 de forgas (1[7'1 e }7'2) paralelas, iguais e opostas (bindrio de forgas)

aplicadas em pontos (£, e P,). Diagrama de forgas. Resultante e Momento em rela¢do ao polo O

do Sistema A: R=0; M =d-Fk .SistemaB: R=0; M =d-Fk (Figura 11b).

ﬁ

? R=0 - —
- M k
M=dF

9 0
9
Fi
>
@/,
R=0
. . —
Sistema A Sistema B M=dF

Figura 11 — Sistemas Equivalente - Binario
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Agora aplique forgas similares com os dedos nfio alinhados (afastados de d) sobre o seu celular

apoiado sobre a mesa. O que acontece? Qual o ato de movimento?

Exemplo 3: Uma Forga

Considere o sistema de forca A4 com (f}, F) aplicada no disco de centro O, conforme

apresentado na Figura 12a. Pode-se obter o Sistema B equivalente ao Sistema A4, com o

introducdo de duas forgas alinhadas iguais e contrarias aplicadas no ponto O (portanto com

Resultante ¢ Momento nulos). Resolu¢do: Sistema 4 com (17“1, P). Adicionar duas forgas
alinhadas, iguais e opostas }73 e 132 aplicadas no ponto O que nao afetam o sistema pois tem
Resultante ¢ Momento nulos, conforme Figura 12b. O Sistema A possui: R=F [ ; M, =r-F k.

Note que o par F, e F, forma o binario M, =r-F k . Finalmente o Sistema B resulta em:

R= F i M o=rF k , portanto equivalente, conforme ilustrado na Figura 12c.

R
¢
oy

Sistema A Sistema B

Figura 12 — Sistemas Equivalente

Note que o sistema de forcamento “tende” a produzir um ato de movimento de translacido na

dire¢do x devido a forga F; e uma rotacio na diregdo z, devido ao binario M, .
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5.1. Reducdao de Sistema de Forgas

Reduzir um sistema de forcas corresponde a obter outro sistema equivalente, que tenha um
nimero minimo de forgas. Da definicdo de sistemas equivalentes, constata-se que o sistema
reduzido minimo consiste de uma unica for¢a (Resultante) aplicada num ponto O qualquer e um

momento idéntico ao momento das forgas do sistema original, em relacdo ao mesmo polo.

Casos possiveis de reducdo de sistemas de forcas:

1)R=0 e M o =0 = Osistemaé equivalente a zero (Tipo 1).

2)R=0 ¢ M 0% 0 = Osistemaé equivalente a um binario de momento M o (Tipo 2).

3) R0 e I=0 = O sistema ¢ equivalente a uma tUnica forca resultante aplicada em ponto
especifico (Tipo 3).

4) R+ 0 e [#0 = O sistema é equivalente a uma forga resultante e um momento (Tipo 4).

Portanto um sistema de forcamentos, composto por forcas e momentos, ¢ equivalente a uma
unica forga resultante aplicada no pdlo de reducao e um binario de momento. Para sistema com

INVARIANTE NULO o sistema sera equivalente a uma unica for¢a aplicada em um ponto

especifico.

O ATO DE MOVIMENTO decorrente de um sistema de forgamentos na sua constituicao mais
ampla ¢ uma ROTO-TRANSLACAO.

Exemplo de Redugao Sistema de Forgas

Considere o sistema § de forgas (17“[, P) conforme ilustrado na Figura 13, com as seguintes

1
caracteristicas e determine a resultante 0 momento em relagao aos polos O e G. Verifique a qual
sistema de forcas mais simples o sistema original é redutivel. Neste caso qual a linha de

aplicacdo da resultante e qual o momento minimo?
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(F,,C) = F,=+ai —aj —ak (C-0)=ak
(F,,G) = F2=—al (G—O):al?+2a]'+alz
F: #3=az?+2aj+alg (4-0)=ai

Figura 13 — Sistema de Forcas S

RESOLUCAO: Sistema S de forcas (131, P.). Diagrama de forcas: conforme a figura,

Referencial e pélo: Oxyz. Teoremas: R = ZFI , M, = Z(B ~O)AF,, I=M,-R.

a) A Resultante ¢ obtida da soma das componentes em cada dire¢ao independente:

F, —+ai-aj—ak
F——ai
F; :+af+2a]+al€

=

=+ai+aj

b) O Momento das forgas ¢ calculado em relagao ao pdélo indicado:



ESTATICA 28

M, =(C-O)AF, +(G-O)AF,+(4-O)AF,

A7IO = alg)A(af—aj—alg +(af+2aj+a lz)A(—af)+(a f)A(af+2aj+a /E)
MO =a’ j+a’i+2d’ k —a* j+2ad E—azj

MO =a’i—a’ j+4d’ k

c) Para que o sistema de forcas seja redutivel a uma tnica forga o Invariante Escalar deve ser

nulo:

I:MO-R:(a2 i—a’ j+4a’ E)-(+af+aj)=a3—a3 =0

Portanto o sistema original S ¢ do tipo 3, redutivel a uma unica forga R desde que aplicada no
local Q tal que o momento do novo sistema §” seja: M o= (Q — 0)/\ R=M o - Entdo identifica-se
as coordenadas do ponto Q com:

(Q—O)/\ﬁ =M0 = (qxf+qyj+qz E)A(af+aj):(a2 i —a® j+4d* lg)

aq, lg—aqy k+aq,j—aq.i= (a2 i—a’ j+4a’ lg) separando nas trés diregdes:

i |-aq,=a’ q.=-da
J saq. =-a’ = Jq.=-a = vparagy=a = (0-0)=5ai+aj-ak
k a(qx —qy)=4a2 q4,=4,+4a

O novo sistema 8" , que ¢ equivalente a §, ¢ composto de uma tunica forca aplica e Q: (R, Q).

Note que a Resultante pode ser aplicada em qualquer ponto @ ao longo da direcio de R .

Exemplo: Sistema de Forgas Concorrentes

O sistema ' de forgas (13[ , B.) concorrentes, conforme ilustrado na Figura 13, tem resultante ndo

nula e invariante escalar nulo. Demonstracdo: o momento de uma forga é sempre o mesmo para
polos ao longo da linha de acdo da forga, inclusive o ponto 4 de concorréncia. Portanto o

momento em relagdo ao polo O ¢ dado por:
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M,=(A-O0)AY'F = M,=(4-0)AR Portanto sistema do tipo 3.

ny -
T
0|

T
’ F2
o AN (A-0)
----- 0325 R BN S— A
ST TP ©
P 2 Fooop
P, Sistema de Forgas Resultante

\ Concorrentes

Figura 14 — Sistema de Forcas Concorrentes

Exemplo: Sistema de Forgas Coplanares

O sistema S de forcas (Fl, B.) coplanares, com resultante ndo nula tem invariante escalar nulo.

Demonstracao: a resultante das forcas serd contida nesse plano. Tomando um poélo pertencente a

plano da linha de acdo das forgas, o momento sera ortogonal a esse plano.

I = MO -R=0 para MO LR. Portanto sistema do tipo 3.

Exemplo: Sistema de Forgas Paralelas
Considere o sistema S de forgas (13,, E) paralelas F, =/ ii. A resultante ¢ o momento em
relagio ao polo O serdo: R = 217“[ = (th)ﬁ e M, = Z(B ~O)AF, = (Z(R —O)-h,.)/\ﬁ .

Finalmente o invariante escalar: [ =M o ‘R=0 para M oll R.  Portanto sistema do tipo 3.
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6. EIXO CENTRAL

Existe um conjunto de pontos formando um eixo, sobre o qual o momento de um sistema de

for¢as produz um MOMENTO MINIMO. Tal eixo é denominado EIXO CENTRAL. Para

determinar a localizagdo de tal eixo vamos apresentar a resolu¢cdo da equacao vetorial com uma

incognita.

6.1. Equacao Vetorial

Resolucio do Produto Vetorial: Determinar a incognita X do produto vetorial:

=i
>
Ql
Il
S

(25)

com X, d e b ndonulose € R’; que é um espaco vetorial de ordem 3 (3 dimensdes).

Considere o plano @ formado pelos vetores X e a quaisquer e

E
ndo ortogonais, conforme ilustrado na figura. Observe que o -
vetor b serd ortogonal ao plano @, devido as propriedades do

produto vetorial, entio blX e também b L a, conforme

%
. a
ilustrado na figura. Portanto a-b =0 (perpendiculares) e /o) |

contidos no plano 7, ortogonal ao plano @.

Pode-se representar o vetor X =(E—O) contido no plano - - ;)

@ como a soma de dois vetores: um na direcdo de a e =
b )

outro perpendicular a @ (e .. ortogonal a b, como ja

estabelecido), conforme ilustrado na figura. -
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i=(E-0) = |i=planb)+ia comAepe R (26)

Substituindo esta expressao na equagao incognita, tem-se que:

- —

planb)l+rdlna=b = |panb)ra=>b (27)
lplan)+2d] lpand)

Tomando o modulo dos termos da equacdo anterior € como os vetores sao perpendiculares,

determina-se o valor para o escalar p:

lol-lal-[p|-la|=[p| = p= (28)

—|2
a

Verificando, a solugdo corresponde ao valor positivo de p, obtém-se finalmente da equacao

incognita a resolugdo para x:

+Ad (29)

com o escalar A qualquer € ‘R que sdo as solugdes da equagdo do produto vetorial com uma
incognita em x . Tal solug¢do correspondente a reta A a (linha pontilhada mostrada na figura) que

passa pelo ponto E. Note ainda que a solucao particular quando A =0, resultaem x L a.

6.2. Eixo de Momento Minimo

Considere o sistema de forgas § com resultante ndo nula e momento M ,. O lugar geométrico

dos ponto E para os quais o0 momento do sistema é paralelo a resultante (M s =h -R) é uma reta

paralela a R . Tal reta ¢ inica e chamada de EIXO CENTRAL do sistema .




32

ESTATICA

Demonstracio: Utilizando a férmula de mudanca de pélo e impondo que M s=h- R obtém-se:

M,=M,+(O-E)AR =  (E-O)AR=M,-h-R (30)
A solugdo de uma equacgao vetorial com uma incognita ¢ dada por:
. o _ anb -
xXna=b = X= |42 +Aa (31
a
(E-O)AR=M,—h-R N (E—O):R/\(MOZ h.R):R/\ZZ\/IO (32)
— T R R
x b

que ¢ o ponto E para o qual o momento ¢ minimo. Portanto os pontos do eixo (E — O) paralelo

para a resultante sdo:
33)

(34)

A determinacdo do escalar A ¢ obtida pré-multiplicando-se escalarmente os dois lados da

equacio anterior por R (o produto triplo com dois vetores paralelos é nulo) obtendo-se:

_RM, _ I (35)

R(E-O)AR=R-(M,-h-R)=0 = & o=

onde I é o invariante escalar definido anteriormente.
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6.3. Momento Minimo

O momento de um sistema de forcas § ¢ MINIMO quando o pblo estiver sobre o EIXO
CENTRAL. Neste eixo o momento tem a dire¢do da resultante sendo minimo e determinado

por:

M, :m-ﬁ (36)

mgl

g‘
=
U

1
2

Demonstracio: Considere um sistema de forgas § com resultante R momento M , em relagdo a

um pélo 0. O momento em relagdo a um polo E ¢ obtido pela formula de mudanca de polo:

M,=M,+(O-E)AR (37)

Utilizando novamente a formula de mudanca de polo para outro polo P, fora do eixo central, tera

momento:

M,=M,+(E-P)AR (38)

M,=hR+(E-P)AR (39)

que mostra que M, ndo € mais paralelo com R pois a ele ¢ somada uma componente ortogonal.

