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1 Principio de D’Alembert 

 

O principio de D’ALAMBERT (1743) expande o principio dos Trabalhos Virtuais (PTV) do 

caso estático para o caso dinâmico. A variação temporal da quantidade de movimento de uma 

partícula de massa invariante, conforme a segunda lei de Newton, é descrita por: 

 

   FamV
dt

d
mVm

dt

d
Vm

dt

d
p

dt

d
p ii

   (1) 

 

Para a “i-ésima” partícula um sistema de N partículas e seu respectivo somatório, obtêm-se: 
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A resultante R das forças aplicadas pode ser separada em forças internas e vinculares e as forças 

externas sendo que, apenas as forças externas realizam trabalho. Aplicando o PTV nesta 

partícula e realizando o somatório para o agregado de N partículas, obtém-se a equação de 

equilíbrio dinâmico na forma de D’Alembert para vínculos ideais: 
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Estendendo o princípio de D’Alembert para corpos rígidos, utilizando a fórmula de campo de 

acelerações, pode-se provar que: 
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      para      j = 1, 2, 3,....., m (4) 
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2 Equação de LAGRANGE 

 

Considere o agregado rígido de Pi partículas cujas posições são identificadas pelas coordenadas 

ordinárias (x1, x2, x3, ...,  x3N) submetidas a (Fi, Pi) forças. Utilizando o princípio de D'Alembert 

e determinando o trabalho virtual das forças inerciais e externas do agregado de N partículas em 

movimento acelerado no espaço tridimensional E3 e movimentos consistentes com os vínculos, 

obtêm-se: 

 

 0)(
3

1




N

j
jjjj xamFW   (5) 

 

onde o xj é um deslocamento virtual de cada partícula, compatível com a configuração do 

sistema e condições vinculares ideais. 

 

Considere ainda a descrição da configuração do sistema em qi coordenadas generalizadas 

independentes, obtêm-se 3N funções das n coordenadas generalizadas: 
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 (6) 

 

onde as qi coordenadas generalizadas são decorrentes dos 3N movimentos das partículas menos 

as respectivas restrições vinculares j. que correspondem aos n Graus de Liberdade 

independentes do sistema. As 3N funções  fj  são funções das qn coordenadas generalizadas e do 

tempo. 

 

O deslocamento elementar dxj do sistema, expresso em função das n coordenadas generalizadas, 

resulta em: 
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Para o deslocamento virtual xj  (infinitesimal) que transcorre independente do tempo, obtêm-se: 
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Retomando a expressão do trabalho virtual na forma de D’Alembert para deslocamentos virtuais 

generalizados aplicando o deslocamento virtual generalizado obtêm-se: 
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O termo do primeiro somatório, considerando a inversão da ordem do somatório, é denominado 

de FORÇA GENERALIZADA: 
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A ENERGIA CINÉTICA total do sistema material de N partículas é igual à: 
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A derivada parcial de T com respeito à derivada temporal da coordenada generalizada qi, 

(utilizando a regra do produto) resulta em: 
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Retomando a expressão do deslocamento elementar da coordenada ordinária (equação I) e 

diferenciando com respeito ao tempo: 
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Derivando parcialmente a última expressão com respeito a iq , restará apenas o i - ésimo termo 

do somatório e o último termo correspondente a derivada parcial em relação ao tempo não 

comparece: 

 

 
i

j

i

j

q

x

q

x













       (VI) (15) 

 

Substituindo (VI) de volta na expressão da derivada parcial da energia cinética (V) obtêm-se: 
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Tomando novamente a derivada temporal da expressão (VII) utilizando a regra da cadeia: 
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Utilizando novamente a regra da cadeia no último termo de (VIII), lembrando que xj = f (q1, q2, 

q3,..., qn, t) 
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Da expressão de jx  derivando parcialmente em relação a iq  
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Portanto as expressões (a) e (b) são idênticas: 
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Aplicando (IX) em (VIII) obtêm-se: 
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A derivada parcial da energia cinética na coordenada generalizada i, considerando a massa 

constante, resulta em:  
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Que é idêntica à última parcela da expressão (X), resultando, portanto em: 
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Utilizando a descrição da força generalizada Qi , descrita em (II), na expressão anterior: 
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Para as forças generalizadas conservativas Qi , deriváveis da função potencial  V = V (q1, q2, q3, 