Portanto para qualquer ponto P fora do eixo central, o momento M , ndo € mais o valor minimo.
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Exemplo:
Considere o sistema de forcas S, composto de (I%,Pi) de mesmo moédulo, conforme indicado na

Figura 15. Calcule a resultante R do sistema e o momento MO em relacdo ao podlo O.

Determine a posi¢ao do eixo central onde o momento ¢ minimo e seu valor. Qual o ato de

movimento que o sistema de forcas induziria a um corpo?

Figura 15 — Localiza¢do do Eixo de Momento Minimo

Resolucio: Sistema: forcas e pontos de aplicagdo: 17] =Fi aplicada em P, (a,O,a) e ﬁz =Fj

aplicada em P, (O, a, 0). Resultante e Momento em relagao ao pélo Q (0, 0, a):

]\710 =Zn:(Pi—O)/\I3i =(af+aE)AEf+(a])Asz:aFj
i=1

[=R-My=F(+j)aFj=aF’

=
[

( [—Q)/\Fl. :(azT—i-al;—al;)/\E17+(a]#'—al€)/\F2j:an7
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Eixo Central: Tomando a Resultante e 0 Momento em relagdo ao polo O (0, 0, 0), tem-se:

E:O+(§AMOJ+/I-R:0+(F(f+22?aFjJ+ﬂ-(f+j)

Note que o invariante escalar ndo ¢ nulo (/ =aF?*) e portanto o sistema ndo pode ser reduzido a
uma Unica for¢a. O sistema equivalente serd portanto (R, Q) e M o - Calculando o momento em

relacdo ao poélo E (0, 0, a/2) que pertence ao eixo central (onde o momento € minimo):

]\ZIE :ZH:(R—E)/\E :(al?+a/212)/\E17+(a]—a/2l€)/\F2]:Fa/2(f+])
i=1

Moy =R ()= 47)

Verifica-se que o momento em relacdo ao poélo E pertencente ao eixo central, tem a mesma
diregdo da resultante (i + /) e valor minimo (M =Fal2 (f+]) ). O ato de movimento que o

sistema de forcas induziria a um corpo pode ser composto por uma roto-translacdo conforme

ilustrado na Figura 16.

Fi
' — !
: [ Me .
a a E > E a
i F2 // H F2
! a
=0 - N - O O
“ P, F2 X 0
N
R
Eixo Central Planta Frontal

Figura 16 — Eixo Central e Ato de Movimento
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7. ESTATICA

As ciéncias Mecanicas se propdem a estudar o comportamento de corpos ou sistema de corpos
sob a acdo de forcas. Na ESTATICA, o foco se da nas situacdes de equilibrio, ou seja, quando
ndo ha variagdes das posigdes ao longo do tempo. Em geral, os problemas se referem a
determinar os esfor¢os numa dada configuracdo do sistema, ou determinar a configuracao sob

um dado conjunto de esforgos.

7.1. Forgas Externas e Internas

Em relagdo a um sistema de corpos, sdo ditas FORCAS EXTERNAS, aquelas forcas que

provem da interagdo de contato com outros corpos ndo pertencente ao sistema considerado.

FORCAS INTERNAS sao as forgas desenvolvidas entre corpos pertencentes ao sistema

considerado.

7.2. Principio da Acao e Reacgao

A cada forca proveniente da agao de um corpo 4 sobre um corpo B, corresponde a uma forca de
reacdo diretamente oposta, portanto com a mesma linha de agdo e sentido contrario, proveniente

da agdo do corpo B sobre o corpo 4 (3° lei de Newton).

7.3. Grau de Liberdade

A defini¢do da posi¢do de um ponto no espaco Euclidiano R’ ¢ obtida de forma inequivoca por
trés escalares ou trés graus de liberdade (3 GL). Um corpo requer mais trés angulos de orientacao

(trés escalares), correspondendo a seis graus de liberdade, conforme ilustrado na Figura 17.

(R-O)=F=xi+y j+zk e (p0w) (40)
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—~ \ Posicao e Atitude

Figura 17 — Posicio e Atitude de um Corpo

Note que o angulo ¢ (phi) do corpo foi definido no plano Oxy sobre a projecdo do corpo,

denominado “angulo de direcao”. A “elevagdao” do plano do corpo (versor k ) € quantificada
pelo angulo @ (teta) formado pela linha média do corpo, medido em relagdo a linha projetada no
plano Oxy. Finalmente a rotacdo propria descrita pelo angulo w (psi) em torno do eixo

longitudinal do corpo (linha GT% da Figura 17).

7.4. Vinculos

Um corpo rigido pode realizar 2 tipos de movimento: translacdes em 3 direcdes ortogonais e
rotacdes em trés diregdes possiveis. Vinculos sdo dispositivos mecanicos que permitem apenas
alguns movimentos relativos entre corpos. Os vinculos constituem restrigdes de movimento
relativo de translacio entre corpos realizados por forcas. Os vinculos também podem constituir
restrigdes de movimento relativo de rotacio entre corpos realizada por bindrios de forca
(momentos). Existem varios tipos de vinculos e possiveis combinagdes entre eles, conforme

ilustrado na Figura 18.
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Apoio Anel Articulagéo Guia

Figura 18 — Tipos de Vinculos Planos

Corpos em contato realizam interacao de forgas ativas e reativas de contato. Para corpos

convexos pode haver pelo menos um ponto de contato comum aos dois corpos. Esse tipo de
vinculo ¢ chamado de apoio simples, conforme ilustrado na Figura 18a. Para corpos confinados
a movimento em um plano, interligados por um vinculo do tipo anel (pino) pode haver apenas

movimento relativo de rotacao, conforme ilustrado na Figura 18b. Esta restrigdo de movimento

¢ realizada por uma forca contida no plano (ou suas correspondentes componentes ortogonais).

Tipos de Vinculos em Sistemas Planos:

a) APOIO SIMPLES SEM ATRITO: vinculo unilateral que restringe apenas o movimento de

interpenetracdo entre corpos € permite a rotacao relativa no plano.

b) APOIO SIMPLES COM ATRITO: vinculo unilateral que restringe o movimento de

interpenetracdo entre corpos, 0 movimento tangencial entre corpos e permite a rotacao
relativa no plano.

c¢) ANEL: Vinculo que restringe os movimentos relativos de transla¢ao no seu plano;

d) ARTICULCAO (com pino): Vinculo que restringe os movimentos de translagdo no seu
plano;

e) GUIA unidirecional; Permite apenas um movimento de translagao.

Tipos de vinculos de sistemas espaciais:

f) ENGASTAMENTO: vinculo que restringe todos os movimentos relativos (trés translagoes e

trés rotagdes) , conforme ilustrado na Figura 19a.
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g) ARTICULACAO 3D (joystick): Vinculo que permite a movimento de rotacio em trés
direcdes, conforme ilustrado na Figura 19b.

h) GUIA ARTICULADA: Vinculo combinado que permite o movimento de translacdao e de

rotagdo em uma dire¢do, conforme ilustrado na Figura 19c.

Engastamento . - Guia
I Articulagao Articulada

Figura 19 - Tipos de Vinculos Espaciais

E possivel constituir vinculos combinados interligando ligagdes basicas, liberando apenas

determinados tipos de movimento relativo.

7.5. Elementos Vinculares

Sao chamados de elementos ideais de ligacao vinculares os dispositivos que restringem um ou

mais movimentos.

a) FIOS: Dispositivo de vinculo que restringe o movimento relativo entre suas extremidades
apenas na sua dire¢do (fio ideal sem massa e inextensivel), conforme ilustrado na Figura 20a.
A restricdo ¢ realizada por uma forca da direcdo do fio.

b) POLIAS: Dispositivo de vinculo que funciona com um fio passante por um disco articulado
num anel e apenas muda a dire¢cdo do fio e portanto da sua forga (polia ideal sem massa e
sem atrito no anel), conforme ilustrado na Figura 20b.

c) BARRA ARTICULADA: Dispositivo de vinculo que restringe o movimento relativo entre

suas extremidades apenas na sua dire¢do, conforme ilustrado na Figura 20d. No caso de
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barras com articulagdes nas extremidades a restricdo € realizada por um par de forgas que

ocorre apenas na sua linha entre os pinos (chamadas de barras de trelica).

5
R -
F
5
N
5
~ F
-F —
Fio Polia Conjunto -F

Figura 20 - Dispositivos Vinculares (fios, polias e barra)

7.6. Postulados da Estatica

O equilibrio estatico de uma particula (ou ponto material) vem do principio proposto por Issac

Newton (1687) sobre a varia¢ao da quantidade de movimento para corpos de massa invariante:

d . d = d _
Epz—(m-V) = Ep:

dm-l7+m-il7:m(3:ﬁ 41)
dt dt

dt

para o caso particular do Sistema Estitico (particula ou ponto material sem movimento), a

aceleragdo deve ser nula e, portanto o somatdrio de forgas agentes serd nulo:

ies]]
Il
ol

2

i

(42)

Note ainda que para o caso de um agregado de particulas, como veremos mais a frente

(I:I 0= [J ]Oc?) =M o"), para que ndo haja movimento angular, exige-se também que o momento

seja nulo:
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> M,=0 (43)

1

Portanto um sistema § de pontos materiais, constituindo um corpo rigido (ou agregado de

particulas com distancia invariante) esta em equilibrio estdtico quando o sistema de forcamentos

externos a.§ for equivalente a zero, ou seja, tem resultante e momento nulos:

—

R=0 e MO:() (44)

(Note que a resultante ¢ 0 momento das forcas internas € nulo, conforme o Principio da A¢do e

Reacao).

7.7. Diagrama de Forgas sobre o Corpo Livre

Para o estudo do equilibrio estitico (ou movimentagdo dindmica) de um corpo é necessaria a
identificacao de todas as forgas ativas incidentes sobre o corpo. Trata-se, portanto de isolar o
corpo de seus vinculos e discriminar todas as forgas ativas externas, de CAMPO e

VINCULARES que atuam sobre o corpo. Considere o sistema constituido pela barra AB,

vinculada em A4 (articula¢do), conforme apresentado na Figura 21a que estd submetida a forca
(17“ B,B) conhecida e agdes de campo gravitacional, conforme ilustrado na Figura 21b. Isolando a

barra dos seus vinculos (A4) e aplicando ao corpo as forcas externas, de campo e vinculares,
obém-se o Diagrama de Forcas sobre o Corpo Livre (DFCL), conforme ilustrado na Figura

21b.




ESTATICA 42

_)
Fg
__________ B F Bx FBy
B
G —>
Ya I
y
mg
________ A
Xa
X
o>
Sistema @) DFCL

Figura 21 — Diagrama de Forc¢as sobre o Corpo Livre

Observe que as incognitas decorrentes do vinculo em A, sao identificadas com valores positivos

na base de coordenadas adotadas. Pode-se escrever a partir do DFCL a Resultante das forgas

n
externas como R = ZE e suas componentes para a condi¢ao de equilibrio:

i=1

R =X,+F, =0 XA=—FBX=—\153\COS¢
R=YF=0 = (R =Y,+F,-mg=0 = {Y,=F, -mg=|F|seng—mg (45)
- R.=0 R. =0

—

Note ainda que para o corpo permanecer em equilibrio tem-se que: M,

Il
~
|
S
>
finstl
Il
o

Tomando o polo am A4, tem-se a partir do DFCL que:

M, :Z":(B—A)AE =(A-A)AR, +(B-A)AR, +(G-A)Amg =0

i=1

L(cost+senHj)A(FBXf+FBy ]’)+L/2(cos&’f+sen Gj)A—mgj' =0 (46)
L(FBy cosf—Fj, senﬁ)lg—mgL/2cosﬁl€ =0
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Exemplo: Barra apoiada

Considere uma barra homogénea de comprimento L e massa m contida no plano Oxy em
equilibrio apoiada no solo ¢ na parede formando um angulo &, conforme ilustrada na Figura 22a.
Considere o coeficiente de atrito £ com o solo e a parede muito lisa. Determine as forcas nos

apoios e o0 maximo valor de @ compativel com a condigdo de equilibrio.

Sistema

Figura 22 — Barra Apoiada

Resolucéo: Sistema: barra de comprimento L com peso mg, em equilibrio sobre dois vinculos

em A e B. DFCL: conforme apresentado na Figura 22b. Referencial Oxy e polo A. Teoremas:

para o Equilibrio Estatico deve-se ter: R = ZFI =0 e M,= Z(E ~O)AFE, =0
i=1

Rx:FAx_FBx:O FAx:FBx
R=' F;=0 = Ry=FAy—mg=0 = FAyzmg
i=1 RZ:O Rz=0

Tomando o p6lo em A, tem-se a partir do DFCL da Figura 22b que:
M,=(A-=A)AR, +(B—A)AR, +(G—A)Amg =0
0+L(cos@f+sen0j)A(—FBx)f+L/2(cos€f+sen0j)A—mgj =0
LFy, sené’lg—(ng)/2cosﬁlg =0

Fy, =%cot9=FAy

Para for¢a de atrito |F Ax|£ 4-N, na iminéncia do escorregamento atinge o limite maximo

quando |F P

= - F,, resultando num angulo méaximo de: |0 = acot (2u)
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Exemplo: Bicicleta

Considere a bicicleta de massa m ilustrada na Figura 23a, como um corpo rigido em equilibrio e

contido no plano Oxy. Determine as reagdes verticais nas rodas para carga de um ciclista de peso

P sobre o selim.

a)

Sistema

Figura 23 — Bicicleta

Resolucio: Sistema: corpo rigido bicicleta, peso mg, em equilibrio sobre dois vinculos em A4 e

B. DFCL: conforme apresentado na Figura 23b. Teoremas: para o Equilibrio Estatico deve-se

ter: E:ZF}:O

Rx:FAX+FBx:0 FAx:_FBx
R=YF=0 = R =F, +F,-P-mg=0 = <F, +F, =P+mg
- R.=0 R. =0
Note ainda que para o corpo permanecer em equilibrio tem-se que: M 0= (R. —0)/\1:“,. =0.

Tomando o pdlo em A4, tem-se a partir do DFCL da Figura 23b que:
M, =(A-A)AR, +(B—A)AR, +(F —A)AR, +(G—A)Amg =0

— — —

0-2L7i A(Fy i +F, j) (L7 +(L+R)j)A=Pj~(Li +(L/2+R)j)n-mgj=0
~2LF, k+L(P+mg)k =0

Fy, =(P+mg)i2| = |F, =(P+mg)/2
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8. SISTEMAS DE CORPOS RIGIDOS ESTATICOS

Na mecanica ¢ comum haver sistemas formados com multiplos corpos com varios tipos de
elementos de ligacdao. Os sistemas podem ser planos ou tridimensionais. Pode conter PLACAS,
BARRAS, FIOS e POLIAS. O sistema pode ser suportado ou acoplado por apoios, pinos,

articulagdes, engastamentos, etc.

8.1. Sistemas Isostaticos

Um sistema em equilibrio estatico tal que as equacgdes sejam suficientes para determinar as
reagdes vinculares incognitas ¢ chamado de sistema ISOSTATICO ou estaticamente
determinado. Caso contrario é chamado de Sistema HIPERESTATICO (ou estaticamente
indeterminado). Existe sistema que tem um grau de liberdade indeterminado chamado de sistema

HIPOSTATICOS.

8.2. Sistema Submetido a Forgas

Dois casos importantes de sistemas em equilibrio submetidos a for¢as devem ser destacados:

e Sistema em equilibrio submetido a duas forgas externas;

e Sistema em equilibrio submetido a trés forgas externas;

Para o primeiro caso conclui-se imediatamente que as duas forgas devem ser iguais e opostas

(sistema plano).
Para o segundo caso as forcas devem ser coplanares, pois caso uma delas esteja fora do plano

ndo havera componente de resultante nula naquela dire¢cdo. Portanto sendo coplanares podem ser
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paralelas ou concorrentes. Sendo duas forgas concorrentes num ponto P, a terceira forgas deve

passar também por P para resultar em momento nulo.

Exemplo: BARRA DE TRELICA

Uma barra com articulagdes nas extremidades estard em equilibrio apenas quando as forgas
externas nas extremidades forem alinhadas. Demonstracdo: considere a barra AB bi-vinculada

conforme apresentado na Figura 24.

B B B N
Fg
9
Fs
%
Fa
A -
Barra Articulada A DFCL Fa A TRELICA
Figura 24 — Barra Bi-Articulada (Barra de Trelica)
Para que a barra esteja em equilibrio devem valer:
R=MNF=0 ¢ M,=>(P-0)AF =0 (47)

I
—
I
—

Da primeira equacdes obtém-se que: F L+ F, » =0, portanto iguais e contrarias. Da segunda
equagdo, considerando o pélo em A tém-se: M, = (B— A)A F, =0, portanto, para (B— A4)# 0 os
vetores (B— A4) e F, devem ser alinhadas e portanto contidas no plano.

Uma barra com extremidades articuladas ¢ chamada de BARRA DE TRELICA e suporta apenas

forgas iguais e contrarias aplicadas na sua extremidade.
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Exemplo: Sistema de 3 forgas

Demonstra-se (Franga , 2011) que um sistema submetido a trés forgas s6 esta em equilibrio se as

forgas forem coplanares. Sendo coplanares sao necessariamente paralelas ou concorrentes.

8.3. Sistema com Multiplos Elementos

Na mecanica ¢ comum haver sistemas formados com multiplos tipos de elementos. Os sistemas
podem ser planos ou tridimensionais. Pode conter PLACAS, BARRAS, FIOS ¢ POLIAS. O
sistema pode ser suportado ou acoplado por apoios, pinos, articulagdes, engastamentos, etc. O
sistema pode ser formado por triades de barras articuladas nas extremidades formando o que ¢
chamado de TRELICA. Eventualmente o sistema pode ser constituido por mais de um porticos

rigidos, conforme ilustrado no sistema de barras de treli¢a apresentado na Figura 33.

Exemplo: Sistema com Multiplos Elementos

O sistema ideal mostrado na figura tem 3 barras e uma polia de massas despreziveis, o vinculo
em A ¢ uma articulagdo, e o vinculo em B ¢ um apoio simples. As barras sao articuladas em C. O
fio que passa pela polia esta fixado em E e tem na outra extremidade um peso P. Determine:

a) as forgas que a polia e o fio aplicam nas barras.

b) as reagdes vinculares em 4 ¢ B.

¢) as forgas na conexao C entre as barras.

d) Desenhe as barras indicando todos os esfor¢os atuantes.
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Resolucio: Sistema: Polia de centro em D, peso P, barras AB, AD, BE. |

DFCL: conforme figuras. Teoremas: Equilibrio Estatico:

R=YF=0 ¢ M,=Y (P-O)AF,=0

a) Isolando a polia centro em D, obtém-se:
dYM,=0 = Pa-T-a=0 = T=P
YF,=0 = D =0

>F,=0 = D-P-T=0 = D =2P

b) Observando a estrutura formada pelas barras e utilizando os

valores da polia: P
YF, =0 = F,-F,=0 = F,=F, = F,=4P
2 /
> F,=0 = F +P-2P=0 = F, =P
dYM,=0 = 2P-3a-P-2a-Fy-a=0 = F,=4P
c) Isolando a barra ACD e utilizando valores obtidos AG lAy
(atencao, nao é barra de trelica): o ole—

YF =0 = C,-4,=0 = C,=4, = C,=4P
v 2P

> F,=0 = C,—-4,-2P=0 = 4,=C,-2P

dYM,=0 = 2P3a-C,.a=0 = C,=6P . A =4P
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d) Analisando o n6 A4, obtém-se:
YF,=0 = A4,-F, =0

YFE =0 = A+F,-F,;=0 =
Fy=A+F, =4P+P = F,=5P

e) Analisando o no B:

YF,=0 = F,-B,=0 = B =F, = B =4P

YF,=0 = F,-B=0

f) Portanto as barras AB e BE resultam como as seguintes solicitacdes:
B,=5P

FABZSP

y

FAEZSP

= A, =4P

= B, =F; = B =5P

49
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Exemplo: Propulsdo da Bicicleta

Considere agora que o ciclista apoia todo seu peso apenas sobre o pedal da bicicleta, que ainda
permanece em equilibrio, conforme ilustrado na Figura 25a. Determine as forcas na roda traseira

e a forga na corrente.

b)

Sistema

Figura 25 — Pedal da Bicicleta

Resolucio: Sistema: corpo rigido pedal + engrenagem + corrente, tudo em equilibrio sobre o

vinculos em E. DFCL: conforme apresentado na Figura 25b que mostra a forca P no pedal e a
reacdo do mancal fixo no quadro EE e a for¢a na corrente 7. Teoremas: para o Equilibrio

Estatico deve-se ter:

R =F,-T=0 F, =T
R=Y F=P+R,+T=0 = (R =F,-P=0 = {F, =P
R, =0 R, =0

Para o corpo permanecer em equilibrio tem-se que M 0= Z(B — 0)/\ F“l =0, tomando o pdlo em
i=1

E, e observando o DFCL da Figura 23b, determina-se a tensao na corrente:

ME =(E—E)/\I§E+de(—P])+n]A(—T?):6
0-Pdk+Trk=0 = r=9p

h



ESTATICA 51

Para o sistema em equilibrio composto pela corrente + engrenagem traseira + roda traseira,

tomando o polo em D, e observando novamente o DFCL da Figura 23b, que mostra a reagao do

mancal fixo no quadro R, e a forca na corrente 7, determinada no item anterior, onde

determina-se a for¢a de propulsdo na roda traseira:

MD=(D—D)/\RD+(B—D)A§B+r2fATf=0

0-RjA(X,7+Y,j)-Trk=0

X,RE-Trk=-0 = x,=27 = x, =29
R rn R

Verifique que o sistema de mudanca de marcha faz o engrenamento em coroas com didmetro
variavel (r, / r;), mudando a magnitude da for¢ca de tragdo na roda Xp. Note ainda que para

produzir maior poténcia (P = F'-7) é necessario aumentar a velocidade da producdo da forga.
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8.4. Trelicas

Trelicas sdo estruturas rigidas formadas por sequéncias triangulares de barras retas interligadas
por articula¢des, conforme ilustrado na Figura 26. Em geral as forgas externas sdo aplicadas nos
vértices dos tridngulos (nds). As barras articuladas nas extremidades sdo chamadas de barras de
trelica e sO recebem forgas iguais e contrarias alinhadas com ela, conforme apresentado no item

8.2. Neste texto apenas as trelicas planas estaticas serao abordadas.

D
B ®) /O S F
A G
@
E

X@
C

6
o)
l R i R é %
Fe TRELICA Fe

Figura 26 — Trelica Plana

Para andlise estatica de uma treliga, faz-se inicialmente o DFCL da trelica como um todo (corpo
rigido estatico tnico) para determinacao das forgas nos apoios. A subsequente determinagao das

forcas internas das barras da trelica em equilibrio, pode ser realizada por dois métodos:

e Método dos Nos;

e M¢étodo das Secoes.