....., qn), obtêm-se para forças não conservativas NC
iQ :  
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que é a EQUAÇÃO DE LAGRANGE na forma de energia cinética T e potencial V: 
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Para a função Lagrangeana  L = T – V , resulta na equação de Lagrange: 

 

 
NC
i

ii

Q
q

L

q

L

dt

d




















 (28) 

 

Obs.: Para sistemas não-holônomos, deve-se utilizar os multiplicadores de Lagrange que não é 

objeto deste texto. 
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2.1 Exemplo 1: Anel arrastado por aro girante 

 

Um pequeno anel P de massa m se move com velocidade 

angular relativa k


 , mantendo-se em permanente contato com 

o aro de raio R e centro em O, sem atrito. Por sua vez, o aro de 

massa desprezível, gira em torno do eixo vertical Oy, com 

velocidade angular prescrita constante j


  arrastando o anel. 

Desprezando o atrito nos contatos, pede-se para determinar a 

equação de movimento do anel. 

 

Resolução: Sistema: anel de massa m e vínculo devido ao aro 

de raio R. Graus de liberdade ordinários do sistema:   e ; 

coordenadas generalizadas independentes q1 =  e q2 = . 

Diagramas: DVCL e DFCL. Referencial Oxyz móvel 

solidário ao aro. Teoremas: Energia Cinética, Energia 

Potencial, Forças Generalizadas e equação de Lagrange.  

 

A posição relativa do ponto P é expressa no referencial móvel como: 

  jRiRjyixOP


 cossen   

Verifica-se que o anel (que tem movimento relativo) é arrastado pelo movimento do aro. 

Portanto a velocidade do ponto P é obtida da composição de movimento como: 

arrrelP VVV


  

Derivando a posição relativa em relação ao tempo, obtêm-se a velocidade relativa do anel P:  

  jRiRjyixOP
dt

d
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






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



 sencos      ou     


relrel VV   

A velocidade de arrastamento do ponto P é expressa no referencial móvel como: 

   
kRV
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


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 
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Finalmente a velocidade absoluta do ponto P e o quadrado resultam em: 

 
 


22222 sen

sensencos



















RV

kjiRV

P

P  

 

A energia cinética T do anel P  resulta em: 

  22222 sen
2

1

2

1



 RmVmT P  

A energia potencial V devido a ação da gravidade sobre o anel P resulta em: 

 cosRRmgV   

 

Tomando as seguintes derivadas parciais e temporal da primeira coordenada generalizada q1 =   

obtêm-se: 













sen;cossen22

22

mgR
V

mR
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T

dt

d
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T























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











 

 

As EQUAÇÕES DE LAGRANGE para qi coordenadas generalizadas são obtidas pelas seguintes 

derivadas parciais e temporais das funções de energia cinética e potencial: 

i

iii

Q
q

V

q

T

q

T

dt

d

























 

Aplicando os resultados das derivadas parciais na equação de Lagrange, para a coordenada q1 = 

,  obtêm-se a primeira equação escalar: 

 

   sencossen222 mgRmRmR    

 

Note que o primeiro escalar da equação acima (mR2), corresponde ao momento de inércia do 

anel em torno do ponto O. O segundo termo corresponde à aceleração centrípeta ( 2R ) do anel. 

Note ainda que o anel de massa m está submetido a ação gravitacional e vincular devido a 

trajetória prescrita de raio R imposta pelo aro. 
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Para a segunda coordenada generalizada q2 = , o movimento é determinado (prescrito cte ) 

e portanto 0 . Tomando as seguintes derivadas parciais e temporal da segunda coordenada 

generalizada q2 = : 

0;0

cossen2sensen 22222





































VT

mRmR
T

dt

d
mR

T






 

Aplicando os resultados das derivadas parciais na equação de Lagrange, para a coordenada q2 = 

, obtêm-se a segunda equação escalar: 

2
222 cossen2sen QmRmR     

 

As forças externas agentes sobre o anel são devido a gravidade e devido a guia de contato no 

plano perpendicular à velocidade relativa, ou seja no plano  uk


 . Então, sobre o anel 

haverá uma componente de força de contato centrípeta uFF cc


   e outra tangencial kFF tt


  . 