METODO DOS NOS: O nd (ou pino) é o centro de um sistema de forcas concorrentes cujo
momento em relacao a este ponto € nulo, conforme ilustrado na Figura 27a. Desta forma um n6
(ou pino) estd em equilibrio quando a resultante das forcas for nula (veja o DFCL na Figura

27b). Note que o pino transmite as forcas entre a articulagdo e as barras.
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° 8 F
barra
noé N o
A Fac articulagéao A A
TRELICA ¢ a) | b) DFCL

Figura 27 — Detalhe do Método dos Nos

Convengao: quando uma barra for submetida a forcas de tragdo, convenciona-se a for¢a com
sinal positivo. De maneira similar, as forcas nos nés, devido as barras (acdo e reagdo), tem sinal

positivo sempre para fora do no.

DFCL

Figura 28 — Detalhe do Método das Secoes

METODO DAS SECOES: Uma secio da trelica deve no maximo cortar trés barras, conforme
ilustrado na Figura 28a o que resultam 3 forgas incognitas para trés equacoes no sistema estatico

no plano mostrado no DFCL da Figura 28b.
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Exemplo: Trelica - Método dos Nos

Determine as forcas nas barras da trelica, submetida a forca FB =F, i aplicada no ponto B,

conforme mostrado na Figura 29a, utilizando o METODO DOS NOS.

Resolucgiao: Sistema: Trelica. Referencial: Oxy e Polo conveniente 4. Teoremas: Equilibrio

Estatico: R=Zﬁi=0 e M0=Z(B—O)AE=O

DFCL

Figura 29 — Trelica Plana Simples e DFCL

Para determinar as reacdes nos vinculos de apoio 4 e C, isola-se a treliga como um Unico corpo

rigido, conforme ilustrado no DFCL da Figura 29b, e para R= ZFI =0 escreve-se as seguintes

expressoes:
X, +F, =0 X, =-F,
Y, +Y. = = Y, ==Y,

M,=(A-A)AR, +(B=A)AF, +(C-A)AR. =0
A7IA =6+L(cos60°7+sen60°])AFBx7+L7AYC]=0

M,=-F,Lsen60°k +Y, Lk=0 = Y.=F,\3/2 = Y,=—F,+/3/2

Portanto os valores de forga para a treliga como um corpo rigido tinico sao:

X,=-F, ; Y.=F,\3/2 ; Y,=—F,/3/2
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Isolando o0 n6 A, conforme ilustrado no DFCL da Figura 30, utilizando novamente R= Zﬁl =0

e os valores ja determinados (note que as reacdes nos nds sao opostas as acdes na trelica

determinadas acima), obém-se as seguintes expressoes:

, 1
, FAc:XA_FAB'E
- X, +F,-cos60°+F,.=0
’ 3 !
=Y, +F,;-sen60°=0 = FAB-T:YA =
- Barra
FAB AB
. P %
pino/no A Fag
- |
X’ — —
A Fac Fac
Barra
AC
Ya
articulaggo A X4
DFCL

Figura 30 — Detalhe do N6 A

1 1
Fyo = F, _EFBx :EFBx
V3. 2 . o .
F,= TF . ﬁ =F,  Portanto a barra AC e AB estdo sob tracdo (sinal positivo).

Resolva 0 mesmo problema anterior considerando agora a forga externa aplicada no ponto B,

mas com sentido para baixo: F, =—F j.
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Exemplo: Trelica - Método das Secdes

Determine a for¢a na barras FG' da ponte construida na forma de treliga, submetida as 6 forcas
F} =-F, J aplicadas nos nds superiores, conforme mostrado na Figura 31, utilizando o

METODO DAS SECOES.

Resolucio: Sistema: Treliga. Referencial: Oxy e Polo conveniente 4. Teoremas: Equilibrio

Estitico: R=Y F,=0 e M,=» (P-O)AF,=0

FB FD FF FH FJ FL

\/A\/A\/A\/AV/\

PONTE EM TRELICA

Figura 31 — Ponte de Trelica

Para determinar as reagdes nos vinculos de apoio 4 e M, isola-se a trelica como um unico corpo

rigido, submetido a F, =-n-F, J cargas verticais e escreve-se as seguintes expressdes para n =

l

6 segmentos:
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M,=(A—A)AR,+(B—A)AF, +(D—A)AR, +..+(M —A)AR,, =0
M L(cos60°f+sen60°j)A—FByj‘+...+6L?/\YM]’=0

+
- L - 3L - -
M, =—5F3yk—37FDyk—...+6LYMk =0

L L
Z(Zn—l)-EFy=6LYM = 36-0F, =6LY,
Y,=3F, =  Y,=3F,

DFCL

Figura 32 — Secao da Trelica

Portanto os valores de for¢a para a secdo de trelica como um corpo rigido, conforme apresentado

na Figura 32, para o polo em G sdo:

M;=(4-G)AR,+(B- G)/\F +(D=G)AF, +(F—=G)AF. +(F -G)AFy.i =0

—3LiAY, ]+ —gj (—%jL;/\(—FD)]+(—le;/\(—FF)]+L?]/\FFH;IO
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Exemplo: Sistema com dois pérticos trelicados

Considere o sistema constituido por duas trelicas formando poérticos rigidos planos distintos,
conforme ilustrado na Figura 33a. Note que o anel de articulagdo em E une os corpos rigidos 1 e

2.

%
H / o—Fu /
«—c————————— o>
H —>
FHI
L
G E 4P Ye 4P
% e -
I i i
P ™
L
C D C D
L X
¥
L
A B A | B
DFCL X 4y, Ys 4

Figura 33 — Sistema de Porticos

Para determinar as reagdes nos noés do sistema isola-se os corpos rigidos: Barra HI, trelica EGH
(corpo rigido n°® 2) e portico ABEF (corpo rigido n° 1) conforme ilustrado nos sistemas de
treligas apresentado na Figura 33b.

Resolucio: Sistema: Barra de trelica HI, trelica EGH (corpo rigido n° 2) e trelica ABEF (corpo

rigido n° 1) . Referencial: Oxy. Teoremas: Equilibrio Estatico:

R=YF=0 e M,=Y(P-0)AF,=0
Iniciando pelo corpo rigido n°® 2 (trelica EGH) verifica-se de imediato, utilizando a equagao de
momento em relagdo ao polo E que Fyy € igual a P. Por decorréncia, utilizando a formula da
resultante, obtém-se: Xg = - Fyy=-P e Yg=P.

Finalmente, tomando o p6lo em 4 obtém-se:
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M, =>(P-A)AF,=0

(A- A)AR,+(B—A)AR, + (E AAR, +(F-A)r(-4P7)=0
0+L z/\Y ]+2L]/\( Xg ) (Lz+2L]) (4P?):0
Y,

=6P

Experimente abrir a trelica ABEF utilizando o método das barras e determinar a for¢a na barra

BD.

Exemplo: Quadro da Bicicleta

Considere a bicicleta de massa m, ilustrada na Figura 34a, como um corpo rigido em equilibrio,
contido no plano Oxy. Considere ainda o quadro formado por barras de trelica articuladas nas
extremidades. Determine as forcas nas barras de trelica para carga de um ciclista de peso P sobre

o selim.

Sistema

Figura 34 - Estrutura da Bicicleta

Resolucio: Sistema: quadro estrutural da bicicleta DEFH em equilibrio. DFCL: conforme

ilustrada na Figura 34b. Teoremas: Utilizando o método dos nds, para o Equilibrio Estatico do
no D deve-se ter: R = Zﬁl =0
R =X, +F, +F,, cos45°=0 F,,=-F\2/2-X

N6D R, =Y, +Fp, sen45°=0 = {F,=-Y, 2
R, =0 R, =0
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De maneira similar, para o né H, tem-se:

R =X, —F,. —F, cos45°=0 Fo=—F,2/2+X,
N6H R, =Y, —F,, sen45°=0 = JF,=Y,2
R, =0 R, =0

Finalmente para o n6 F tem-se que:

R =F,, —F,, cos45°=0 Fo =F, 272
NOF AR =~Fy —Fpysend5°=0 = {F, =-F,~2/2
R, =0 R, =0

Considerando ainda Y, =Y, =(P+mg)/2 e X, =X, =0, conforme resolugio do problema

anterior, obtém-se de cada no:

No D: =—(P+mg)\/§/2 (compressao) = |Fp; :(P+mg)/2 (tragdo)

FDF
NoH: |F, = (P + mg)\/z/ 2| (tragdo) = |[Fyp= —(P + mg)/ 2| (compressao)
N6 F: |F,,

= (P + mg)/ 2| (tragdo) = |Fpy = —(P+ mg)/ 2| (compressao)

Note que apenas as barras diagonais tém os maiores valores em moédulo.

Recomendagdes para resolugdo de problemas estruturais envolvendo trelicas planas:

a) Considerar inicialmente o sistema como um corpo rigido unico estatico e determinar as
reagdes externas nos apoios.

b) Método dos Nos: acolher no n6 selecionado as forgas das barras e forgas externas (DFCL).
A soma vetorial das forgas concorrentes no n6 deve ser nula (condicao de equilibrio - 2
equagoes).

c) Alternativa: Método das barras: Isola-se uma parte da estrutura secionando trés barras.
Obém-se um sistema de trés equagdes de equilibrio (Resultante e Momento nulos) para trés
forgas incognitas na dire¢ao de cada barra.

d) Adotar uma convencao de sentido das forcas: por exemplo: forcas nos nés devido as barras
sempre para fora do nd (portanto forca de fracdo na barra). Forcas nas barras secionadas
para fora e alinhadas (forca de trag¢do na barra). Se o sinal obtido na resolucao das equagdes

for negativo a barra estara submetida a compressao.
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9. CENTRO DE MASSA

Para a conceituagdo do CENTRO DE MASSA de corpo do ponto de vista da mecanica dos
solidos, apresenta-se o conceito de forcas distribuidas e forgas paralelas e local de aplicagdo da

resultante do sistema equivalente.

9.1. Sistema de Forgas Paralelas

Um sistema de forgas distribuidas e paralelas § ¢ composto por conjunto de forgas F;, aplicadas

em pontos P; , todas com a mesma direcdo do versor unitario #, conforme ilustrado na Figura

35, tal que:

F=hii (48)

Sistema de Forgas
Paralelas

Figura 35 — Sistema de Forg¢as Distribuidas Paralelas
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9.2. Definicdao de Corpo Rigido

Uma particula pode ser idealizada como um ponto com dimensoes fisicas despreziveis com
massa ndo desprezivel. Isso implica em ter toda sua massa concentrada em um Unico ponto

material. Uma particula ideal ¢, portanto um ponto material com massa nao nula. Negligenciar

suas dimensoes significa também ignorar seu movimento de rotacdo. Um conjunto de particulas
forma um corpo extenso e deformavel. Se, entretanto as deformagdes forem, numa primeira
aproximacao, consideradas despreziveis face aos movimentos globais do corpo, constitui-se um
corpo indeformavel. Portanto um agregado de particulas com distancias entre elas invariante com
respeito ao tempo, constitui um corpo rigido. Neste caso o corpo rigido deve ter

obrigatoriamente sua atitude, descrita por seu movimento de rotacao, considerada.