Para velocidade angular prescrita constante j


  ( 0 ) e considerando a força generalizada 

 Q2 = My  como o momento externo aplicado no aro devido a reação da força tangencial do anel 

obtêm-se 

 cossen2 2mRM y   
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2.2 Exemplo 2: Carro e Pêndulo Simples 

 

Um carro de massa M se movimenta no plano Oxy, conforme mostrado na figura. O veículo 

desliza sobre o plano sem atrito e suporta um pêndulo simples de massa m e comprimento L, 

suspenso na articulação ideal C onde descreve o ângulo . pêndulo é submetido à força 

horizontal FB aplicada no ponto B. Determinar as equações de movimento do sistema pelo 

método de Lagrange. 

 

 

g 

 

A 

L, m 

FB 

C 

M 

xA 

B 

x 

y 

O 

h 

 

 

Resolução: Sistema: carro de massa M e pêndulo B de massa m e comprimento L. Graus de 

liberdade ordinários do sistema:  x e  ; coordenadas generalizadas independentes q1 = x e q2 = . 

Diagramas: DVCL e DFCL. Referencial Oxy. Teoremas: Energia Cinética, Energia Potencial, 

Forças Generalizadas e equação de Lagrange.  

No plano cartesiano Oxy da figura, as coordenadas ordinárias das posições do ponto A do carro e 

do ponto B do pêndulo, se relacionam com as coordenados generalizadas, conforme as seguintes 

relações: 

   
          jixLixjiLOCCBOB

jhixjyixyxOA

AA

AAAAA




 cossencossen

,




 

 

Derivando em relação ao tempo, obtêm-se as velocidades dos pontos de interesse A e B 

utilizando a fórmula de campo de velocidades no sistema de coordenadas Oxyz com versores 

kji


e,  pode-se expressar a velocidade do carro e do centro de massa do pêndulo B, que tem 
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movimento relativo em torno da articulação C, que por sua vez é arrastado pelo movimento do 

carro (composição de movimento): 

 
   

2222

1

cos2

sencossencos

cossen)(












































LxLxV

jLiLxjiLixV

jiLkixCBVV

qixixVixV

B

B

CB

CCAA









 

 

A ENERGIA CINÉTICA total do sistema é a soma da energia cinética de cada corpo. O carro 

está apenas em translação (não tem rotação no plano considerado). Já o pêndulo tem translação e 

rotação conforme expressão anterior: 

 

222

22

2

1
cos

2

2

1

2

1

 



mLxmLx
mM

T

VmVMT

TTT

BA

Pêndulovagão








 






 

 

A ENERGIA POTENCIAL é função apenas da altura h da massa m do pêndulo sendo obtida 

por (as forças no vínculo ideal O não realizam trabalho): 

 

  cos1)(  LmghmgVV  

 

Fazendo as coordenadas generalizadas q1 = x  e  q2 =  ; a função Lagrangeana depende da 

posição (x e  ) e da velocidade (  ex ) do sistema, sendo definida como: 

 

VTL       onde      ),,,(  xxLL   

 

As EQUAÇÕES DE LAGRANGE para qi coordenadas generalizadas são obtidas pelas seguintes 

derivadas parciais e temporais das funções de energia cinética e potencial: 

 

i

iii

Q
q

V

q

T

q

T

dt

d

























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 



cos1

2

1
cos

2
222










 


LmgV

mLxmLx
mM

T 
 

 

Tomando as seguintes derivadas parciais da primeira coordenada generalizada q1 = x: 

 

   