9.3. Distribuicdao de Massa

O corpo rigido homogéneo tem a distribuicdo de massa relacionada com sua forma. Desta

distribuicao duas propriedades sdao destacadas:

e CENTRO DE MASSA (momento de primeira ordem);
e MOMENTO DE INERCIA (momento de segunda ordem);

O centro de massa corresponde a posicdo do polo onde o momento das forcas paralelas

associadas com as particulas do corpo, tem seu valor nulo.

9.4. Centro de Massa

O centro de massa G de um corpo rigido (agregado de particulas) € o ponto onde o momento de

um sistema de forcas paralelas equivalente associado tem valor nulo. O momento de um sistema

de for¢as em relacdo ao polo O ¢ dado por:
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M, =Y (P-O0)AF, (49)

Vamos localizar o ponto C tal que o momento do campo de forgas paralelas F, = 4.i em relagio

a esse polo seja nulo. Utilizando a formula de momento de forgas em relagdo ao polo C:

]\ﬁlc=n(P,.—C)/\hAﬁ=(ﬂ) = {ih,(g—C)}ﬁ:() (50)

Considere agora o sistema de particulas de massa m; do agregado de particular S, submetidas ao
campo de forgas gravitacional F w =m; g € o centro de massa (G—O) do corpo com particulas

Pii

(G-0)==——— | (52)

—

Para a localizagio do centro de massa em relagdo a origem O: (G—0)=F =x,i +y, ] + 2,k

conforme ilustrado na Figura 36, ter-se-a

(G-0)= 2" (53)
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Figura 36 — Localiza¢ao do Centro de Massa

Para um corpo de massa total m a posi¢ao do centro de massa (G — O), descrito num sistema de

coordenadas cartesianas Oxyz , ¢ obtida pelo somatdrio em cada coordenada independente:

_Emi-xl. _Emi-yl. _Emi-zi
Xg = Yo = i =
m m m

(54)

9.5. Propriedade do Centro de Massa

a) Propriedade Proporcional Inversa: O local do centro de massa G de um corpo rigido
constituido de duas particulas (m;, P; ), € o ponto que divide o segmento (P; — P, ) em partes

inversamente proporcionais.

b) Propriedade de Simetria: Se as particulas P; de um corpo rigido pertencerem a um plano n

ou reta r, o centro de massa G pertencera a esse plano ou reta.

c) Propriedade Associativa: O centro de massa G de um sistema de corpos rigidos coincide
com o centro de massa determinado pela soma do produto da massa e posi¢do de cada parte do

sistema.
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d) Propriedade de Plano de Simetria: Se as particulas P; que constituem o corpo rigido,
admitirem um plano m de simetria material, para massas idénticas, o centro de massa G

pertencera a esse plano.

e) Propriedade do Centro de Simetria: Se as particulas P; pertenceram a um centro de simetria

material, o centro de massa G coincidira com esse centro. Ex. anel, disco ou esfera.

Exemplo: Centro de Massa de Particulas

Considere duas particulas P; e P, de massas m; = lm e m, = 4m, separadas da distancia L,

conforme ilustrado na figura. Determinar a posi¢ao do centro de massa.

Resolucdo: adotando o sistema de coordenadas A u7 tem-se do somatdrio do momento de
primeira ordem das particulas P, e P, de massas m; = lm e m, = 4m, medido a partir o ponto P;
na diregdo u :

- " _ul-ml+u2-m2_0-m+L-4m_iL
¢ (m1+m2) Sm 5

(G—0)=—Z£I;1;’7"

Exemplo: Integracao

Determinar a posi¢ao do centro de massa de uma placa no formato triangular com densidade de

area p, conforme dimensdes mostradas na figura a esquerda.
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" i
h=b-xb/a

Resoluciio: Sabendo que a massa total da placa triangular € m=a-b- p/2, pode-se substituir o

somatorio discreto por uma integral de faixas infinitesimais de largura dx de altura & e massa

elementar dm = ph-dx, para cada altura (h=b—xb/a) funcdo da posicao x, ao longo da base

do triangulo retangulo de comprimento a, conforme mostrado na figura a direita:

~ I:dm-x ~ I:(dxhp)-x ~ I:h-xdx ~ Ioa(b—xb/a)-xdx

x, =11 = x, = =
m m 0.5abp 0.5ab 0.5ab
2 3
XGZLU b-xdx—J- (b/a)‘)czdx)=i(2xza—i)c3aJ=i ba”_ba =la
ab\ 0 ab\2 ' 3a ') abl 2 3a 3

. C 1
O mesmo vale para a outra direcdo onde obtém-se por similaridade: y, = gb

Exemplo: Centro de Massa de Sistema de Corpos

Considere a placa triangular AED com massa 3m, as barras AB ¢ CD t€ém massa m (cada uma) e
a barra BC tem massa 2m. Todos os s6lidos sio homogéneos.

a) Determine as coordenadas do baricentro da placa triangular AED.

b) Determine as coordenadas do baricentro da barra ABCD.

¢) Determine as coordenadas do baricentro do solido composto pela placa AED e pela barra

ABCD.
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Zmr%
2.m,

Resolucido: Utilizando a expressio da posicio do centro de massa: (G-0)=

propriedade de simetria obtém-se:

a) Placa triangular: X, = %; ¥, =0; Zz,=0 por simetria e problema plano.

b b
m'5+2m‘b+m5 3mb 3b

b) Barra: x,=0; y,= C =0
) s s m+2m+m 4dm 4 o
3m-S+4m-0 3m-0+4m- L
o 3 c_ ¢  _ 4 3mb 3b  _
¢) Conjunto: X4=——="""—"—""—=—-=— ; y, = = =—; zg=0
3m+4m Tm 7T 3m+4m Tm 7

Caso uma das placas tenha um furo, pode-se considerar uma parte adicional com massa negativa.

Exemplo: Massa Distribuida

Determinar a posi¢ao do centro de massa G' de uma barra esbelta homogénea na forma de arco de

circunferéncia de raio R com angulo central 2 ¢, conforme ilustrado na figura a esquerda.
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y A y A L
R/ ds
P\
AN a
ol - ok -
N JZ\a X N N X
\\\ \\ X
0

Resolucéo: Por simetria yg = 0. Dividindo o arco em pequenos segmentos de comprimento ds na
posi¢do @, e sabendo que a barra tem densidade linear de massa u , obtém-se a massa elementar

do elemento de arco dm = -ds. Substituindo o somatério discreto por uma integral de arcos

infinitesimais ds de posicao angular #ao longo do comprimento angular 2, obtém-se:

_ '[Omdm-x _ .[()L(ﬂds)'x _ '[OLdS'RCOSG
.[omdm ,UJ.OLdS L

Tem-se ainda que ds=Rd6 para o intervalo -« até a. Trocando o intervalo de integracdo

X

obtém-se:

2 sen

2
xG:lI Rd@-RcosﬁzR—j cosddo = sen9|+a:R
L« L Y= R-2a - a
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10. HIDROSTATICA

Um sistema de forgas paralelas aplicadas a todos os pontos de uma superficie ¢ um caso
particular de forcas distribuidas. Em geral, forcas que atual em todos os pontos de uma linha,
superficie ou volume sao ditas distribuidas. O termo tensao ¢ geralmente entendido como uma
medida da intensidade da forgcas por unidade de area. Forcas distribuidas num volume sao

chamadas de forcas de volume como o peso do corpo, ja visto no item 9.1. A HIDROSTATICA

estuda a distribuicdo da forca (pressao) exercida por fluidos perfeitos em repouso e pesados

(submetidos a acao de forcas de campo) sobre superficies de confinamento.

10.1. Forgas Distribuidas Sobre uma Superficie

Adotando por simplicidade uma superficie plana & com sistema de forcas E aplicando em cada

um dos seus pontos P;. Sendo as for¢as normais ao plano tem-se que F: =f n aplicada no ponto

P; ao longo de § do plano 7 representado pelo versor # normal a superficie, conforme ilustrado

na Figura 37.

Figura 37 — Forcas Distribuida sobre uma Superficie
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Seja p(S) uma fungdo continua de pontos genéricos P; sobre a area .S com intensidade:

pP=— (55)

¢ uma fungio escalar positiva e continua de S que é chamada de PRESSAQ no ponto P; . Entdo

a forca que age na area elementar ds pode ser descrita por:

E =fii=(p,-ds)ii (56)

1

A resultante R do sistema de forcas paralelas que agem sobre o plano & de area .S, decorrente

das PRESSOES HIDROSTATICAS sera chamada de VOLUME das PRESSOES dado por:

E:ZE:jSp(S)ﬁds:Vﬁ (57)
S

aplicada num ponto qualquer do eixo central (sistema do tipo 3 onde: 7/ =0; ﬁc 0 e M c=0)

onde p ¢ a pressdo hidrostaticas do liquido ideal e V' ¢ o volume das pressdes.

10.2. Ac¢ao de um Liquido numa Superficie Submersa

De acordo com a lei fundamental da hidrestatica dos liquidos perfeitos a pressdo hidrostaticas p

num ponto a uma profundidade 4 de um liquido em repouso de peso especifico y (gama) ¢ igual:
p=rh (58)

onde y € o peso especifico em [Newton/m]. Note que a massa especifica ¢ p (rho) em [kg/m’]

portanto y=p g eportanto p=pgh.
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Se o liquido ¢ perfeito, a pressdo que ele exerce em cada ponto da superficie ¢ normal a essa.
Assim para uma superficie planar de area ab a Resultante do sistema ¢ de forgas paralelas com

volume V decorrente da pressao hidrostatica p ¢ um prisma com base retangular ax b de altura

P, aplicada no eixo central da superficie.

Nivel do Liquido

Area:ab

largura: b

A forga total Resultante ¢ dada pelo volume do prisma de area ab (largura b) multiplicada pelo

peso especifico y e sua linha de agdo passa pelo centro de massa do volume:

p=rh
R=Vii=p-(a-b)ii (59)
R=y(a-b-h)ii

No caso de uma superficie inclinada, conforme ilustrado na Figura 38a, tem-se que a pressdo p
varia linearmente ao longo da profundidade, formando um volume trapezoidal. Para determinar a
forgas resultante do campo de pressdes hidrostaticas sobre a face lateral inclinada, que tem o
formado de um trapézio, ¢ conveniente decompor a pressdo em um triangulo e um retangulo,

conforme ilustrado na Figura 38b.
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Nivel do Liquido Nivel do Liquido

— /o) hy — ,7\'\£1 hy

Volume

VOILW\
//

7
7/

h2 h2

largura: b largura: b

Figura 38 — Pressdo do Liquido sobre Face inclinada

A pressao tem seus valores definidos pela profundidade A, e A, e o volume dado pela soma de

um retangulo e um triangulo conforme ilustrado na Figura 38b:

O ponto de aplicagdo da forga resultante da pressd@o do liquido corresponde ao baricentro do

volume das pressoes.

Exemplo: Comporta

Considere uma comporta AB de comprimento L submersa no fluido em repouso a uma
profundidade 4, instalada em um canal de profundidade A,. Considerando o canal com largura b,
articulacdo em A4 e apoio simples em B, determinar a forga resultante normal equivalente do

volume das pressdes na comporta e a reagao no apoio em B.
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Nivel do Liquido
— A P1 B
- Volume O 7 g \
/// -
Volume A KX Bn
Comporta de - >
comprimento: L o2 X Area: L b
Rn, /
L // /
h2 // \ L
Canal de P2 X largura: b
largura: b R
A PO SN
noMY
3\ p: RA DFCL

Figura 39 — Comporta em Canal

Resolucio: Sistema: comporta de comprimento L apoiada nos vinculos 4 e B submersa no
fluido. Diagrama de forg¢as: Volume das pressdes e Reagdes nos vinculos 4 ¢ B. Referencial e

polo: A n7 . Teoremas: Volume das pressoes, Estatica da comporta.

p=rh ; p,=rh k=_Vﬁ=_Vv)ﬁ_(VH)ﬁ
VH:pl'(L'b) 5 Vv:(pz_pl)'( 'b)/2
R=—y-Lb(h+h,)/2ii

O local de aplicagdo da resultante do volume das pressdes € o baricentro do volume, determinado

por:

(G_A):z"%-ﬁ- _ v, -L13)+(V5-L/12) ((p,—p,)-(L-b)/2)-L/3+(p,-(L-b))-L/2

m, Ve +Vn ) ((p2—pl)-(L-b)/2)+(p1'(L-b))
(y(hy=m)-(L-b)12)-L13+(y-h-(L-B)-L/2 (2 +h,)
N 2 RN R T SR

Fazendo o equilibrio da comporta em torno do p6lo em A obtém-se da equacdo de momentos:
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M,=(G-A)AR+(B-A)AB=0

FA—y-Lb(h+h)/2ii=—L&AB,ii queéareagio em B na diregio 7.

Exemplo: Superficie ndo plana:

Para o caso de superficies nao planas o conceito de Volume das Pressdes pode ser utilizado
facilitando a solu¢do do problema. Considere um tubo cilindrico de comprimento L que tem
como secdo uma semicircunferéncia de raio R e estd submetido, na sua face externa, a pressao da
agua a partir da profundidade h;, conforme indicado na Figura 40a. Determinar o vetor

Resultante das pressdes sobre a calota semi-cilindrica. E dado o peso especifico da d4gua: y=p g.

Nivel do Liquido largura: b

c)

Figura 40 — Superficie semi-cilindrica

Inicialmente note que o campo de pressdes € sempre perpendicular a superficie circular,
conforme ilustrado na Figura 40b. Note também que as componentes horizontais da pressao
sobre a calota se anulam. Considere agora que o volume das pressdes sobre a base do semi-

cilindro com érea (2R b), na profundidade & = R e largura b, conforme ilustrado na Figura 40c ,

—

corresponde a: R, =Vn=p-Area=y- h(2R -b)z y-2R*b. Finalmente o volume das

Base
pressdes sobre a calota semi-cilindrica sera o valor anterior menos a area da calota:
Rega =V =Vo )ii=y-QR? =z R?12)b=y-R*(2=7/2)b.

Verifique que para uma profundidade genérica A > R a Resultante sera:

Regow =7-Rb(2h-7R/2).
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Principio de Arquimedes:

"Todo corpo mergulhado num fluido em repouso sofre, por parte do fluido, uma for¢a vertical
para cima, cuja intensidade ¢ igual ao peso do fluido deslocado pelo corpo.”
Considere um cubo de aresta a mergulhado integralmente num fluido em repouso de peso

especifico: y=p g, conforme ilustrado na Figura 41a.

Nivel do Liquido largura: a largura: a
______ = T S
S > mg - h
a a
— <
_ =

Figura 41 — Superficie semi-cilindrica

Inicialmente note que o campo de pressdes ¢ sempre perpendicular a superficie do cubo,
conforme ilustrado na Figura 41b. Note também que as componentes horizontais da pressao
sobre os lados opostos do cubo se anulam. Considere agora a forga resultante do volume das
pressdes sobre a base inferior do cubo com area (a°), na profundidade & = a e largura a,
conforme ilustrado na Figura 40c , corresponde a:
R=Vii=p-Area=y-ha*=y-a*.

Note que no equilibrio do corpo totalmente submerso, o volume de liquido deslocado pelo cubo
deve ser igual a peso proprio (mg), ou seja, para corpos com densidade igual a do fluido. Essa
relacdo vale para qualquer profundidade, pois ao submergir, haverd campos de pressdes

adicionais idénticos na face superior e na face inferior do cubo.
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Exemplo: Barragem

A Figura 42a mostra a secdo transversal de uma barragem de gravidade com altura D, projetada
para suportar uma lamina d’agua de altura & . Sabe-se que nao ha infiltracao de dgua entre o solo
e a barragem e o coeficiente de atrito nessa interface ¢ x. Sdo dados os pesos por unidade de
volume da agua, ya, € do material da barragem yg. A largura da barragem ¢ L (perpendicular ao
plano da figura). Determinar o minimo valor que deve ter a dimensao a da barragem para que ela
ndo escorregue. Sabendo que o coeficiente de atrito entre a barragem e o solo ¢ g qual o minimo

valor que deve ter a dimensdo a da barragem para que ela ndo tombe?

Volume DFCL

Nivel do Liquido largura: L

B y
G

;mg 0 x %‘5 ;mg O_a)t
a) , I |, @

Figura 42 — Barragem

Resolucgdo: Sistema: barragem com vinculo de apoio distribuido; Diagrama de Pressdes e
DFCL; Referencial e Pélo Oxy; Teoremas: Centro de Massa, Resultante do Volume das
Pressoes hidrostaticas, Equilibrio Estatico.

a) a posicao do centro de massa da barragem em relagdo ao sistema Oxy indicado na Figura 42b;

(aD(2a+a/2)+(2aD/2)2-2a/3)) _23

X =
(aD+2aD/2) 12
(aD(D/2)+(2aD/2)D/3)) 5
Yo = =—D
(aD+2aD/2) 12

b) a Resultante das pressdes hidrostaticas sobre a barragem conforme a Figura 42c;
R=Vii=p-Area=y,-h(hL)/2=y, -h*L/2

¢) a posicao do baricentro dessas pressdes, em relagdo ao sistema Oxy indicado;
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Xz=3a ; yz,=h/3

d) o minimo valor que deve ter a dimensao a da barragem para que ela nao escorregue, sabendo

que o coeficiente de atrito entre a barragem e o solo é ;. Para essa condigio R < ﬁm sendo o
peso da barragem P =mg =y,2aDL:

2
[Rl<uP = ynLI2<py,2aDL = o Yl

Vp 4uD
e) o minimo valor que deve ter a dimensdo a da barragem para que ela ndo tombe. Neste caso a
reacdo normal serd aplicada no ponto 0. Para nao tombar o momento do peso proprio da

barragem deve ser maior ou igual ao momento da resultante da pressao hidrostatica. Assim,

tomando o momento em relagdo ao poélo O, obtém-se:

v 23 h B
O Il ) e B
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11. ATRITO

Observagdes experimentais constatam que um corpo em repouso apoiado sobre um plano

submetido a uma forca tangencial aplicada F (ou momento M ), permanecerd imével até a
for¢a (ou momento) atingir um valor limite a partir da qual o corpo inicia seu movimento. No
plano de contato, o movimento pode ser de translacdo com direcao determinada, de rotaciao de
rolamento com eixo alinhado com o plano ou pivotamento quando o eixo de rotacao ¢

perpendicular ao plano. Desta forma classifica-se os tipos de movimento como:

e Movimento de Escorregamento;

e Movimento de Rolamento;

e Movimento de Pivotamento.

Para cada caso de tendéncia ao movimento, uma rela¢do especifica ¢ identificada e relatada a

seguir.

11.1. Atrito de Escorregamento

Quando o corpo em repouso apoiado sobre o plano for submetido a uma forga tangencial

aplicada F com direcdo definida, havera uma forca de retencdo na direcio oposta que impede o
movimento (principio da acao e reagdo — 3* Lei de Newton). Tal forca ¢ chamada de forca de
atrito F,. Uma relacdo linear entre a forca ativa e a for¢a de atrito ¢ observada, conforme
apresentado na Figura 43. Note, entretanto que a relacdo linear ocorre apenas até o limite de

aderéncia a partir do qual o movimento se inicia e a forca tende a ficar constante.
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=~

|Fl

Figura 43 — Relacio entre a forca ativa e a forc¢a de atrito

Conforme proposto por Coulomb (1736-1806) a forca de atrito ndo ultrapassa um valor

proporcional a forca normal /V de contato de forma que:

F

at

<uN (60)

O escalar g ¢ chamado de coeficiente de atrito estatico, sendo funcdo da rugosidade superficial e
das caracteristicas dos materiais dos corpos envolvidos. Em escala macroscépica o atrito € dito
seco se as superficies ndo forem lubrificadas. Na iminéncia do movimento a for¢a de atrito Fy

atinge seu limite méximo a partir do qual o movimento de deslizamento se inicia:

F

at

=uN (61)

Se houver contaminag¢do ou lubrifica¢do das superficies o valor do coeficiente de atrito se reduz.
Para movimento com escorregamento intenso ha possibilidade formagao de substrato de auto

contaminacdo e o coeficiente de atrito também diminui (coeficiente de atrito dindmico - up).

Cone de atrito — Para uma reacdo normal N, o valor maximo da forcas de atrito ¢ V. Isso

significa que se a for¢a aplicada F for interior ao cone (abertura @ = arctan ) conforme

ilustrado na Figura 44, ndo havera escorregamento (|F,,|< - N).
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Figura 44 — Cone de atrito no Movimento de Deslizamento

Plano inclinado — o valor maximo de inclinagdio de um plano para o que um corpo nao

escorregue para baixo ¢ dado por: ay.x = arctan u.

11.2. Momento de Atrito de Rolamento

Quando um cilindro ¢ propelido a rolar sobre uma superficie, surge um binario reativo cujo
momento se opde a tendéncia ao movimento de rotagdo. Este bindrio chama-se de bindrio de
atrito de rolamento M,,. Considere um disco submetido a uma for¢a F que tenta induzir o
rolamento sobre um superficie plana, conforme ilustrado na Figura 45a. A explicagdo fisica do
aparecimento do binario restritivo supde que a superficie de apoio se deforme, de maneira que o
ponto de contato C se d4 a uma distincia p a frente do ponto que seria de contato se a superficie
ndo se deformasse, conforme ilustrado na Figura 45b (Giacaglia, 1982). Neste caso o coeficiente
de atrito de rolamento ¢ definido como uma distancia p. Note que no caso real, mesmo materiais
duros (por exemplo: roda de ago do metrd) haverd sempre um deformagdo mesmo que muito

pequena.
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Figura 45 — Atrito de Rolamento

Antes de iniciar o movimento, verifica-se pelas formulas de equilibrio (E:OeM c=0),

utilizando o diagrama de forgas sobre o corpo livre, conforme ilustrado na Figura 45b, verifica-

se que:

F—F, =0 F,=F
P-N=0 = N=P (62)
M.=(-R-F)+(p-P)=0 R-F=p-P

Portanto quando hé tendéncia ao rolamento, devido ao momento ativo externo ( R-F') havera
uma resisténcia a este movimento caracterizado por um momento de atrito de rolamento M, tal

que:

<pN (63)

atr

M

Na iminéncia do movimento o momento de atrito de rolamento M, atinge seu limite maximo a

partir do qual o movimento de rolamento se inicia:

=pN (64)

atr

M
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Exemplo: Disco Sobre Plano

Considere um disco de raio R e peso P, apoiado sobre um plano com inclinagdo ., conforme
ilustrado na Figura 46a. Qual o méaximo valor de a compativel com o equilibrio (Giacaglia,
1982). Considere os coeficiente de atrito de escorregamento u e coeficiente de atrito de

rolamento p.