0;0

sencoscos

11

2

1












































x

V

q

V

x

T

q

T

mLmLxmM
x

T

dt

d
mLxmM

x

T

q

T
 





 

 

Aplicando os resultados das derivadas parciais e derivando com respeito ao tempo na equação de 

Lagrange, na coordenada q1 = x, e considerando a força generalizada Q1, obtêm-se a primeira 

equação escalar: 

 

  1
2

1

111

sencos QmLmLxmM

Q
x

V

x

T

x

T

dt

d

q

V

q

T

q

T

dt

d

















































 

  

 

Tomando as seguintes derivadas parciais da segunda coordenada generalizada  q2 =  : 

 













sen;sen

sencoscos

22

22

2

mgL
V

q

V
xmL

T

q

T

mLxmLxmL
T

dt

d
mLxmL

T

q

T




















































 

 

Aplicando os resultados na equação de Lagrange nas coordenadas q2 =   , considerando a força 

generalizada Q2, obtém-se mais uma equação escalar (note que o termo x  se cancela): 

 

2
2

2

222

sencos QmgLmLxmL

Q
VTT

dt

d

q

V

q

T

q

T

dt

d























































  
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As forças generalizadas podem ser obtidas da fórmula própria ou utilizando a equivalência entre 

o trabalho virtual ordinário e generalizado: 

 

 
 




N

j i

j

ji
q

x
FQ

3

1

      ou       



n

i
ii

k

j
jj qQrFW

11




 

 

Utilizando o método de equivalência do trabalho virtual, tem-se por analogia que: 

 

2211 qQqQrF BB  


 

 

Os deslocamentos virtuais podem ser obtidos das expressões das velocidades: 

 

 

   

  jLiLxB

jdLidLdxdBij
dt

d
Li

dt

dx

dt

dB

jiLkixVB




















sencos

sencoscossen

cossen







 

 

Substituindo na expressão do trabalho virtual ordinário: 

 
 



cos

sencos

LFxFW

jLiLixiFrFW

BB

BBB






 

 

As forças generalizadas por analogia resultam para q1 = x  e  q2 =   em: 

 

2211

cos

qQqQW

LFxFW BB








 

 

cose 21 LFQFQ BB   

 

Finalmente considerando as forças generalizadas as equações de movimento resultam em: 
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 





cossencos

sencos
2

2

LFmgLmLxmL

FmLmLxmM

B

B








 

 

Note ainda que as equações são dependentes das acelerações devido ao vínculo e forma um 

sistema linear que pode ser tratado por eliminação de variável utilizando: 

 

 


 cossen
cos

mL

F

L

g
x

L
B   
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3 Função Dissipativa 

 

As forças generalizadas Qi incluem forças não conservativas que não podem ser derivadas a 

partir de um potencial. Dentre essas forças existe uma classe que engloba as forças que são 

proporcionais à velocidade e resistem ao movimento (mesma direção da velocidade, mas em 

sentido oposto). Este tipo de força pode ser descrito como: 

 

 xcF   (29) 

 

Obtêm-se para as forças ( PF,


) em coordenadas ordinárias: 

 

 
NjxcF

kxFjxixVkFjFiFF

jjj

P

3,...,2,1para

; 321321


















 (30) 

 

Assim o TRABALHO VIRTUAL realizado por FORÇAS DISSIPATIVAS aplicadas os N 

corpos de um sistema, são calculadas em coordenadas ordinárias como: 

 

 



N

j
jjj

N

j
jj xxcxFW

3

1

3

1

   (31) 

 

Lembrando que os deslocamentos virtuais, sua derivada temporal e sua derivada parcial com 

respeito a iq , são dados por: 

 

 








n

i
i

i

j

j q
q

x
x

1

    ;   








n

i
i

i

j

j q
q

x
x

1

           
i

j

i

j

q

x

q

x













 (32) 

 

Portanto, substituindo no deslocamento virtual e na expressão do trabalho virtual, obtêm-se: 
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 








n

i
i

i

j

j q
q

x
x

1





             i

n

i

N

j i

j

jj q
q

x
xcW  












  