Resolucgiao: a) Sistema: Disco de raio R e peso P e vinculo de apoio em C b) DFCL; c)

Referencial: Cxy; d) Teoremas: para a condigdo estatica tem-se: ZFI =0; M,.=0;

Fal

<u-N e |M

<p-N

atr

C ,/
N i/ Fa __a>=-]_ DFCL

Figura 46 — Disco no Plano Inclinado

As forgas externas aplicadas ao disco em equilibrio sdo obtidas do DFCL, ilustrado na Figura

46b, incluindo a forga de atrito F,, aplicada no ponto C e momento de atrito de rolamento
M, =pN aplicado no disco devido ao afastamento p da aplicagdo da forga normal N,

resultando nas seguintes equagdes estaticas para o problema plano:

Psena-F, =0 Psena=F, tan o = £, <u
Pcosa—N=0 = (P=N/cosa = /ZOV
M,.=-R-Psena+pN =0 RPsena = pN tanaSE
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Logo tem-se que o angulo de inclinagdo maximo do plano serd o minimo entre os valores

obtidos: |tan = min(g, p/R)‘

11.3. Momento de Atrito de Pivotamento

De maneira genérica, dois corpos convexos em contato eldstico com tendéncia ao movimento
relativo angular devido a forgamentos ativos, desenvolvem forcas e momentos reativos de
contato aplicadas mutuamente na superficie comum de contato. Sendo os corpos convexos,
havera um plano tangente 7 no ponto de contato. Quando o corpo ¢ propelido a pivotar sobre um
superficie do outro, surge um bindrio cujo momento se opde a tendéncia ao movimento de
pivotamento. Este bindrio chama-se de binario de atrito de pivotamento M,,. Esta hipotese €
baseado na existéncia de uma area de contato do corpo elédstico deformado onde ha distribuicao

da forca ativa normal de contato e reagdes tangenciais de atrito formando binario.

Quando um corpo tende a girar em direcdo definida w, k , conforme ilustrado na Figura 47
ocorre o bindrio de atrito de pivotamento M aw =M, k . Este valor é obtido pela integragdo das

forgas tangenciais que se opdem a tendéncia ao pivotamento (Franga, 2011) resultando em:

‘M

S%R-yN (65)

atp

Figura 47 — Atrito de Pivotamento
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De maneira similar aos casos anteriores, na iminéncia do movimento o momento de atrito de
pivotamento M, atinge seu limite maximo a partir do qual o movimento angular de pivotamento

se inicia:

‘M

=ZR-uN (66)

atp

Exemplo: Bloco Deslizando ou Tombando

O bloco homogéneo de peso P e largura 2a estd em repouso sobre um plano horizontal,
conforme ilustrado na Figura 48a. Calcular a maxima forga horizontal F aplicada na altura h,

compativel com o equilibrio do bloco (Franga, 2011).

DFCL
2a 2a
- -

— —
F F
G
o
h z h *
mg
ﬁ
A B A B Fat
D
ﬁ
X N | X

Figura 48 — Bloco Deslizando ou Tombando

Resoluciio: a) Sistema: bloco de massa m e vinculo de apoio distribuido 4B; b) Diagramas:

DFCL; c) Referencial: Oxz ¢ polo em B; d) Teoremas: |Fm| < u N . Naiminéncia do movimento

(sistema estatico) valem: R = ZFI =0;e ]\7[G = Z(R —O)/\I:“l. =0e

Fa t

< u N . Note que para

o apoio distribuido a posi¢ao da resultante da reagdo normal N tem posi¢do que pode variar (x).
Analisando o DFCL da Figura 48b e considerando o pdélo em B, constata-se no equilibrio

estatico que:
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F-F,=0 F=F,
N-mg=0 = N =mg
M,=-h-F+a-mg—x-N=0 h-F=a-mg—x-N

Da segunda equacdo obtém-se que N =mg . Da primeira equacdo considerando a iminéncia da

tendéncia ao deslizamento, obtém-se (utilizando F, <uN): F, . = pmg . Da terceira equagiao

eslisa
de momento, considerando a tendéncia ao tombamento, a reacdo normal N do plano sobre o
bloco resulta aplicada na extremidade B tal que: x = 0, obténdo-se portanto: F, =a-mg/h.

tombam

Portanto a valor da forca méxima na iminéncia do movimento serd o minimo entre os dois casos

(tombamento e deslizamento): |F,,, = min(a -mg/ h, ,umg)

Exemplo: Cilindro Deslizando ou Rolando

Um trator equilibra o tronco cilindrico homogéneo de peso P e largura L ao longo da rampa
inclinada (inclinacdo @). Nota-se que o cilindro tem dois pontos de contato, com a rampa em C e
a pa do trator em E, que possuem o mesmo coeficiente de atrito x <1, conforme ilustrado na
Figura 49a (Franga, 2011). Determinar os valores do coeficiente de atrito x para que o cilindro
esteja na iminéncia de:

a) rolar para cima sem escorregando sobre a rampa ou

b) escorregar para cima na rampa (sem escorregar na pa).

a)

Figura 49 — Cilindro Rolando ou Escorregando
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Resoluciio: a) Sistema: cilindro com vinculo de apoio em C ¢ E; b) Diagramas: DFCL; c)

Referencial: Oxz e Polo em G; d) Teoremas: Equacdes de equilibrio e relagdo de Coulomb

Fat

<uN. Na iminéncia do movimento (sistema estatico) valem: R= ZI:“Z =0;

W, = (R-0)AF =0 ¢ |F,|-u.

As forcas externas aplicadas ao cilindro em equilibrio sdo obtidas do DFCL, , conforme ilustrado

na Figura 49b, resultam para o problema plano nas seguintes equagdes:

N,-T.-mgsena =0 N, =mgsena+1_
N.—T,—-mgcosa=0 = N.=mgcosa+T,
M.=R-T.—R-T.=0 T,=T.=T

a) Na iminéncia de rolar no plano (ponto C) e, portanto escorregar na pa (ponto E) tem-se:

{TZTCS/U'NC N {NE:mgsena+ﬂ.NE N .(1—y)—mgsena
. =

T'=T,=u-N; I.=T,=T
I'=T,=u-N, N.=mgcosa+T,
N, -(1-u)=mgsena N, =mgcosa+u-(mgsena/(1-u))
N, =mgoosq+ L8 SN
(1-u)
T'=T.<u-N, Ny <pu-N, .
cSHNe M-Np<p-Ne N mgsenasmgcosa_'_,umgsena
I'=T,=u-N; N,=mgsena+u-N, (1—,u) (l—,u)
seng _ ., Mesena o sena  uesena oo Send
(1-p) (1-p) (1-p)  (-p) cos

|tana£1 = a<45°

b) Na iminéncia de escorregar no plano (ponto C) tem-se: |tan azl = a=45°

No caso de [tana =1 = a= 45°| o cilindro estara na iminéncia de escorregar em qualquer

contato.

Exemplo: Movimento do Carretel

Considere um carretel com raio interno menor r, rolando sobre uma guia plana AB, apoiado no

ponto C, conforme ilustrado na Figura 50a. O carretel esta submetido a uma forca horizontal ( F ,
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E ) aplicada pelo fio ideal, que se enrola na parte externa do carretel de raio R, a partir do ponto
D. Considerando o coeficiente de atrito em C, suficiente para ndo escorregar ¢ R > r, determinar

para qual lado ocorre 0 movimento?

Figura 50 — Carretel submetido a Forca

Resolucéo: a) Sistema: carretel com vinculo de apoio em C e fio DE; b) Diagramas: DFCL; c)

Referencial: Oxz e P6lo em G; d) Teoremas:

Fa t

< u N . Na iminéncia do movimento (sistema

estatico) valem: E:ZE =0; M, :Z(PI.—O)/\I:“[ =0 e

Fa t

=uN.

As forcas externas aplicadas ao carretel em equilibrio sdo obtidas do DFCL, ilustrado na Figura

50b, resultam nas seguintes equagdes:

F-F,=0 F=F,
N-mg=0 = N =mg
M,=R-F-r-F, R-F-r-F,=0

Considerando que nao ha escorregamento F = F, e sendo (R > r) a equacao de momento tera
valor positivo, portanto tendéncia a rotacao anti-horaria ou movimento do carretel para esquerda,

rolando em torno do ponto C de contato.



ESTATICA 88

Exemplo: Contato Multiplo

Considere o carretel de massa m e centro de massa G' que possui distribuicao de massa tal que o

momento de inércia em relagdo ao seu polo A € dado por J,, = 5mR*/4 (Psub 2017). Sobre o

carretel, enrola-se um fio ideal sujeito a acdo das forcas de modulo F constante, mas
desconhecido. O carretel apdia-se constantemente sobre um suporte em formato “F”’. O
coeficiente de atrito dindmico entre as superficies nos pontos D ¢ E ¢ u ¢ o angulo @ vale /4
radianos, conforme ilustrado na Figura 51. Nessas condi¢des, pede-se o valor das forgas
constantes F aplicadas aos fios e capazes de proporcionar ao carretel uma aceleracao angular de

modulo a.

Figura 51 — Carretel submetido a Binario de Forcas

Resolucio: a) Sistema: carretel com vinculo de apoio em D e E e forga F no fio ideal em B e C;

b) Diagramas: DFCL; c) Referencial: Oxz ¢ P6lo em G; d) Teoremas: [F |<uN. Na

iminéncia do movimento (sistema estatico) valem: R= ZFZ =0; M G = Z(R — O)/\ E =0 e

F

at

=uN.
Utilizando o TR e as forgas externas aplicadas ao carretel sdo obtidas do DFCL, ilustrado na

Figura 51b, resultam nas seguintes equagdes:



ESTATICA 89

Considerando que ha escorregamento entre as superficies em contato devido ao momento do

binario de forcas, podemos reescrever as equagdes como:

{zf; = N1+ )N, (1= 1) =0

S E =N, (1 1) N, (14 ) = me 2

Resolvendo o sistema de equagdes obtém-se:

mgN2(1-p) o _meg2(l+p)
21+ 2%) R | e
FE

F = mg2(1- ) mgﬁ(ltu)

c =
H 2U+u H 2‘1—%-,11;

Aplicando o0 TQMA em relacao ao centro de massa G' obém-se:
Jod=M; = -Jgaj=(B-G)AF+(C-G)AF+(D-G)AF,+(E-G)AF,

~J,, @ =—RF — RF +2RF, + 2RF,

Fazendo a mudanga de polo do momento de inércia dado J,, = SmR*/4:

g,

y=Jg+mdi, = Jg=J,-mR> = J, =mR*/4

Substituindo na equacgao anterior e resolvendo para a forga F:

MR2a=2R _F+,umg\/§(l—,u+l+,u) N F:umg\/ermRa
2 (1+ ) (1+z?) 8
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11.4. Diregdo da Forca de Atrito

A direcdo da forca de atrito ¢ sempre contraria a direcdo da tendéncia ao movimento (Vcx)

decorrente da acdo de uma forca ou bindrio de forcas e portanto pode ser determinada pelo

diagrama de for¢a do corpo livre, conforme ilustrado na Figura 52. O corpo pode estar submetido
a uma forca (17“ , G) conforme ilustrado na Figura 52a ou um momento de binario M (ver Figura

52b) ou ambos. Para cada caso de combinagdo de forgamentos obtém-se uma direcdo especifica

para a forga de atrito:

{Fx>0 e M=0 = V.>0 = F, <0 67

F=0 e M<0 = V.,<0 = F,>0

Ve

S\

Figura 52 — Dire¢do da Forca de Atrito

Quando o corpo esta submetido simultaneamente a forga ativa externa (F ,G) ¢ 0 momento de

binario M , valem as seguintes relagdes:

F>M/r = V,>0 = F_ <0
F<M/lr = V.,<0 = F,>0 (68)
F=M/r = V,=0 = F,=0
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Pode haver o caso em que uma unica forga seja aplicada no ponto D : (F“ , D), conforme ilustrado

na Figura 53a. O sistema equivalente sera (F ,G) e um binario M = R-F , conforme ilustrado na

Figura 53b.

a)

Figura 53 — Sistema Equivalente

Como para o sistema equivalente F =M/r = V. =0 = F_ =0 ou seja, quando a

forca (}7“ ,D) ¢ aplicada em D, a translagdo e o rolamento ocorrem sem desenvolver for¢ca de

atrito.
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13. Anexo A - Notacao Vetorial

Existem grandezas fisicas que tem intensidade e podem ser descritas por um unico valor, por
exemplo 70 kg de massa. Estas grandezas sdo denominadas grandezas ESCALARES. Por outro
lado existem grandezas com intensidade, direcao e sentido. Estas grandezas sao denominadas

grandezas VETORIAIS, como por exemplo uma forga.