 1

3

1 


  (33) 

 

Lembrando também que a derivada parcial de 2
jx  em relação iq  resulta em: 

 

   

















i

j

jjj

i q

x
xxx

q 





2                 

i

j

ji

j

q

x

xq

x
















 2

2

1
 (34) 

 

Aplicando esta expressão na expressão do trabalho virtual obtêm-se: 

 

 i

n

i

N

j i

j

j

jj q
q

x

x
xcW  
















  

 1

3

1

2

2

1






                i

n

i

N

j
jj

i

qxc
q

W  












  

 1

3

1

2

2

1



 (35) 

 

Definido a função R (função dissipativa de Rayleigh) e substituindo no trabalho virtual obtêm-

se: 

 

  



N

j
jj xcR

3

1

2

2

1
                 









n

i
i

i

q
q

R
W

1




 (36) 

 

Lembrando da expressão do trabalho virtual das forças generalizadas e comparando com a 

expressão anterior, conclui-se que: 

 

 



n

i
ii qQW

1

                 
i

i
q

R
Q




  (37) 

 

Utilizando a expressão da forças generalizada dissipativa (Rayleigh), onde )....,,,( 11 nxxxfR   

ou seja função das coordenadas generalizadas, podendo portanto ser deslocada para o lado 

direito da equação na fórmula de balanço de energia, obtêm-se: 
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 nc
i

iiii

Q
q

R

q

V

q

T

q

T

dt

d






























 (38) 

 

Finalmente descrevendo na forma tradicional de  Lagrange: 

 

 
nc
i

iii

Q
q

R

q

L

q

L

dt

d

























     para      i = 1, 2,...., n (39) 

 

 

3.1 Exemplo 3 – Carro, Pendulo Composto e Forças 

 

No sistema mostrado na figura, o carro A de massa M, que desliza sobre o plano sem atrito, está 

interconectado a uma mola de rigidez k e um amortecedor com coeficiente de dissipação linear c. 

No centro do carro A, está articulado um pêndulo composto homogêneo de massa m e 

comprimento L. Uma força FA horizontal é aplicada no carro e uma força FB é aplicada na 

extremidade do pendulo ortogonal a ele. A mola tem deformação nula quando a coordenada x do 

ponto A vale zero. Determine as equações de movimento pelo método de Lagrange. 

 

 

 

k 

L, m 

x 

A 
M 

P 

c 

 
FP 

 
g 

O 

 
FA 

G 

 

 

 

Resolução: Sistema: carro de massa M e pêndulo composto de massa m e comprimento L. 

Diagramas: DVCL e DFCL. Referencial: kuA


 . Graus de liberdade independentes do 

sistema:  x e  . Molas de rigidez k. e amortecedor de coeficiente de dissipação linear c. Força 
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horizontal (FA, A) Força ortogonal ao pêndulo (FP, P). Teoremas: Energia Cinética, Energia 

Potencial, Forças Generalizadas e equação de Lagrange.  

 

Utilizando a fórmula de campo de velocidades pode-se expressar a partir da velocidade de G do 

carro, a velocidade do ponto P do pêndulo, que tem movimento relativo em torno da articulação 

G que por sua vez é arrastado pelo movimento do carro (composição de movimento). Pode-se 

utilizar qualquer sistema de coordenadas, como por exemplo ku


e,   sendo u


 na direção de 

AP , para expressar a velocidade quadrática do ponto G (evitar o termo cruzado na energia 

potencial): 

   
4/cos4/coscossen

2/cossen2/cossen

2/)(

cossen

2222222222 
































LxLxLxLxxV

LxuxLuxV

uLkixAGVV

uiixV

G

G

AG

A









 

 

A ENERGIA CINÉTICA total do sistema é a soma da energia cinética de cada corpo. O carro 

está apenas em translação (não tem rotação no plano considerado) e o pêndulo tem translação e 

rotação (pólo em G), conforme expressão anterior: 

   

   