13.1. Vetor

Dois pontos A ¢ B com posigdes definidas formam a reta (B - A) que tem dire¢ao e magnitude,

conforme ilustrado na Figura 54. Tal reta constitui um vetor 7 descrito como:
(B—A)=F=+A-ii (69)

onde u ¢ o vetor unitario (chamado de versor) que caracteriza a dire¢do da reta (B—A), Aca

magnitude ou comprimento da reta e o sinal “+” caracteriza o sentido do vetor 7 .

<

Figura 54 — Pontos A e B formando um Vetor
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13.2. Reta

Uma reta 7 ¢ definida a partir de um ponto 4 com dire¢do definida u. Qualquer ponto B

pertencente a esta reta € identificado pela seguinte equacao:

B=A+ i (70)

onde A ¢ um escalar € R, dado por A =|F| com magnitude ou médulo || =+/x*+y*+z* na

direcdo unitaria do versor u =7/ |17 | .

13.3. Plano

Um plano & ¢ definido por uma reta 7 (dois pontos 4 € B) e um ponto adicional (C) conforme
ilustrado na Figura 55. Tomando as duas retas concorrentes o plano w tem orientacao definida

pelo produto vetorial:

pk=(B-A)A(C—A4)=F AV (71)

ﬁ
k

Figura 55 — Descri¢do de um Plano

Por uma reta passam infinitos planos. Dois segmentos de retas podem ser:

e (Concorrentes (formam um plano e se cruzam em ponto definido);
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e Paralelos (formam um plano mas nao se cruzam);

e Reversos (ndo formam um plano e ndo se cruzam).

13.4. Versores

Considere o sistema de coordenadas Oxyz, com eixos ortogonais independentes, ilustrado na
Figura 56. A orientagao de cada eixo x, y e z do sistema de coordenadas cartesiano ¢ identificado

por vetores unitarios chamados de VERSORES. Utiliza-se a seguinte notacdo de versores

unitarios 7, j e k conforme ilustrado na Figura 56.

Az

Figura 56 — Sistema de Coordenadas e Versores

Vetores que representam no espago R° podem ser:

e PARALELOS;
e CONCORRENTES;
e REVERSOS.
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13.5. Representacao Vetorial

A representagdo de um vetor esta associado ao sistema de coordenadas adotado. Considere o
sistema de coordenadas Oxyz, cartesiano no espaco R°, orientados segundo a base de versores
unitarios i,jek independentes. O vetor 7 que caracteriza a posi¢do do ponto P no espago R’

¢ representado nesta base por trés escalares (x, y, z) sendo respectivamente um em cada diregao,

conforme apresentado na Figura 57:

(P—O)=?=x17+yj+zlg ou F=(x,y,2)={xyZ}T (72)

Figura 57 — Representacao de Vetor

outras formas de representagdo podem ser utilizadas. Por exemplo espessar o vetor na forma

matricial (que considera implicitamente uma determinada base) ou em outra base:

(P—O):(x,y,z)T: y ou (P—O):?:e

z

+e E,+e_ E, (73)
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O MAGNITUDE do vetor, que corresponde ao seu comprimento (ou mddulo), é obtido por sua

norma:
=+ +57 22 (74)

Note que o norma ou médulo do vetor ||17 || ¢ invariante e independe da base que o descreve.

Para o vetor (B— A) onde A(xA,yA,ZA) e B(xB,yB,zB) tem-se:

’7:(B_A):[(xB_xA)a(yB_yA)a(ZB_ZA)]
|’7|:\/()CB_XA)2 +(J’B _yA)Z +(ZB_ZA)2

(75)

13.6. Rotacgao de Base

Se o vetor posi¢do 7 for expresso em outra base, apenas suas componentes se alteram (o modulo
permanece inalterado). Considerando por simplicidade apenas um movimento plano, na base
Ee,e, e na base Oxy rotacionada do angulo &. Pode-se expressar a posi¢do do ponto P como:

—

7, =[fllcosg &+seng &) = (P=0), =F =xi +y ] =[cos($-0)i +sen(p—0))(76)

Figura 58 — Rotacio de Base
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Observe que as coordenadas em cada base sdo distintas para o mesmo vetor. Representa-se a

conversao dos versores das bases na forma matricial como:
i cosd send| |e
= -9 (77)
Jj —send cosf| |e,

13.7. Produto Escalar

Na geometria analitica o PRODUTO ESCALAR entre dois vetores u e v, ¢ um escalar que

corresponde a proje¢do de um vetor sobre o outro, conforme ilustrado na Figura 59a. Lembrando

que o produto escalar de dois versores unitarios ortogonais ¢ dado por:

~
Il
—_
~|
~.|
Il
o
~|
bl
Il
o

j=1; jk=0 (78)
J 1

N~

Portanto o produto escalar de dois vetore € obtido por:

d=ui+u,j+uk e V=wvi+v,j+vk

<y

-17:(ulf+u2j+u3k)-(vlf+v2j+v3k)=ulf-vlf+ulf-v2j+ulf-v3k+...

- _ ¢ (79)
U-V=uv+u,v,+uyv; = u-v:Zuivl.
i=1

—

u-\7:|ﬁ|-|17|-cosa

onde & ¢ o angulo formado entre os dois vetores.
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13.8. Produto Vetorial

O PRODUTO VETORIAL dos vetores i e v, nesta ordem, é o vetor unico # Av € R’

(Carmo, 1976) caracterizado por:
W (ii AV)=det(w, u, v) (80)

para qualquer sistema de coordenadas unitario w € R’. O determinante det(w, u, v) significa
que se expressa na base natural {e;} no R’ onde: i=1,2¢ 3.

3 3 3
Wszi-ei ; ft:Zui-ei e \7:2\/,.-6,.
=1 i=1

i i=1

detw,u,v)=|u, u, u, (81)
Vi Vo W
- o Uy U U U u, u,
UAv = e — e, + e,
V, Vs i W i W

onde: w=w, e +w,e, +w;e; €uma base unitaria: w,=w,=w,=1.

Propriedades:

A) UAV=UXV (produto vetorial ou cruzado);

b) unv=—v Au (ordem dos termos afeta o produto);

c) (a u+b Vv) AV=auAv+bwav (propriedade distributiva);

d)unv=0 (somente se u e v forem linearmente dependentes - alinhados);

e) (i AV)- i =i AV)- V=0 (pois (i AV)-ii =(ii-ii)A(V-ii)=0 pois sdo paralelos);

Decorre de e) que o produto vetorial ndo nulo ¢ normal ao plano gerado por u e v. O produto

vetorial tem modulo idéntico a area do paralelogramo formado pelos dois vetores u e v e tem
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direcdo perpendicular ao plano formado por eles, conforme ilustrado na Figura 59b, sendo obtido

na base f,]’el; por:

unv=dety, u, u
(82)
Vi V2 VW,
UAV = (u2 vy — U, vz)f+(u3 v, —u, v3)j—i-(u1 v, — U, vl)lg
|ﬁ/\\7| :|L7|-|\7|-sena (83)
onde & ¢ o angulo formado entre os dois vetores, conforme ilustrado na Figura 59b
N Produto Prodqto N
v Escalar Vetorial v
A 7
(%) (] /
— /
h = sen a s/
\0{ \C{ ///
Z > >
- -
E |V| cos @ éq u E (4] u
o | a) o > b)

Figura 59 — Produto Escalar e Vetorial

Note que o Produto Escalar corresponde a magnitude da projecdo do vetor v sobre o versor

unitario u (u-v= | L?|| \7|-cosa ), conforme ilustrado na Figura 59a. O Produto Vetorial é um

vetor de magnitude corresponde a area do paralelogramo formado pelos vertores u e v

(|L7 /\17|:|L7|-|17|-sena) que tem a dire¢do ortogonal ao plano formado por u# e v, conforme

ilustrado na Figura 59b.
Finalmente se os vetores: u(?) = (u1(?), ux(t), us(t)) e v(t) = (vi(¢), va2(?), va(f)) variaveis no

tempo, sdo diferencidveis no intervalo (a, b) do R’ , com t € (a, b) decorre que:
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YA+ i) A ‘;—: (84)

d . . .. di
E(u@w(t))—;

REGRA DA MAO DIREITA: O produto vetorial pode ser apreciado no espago e realizado de

forma facilitada utilizando a regra da mio direita, conforme ilustrado na Figura 60.

axb

- [
))\ \ 7 7

= ~—

a) b)

Figura 60 — Regra da Mo Direita

Note que o produto vetorial € um vetor perpendicular ao plano formado pelos outros dois

vetores, conforme ilustrado na Figura 60a. Deste forma tem-se que o produto vetorial dos
versores ortogonais ai Ab j = abk (veja na Figura 60a) resultando o sentido anti-horario como
positivo conforme ilustrado na Figura 60b. Utilizando novamente o determinante para os

versores i e j confirma-se que:

=0/ +0/+1k-0i—0j—-0k=k e jAk=i e kai=j (85)

~
>
~.
Il
S = =
—_ O .
S o =
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O PRODUTO MISTO de trés vetores @, b e ¢ é um escalar que corresponde ao volume do

paralelepipedo com area da base formada pelo produto vetorial (termos entre paréntesis) vezes a

altura (produto escalar):

—

i-(bne)=c-(anb)=b-(c na) (86)

A sequéncia dos vetores pode ser permutada e basta que dois vetores sejam alinhados (produto

vetorial nulo) para que o produto misto seja nulo.
DUPLO PRODUTO VETORIAL
inlbné)=(a-c)b-(a-be (87)

Note que o produto vetorial (5 AC ) sera um vetor perpendicular ao plano formado por eles. Ou

seja, ndo tera componentes na dire¢do deste plano. Portanto o produto vetorial a /\(l; AC ) nao

terd componentes na dire¢dao de a , conforme o lado direito da equagao.

Na forma matricial:
anlb né)=lalalc) (88)

onde [5 ] ¢ a representacdo matricial anti-simétrica do vetor [a].