222

2
2

2222

22

6

1
cos

2

1

2

122

1
4/cos

2

1

2

1
,,,

2

1

2

1

2

1
,,,














mLxmLx
mM

T

mL
LxLxmxMxxT

JVmVMxxT

TTT

G
T

GA

PenduloBlocoTotal








 








 

 

A ENERGIA POTENCIAL é função da altura h do centro de massa G da massa m do pêndulo 

e da mola, sendo obtida por: 

  22

2

1
cos1

22

1
),( xk

L
mgxkhmgVVxVV elastgrav    

 

A DISSIPAÇÃO (Rayleigh) é função da velocidade do carro: 

2

2

1
)( xcxRR    
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Fazendo as coordenadas generalizadas q1 = x  e  q2 =  ; a função Lagrangeana depende da 

posição (x e  ) e da velocidade (  ex ) do sistema, sendo definida como: 

 VTL       onde      ),,,(  xxLL   

 

As equações de LAGRANGE para qi coordenadas generalizadas são obtidas pelas seguintes 

derivadas parciais e temporais, forças dissipativas (Ri ) e ações externas (Qi ): 

i

iiii

Q
q

R

q

V

q

T

q

T

dt

d






























 

 

Realizando as seguintes derivadas parciais na coordenada generalizada q1 = x : 

 

 

xc
x

R

q

R

xk
x

V

q

T

x

T

q

T

mLmLxmM
x

T

dt

d

mLxmM
x

T

q

T































































1

11

2

1

0

sen2/cos2/

2/cos





 

 

Aplicando os resultados das derivadas parciais e derivando com respeito ao tempo na equação de 

Lagrange, na coordenada q1 = x , e considerando a força generalizada Q1, obtêm-se a seguinte 

equação escalar: 

  1
2

1

1111

sen2/cos2/ QxkxcmLmLxmM

Q
x

R

x

V

x

T

x

T

dt

d

q

R

q

V

q

T

q

T

dt

d

































































 

 

Realizando as seguintes derivadas parciais na coordenada generalizada  q2 =  : 
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0sen
22

sen

32

sen
cos

23
cos

2

222

22

2


















































































R

q

RmgLV

q

V
x

mLT

q

T

mL
x

mL
x

mLT

dt

dmL
x

mLT

q

T

 

 

Aplicando os resultados na equação de Lagrange nas coordenadas q2 =   , considerando a força 

generalizada Q2, obtém-se mais uma equação escalar (note que o termo x  se cancela): 

2

2

2

2222

2

sen

32

cos
Q

gLmL
x

mL

Q
RVTT

dt

d

q

R

q

V

q

T

q

T

dt

d





































































 

 

As forças generalizadas podem ser obtidas da fórmula própria ou utilizando a equivalência entre 

o trabalho virtual ordinário e generalizado: 

 
 




N

j i

j

ji
q

x
FQ

3

1

      ou       



n

i
ii

k

j
jj dqQrdFW

11


 

 

Utilizando o método de equivalência do trabalho virtual, tem-se por analogia que: 

 2211 qQqQPFAF PA  


 

 

O deslocamento virtual do ponto A e do ponto P onde a força horizontal FA e a força ortogonal 

FP estão aplicadas, pode ser obtido das expressões das velocidades: 

xAxi
dt

xd

dt

Ad
ixVA  





 

 

    jLiLxP

j
dt

d
Li

dt

d
L

dt

dx

dt

Pd

jLiLxVP






































sencos

sencos

sencos

 

 

Substituindo na expressão do trabalho virtual ordinário: 
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 
   

 
  







LFxFFW

LFxFxFW

jLiLixjiFxFW

jLiLixFixiFW

PPA

PPA

PA

PA









cos

sencos

sencossencos

sencos

22





 

 

As forças generalizadas por similaridade resultam para q1 = x  e  q2 =   em: 

 

2211

cos

qQqQW

LFxFFW PPA








 

 

que resulta por analogia em:        LFQFFQ PPA  21 ecos  

 

Resultando finalmente nas duas equações diferenciais do sistema: 

 

 

 

LF
mgLmL

x
mL

FFxkxcmLmLxmM

P

PA










sen
232

cos

cossen2/cos2/
2

2





 

 

Note que as equações têm termos de aceleração cruzados devido às forças do acoplamento do 

pino em A. Neste caso o sistema linear formado pode ser tratado por eliminação de variável 

utilizando:  
mL

F

L

g
x

L
P3

sen
2

3

2

cos3
 


    e  obtendo: 

     2/cos4/cos32/sen4/cos31 22  PA FFxkxcgLmxmM    

 

Pode-se também obter as forças generalizadas aplicando a definição de força generalizada: 

 

 
 




N

j i

j

ji
q

x
FQ

3

1

        para      i = 1, 2, ..., n 

 

Para duas forças ( AFA,


) ( PFP ,


) com as seguintes componentes Fj e para posição P e A com as 

componentes xj tem-se: 
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kjixkxjxixOA

kjiFkFjFiFF AA




00)(
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321

321




 

   

    kjLiLxkxjxixAP

kjFiFkFjFiFF PPP




0cossen)(

0sencos

654

654








 

 

Fazendo as derivadas parciais para q1 = x  e  q2 =    de cada deslocamento xj: 

 

   

0;sen;cos;0;0;0

0;0;1;0;0;1

0;cos;sen;0;0;

654321

2

654321

1
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
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


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
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


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







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




















































x
L

x
L

xxxx

q

x

x

x

x

x

x

x

x

x

x

x

x

x

q

x

xLxLxxxxxx

j

j
 

 

 

Aplicando os resultados obtidos no somatório da força generalizada, têm-se para cada 

coordenada generalizada os seguintes resultados: 

 

         

 

           

        LFLFLFFQ

F
L

F
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x

FQ
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F

q

x
FQ

FFFFQ

x
F

x
F

x
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F

x
F

x
F

x

x
FQ

x

x
F

q

x
FQ
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j

j

j

N

j

j

j

LAL

j

j

j

N

j

j

j





























































































00sensencoscos00000

0cossen00

cos00001cos00001

00sen00
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3

1

3

1 2

2
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3

1

3

1 1

1



















 

 

Portanto:         cos1 PA FFQ        e        LFQ P2            (c.q.d.) 
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3.2 Exemplo 3: Disco em Movimento 

 

Um disco de centro D, massa m e raio r, rola sem escorregar com velocidade angular , sobre a 

superfície AB, com posição do seu ponto de contato C definida pela cota s, medida ao longo da 

superfície AB, a partir do ponto O. O balancim de ABD massa M e momento de inércia JOz, tem 

movimento angular (t) em torno da articulação ideal em O fixa. O centro de massa G do 

balancim dista e do ponto de articulação em O. No setor de arco de raio R na extremidade 

inferior do balancim estão ancoradas duas molas de rigidez k/2 cada. As molas estão em seu 

comprimento livre quando  = 0. Um torque externo oscilatório  tt o  cos)(   atua no 

balancim. Considerando as coordenadas generalizadas q1 = s  e  q2 = , determinar as equações 

de movimento em função dos parâmetros m, r, M, JOz , e, g, R, k. 

 

 

x 

y 

A 

 B 

O 

(t) 
 

s e 

G 

C 

g 

D  
u 

 
 

k/2 k/2 

D 

R 

 

 

Resolução: Sistema: disco de massa m e raio r e balancim de massa M. Graus de liberdade 

ordinários do sistema:  s e  ; coordenadas generalizadas independentes q1 = s e q2 = . 

Diagramas: DVC e DFCL. Referencial Oxy. Teoremas: Energia Cinética, Energia Potencial, 

Forças Generalizadas e equação de Lagrange.  

 

a) Para expressar a posição absoluta D do disco em função da posição s ao longo da superfície 

AB, adota-se a base solidária ao balancim kuO


  e obtêm-se:         OCCDOD      

      


rusOD       ou          jirjisOD


 cossensencos   
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b) A velocidade    do disco em função de s  pode ser obtida da cinemática considerando o 

rolamento sem escorregamento: rs /  

c) A função de Energia Potencial do sistema em função de s e   e dos parâmetros r, e, g, m e M. 

é obtida da expressão da Energia Potencial do sistema:  MolaBalancimDisco VVVV   

 
 

22222

2

1

22

1
2

2

1

cos1

cossen







RkR
k

xkV

eMgV

rsmghmgV

iimola

Balancim

DDisco

















 

A Energia Potencial total do sistema resulta em: 

      2/cos1cossen 22 kReMgrsmgV   

d) Escreva a função a Energia Cinética do sistema em função de s  e   e dos parâmetros m e JOz. 

A energia cinética do sistema:  BalancimDisco TTT  . Para o disco D tem-se: 

   

    2222
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


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











srsVsursV

ursruskODVV

usV

VVV

DDisco
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arrrelDisco









 

     222222

2

1

2

1

2

1

2

1

2

1
 







 mrsrsmJVmT D

T
DDisco




 

Considerando que o disco rola sem escorregar:  rs /  

2222

4
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Para o balancim, utilizando o referencial móvel kuO


  solidário ao conjunto, obtêm-se: 
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A Energia Cinética total do sistema resulta portanto em: 
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e) Deduza as equações de movimento utilizando o método de Lagrange, válida enquanto o disco 

permanece sobre a barra. Para o primeira coordenada generalizada q1 = s  têm-se: 
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Para a segunda coordenada generalizada q2 =   obtêm-se: 
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Força generalizada: Utilizando o princípio dos trabalhos virtuais: 
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Finalmente a segunda equação para coordenada generalizada q2 =   resulta em: 

  )(sensencos2 222 tkRMgermgsmgssmJMesmsmr Oz     

 

f) Fazendo a substituição de s  da primeira equação na segunda, obtêm-se e equação diferencial 

de segunda ordem isolada em (t): 
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3.3 Exemplo 4 - Trem 

 

Dois veículos em movimento livres num plano horizontal são interligados por molas e 

amortecedores lineares. As posições x1(t) e x2(t) são medidas a partir das condições iniciais com 

as molas livres. O veículo da esquerda está submetido a uma força F1(t). Resolver o sistema pelo 

método de Lagrange e montar as equações de movimento na forma matricial. 
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x1(t) 

m1 

c1 

k1 

x2(t) 

m2 

c2 

k2 

c3 

k3 

 

 

 

Resolução:  Sistema: Veículo de massa m1 e veículo de massa m2. DFCL: forças das molas e 

amortecedores sobre os corpos, força externa F ; Vínculos: rolete inferior deslizante sem atrito e 

interligação entre os veículos e as paredes com conjuntos mola+amortecedor. Sistema de 

coordenadas generalizadas q1 = x1(t) e  q2 = x2(t). Teoremas: Energia Cinética, Energia 

Potencial, Forças dissipativas e fórmula de Lagrange: 
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As forças dissipativas dos amortecedores são proporcionais à velocidade e obtidas pela função de 

Rayleigh: 
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As forças ativas externas F1 podem ser obtidas por similaridade utilizando a expressão do 

trabalho virtual para q1 = x1(t): 
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Fazendo as derivadas parciais para a coordenada q1 = x1(t) : 
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Fazendo as derivadas parciais para a coordenada q2 = x2(t). 
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Finalmente lançando os valores obtidos nas equações de Lagrange: 
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Rearranjando as duas equações na forma matricial: 
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ou simplesmente: 

           FyKyCyM      onde     
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Note que os termos fora da diagonal principal das matrizes de rigidez [K] e amortecimento [C] 

correspondem ao acoplamento entre os corpos, produzido pelo sistema mola+amortecedor que 

interliga os dois corpos. 

 

 

3.4 Exemplo 5 - Pião 

 

Um rotor axi-simétrico (pião) de massa m se movimenta no espaço 3D, em torno do ponto de 

apoio em O, conforme ilustrado na figura. O pião gira com velocidade angular própria k


 em 

torno do eixo z sistema de coordenadas solidário ao eixo de simetria do pião Oxyz, que está 

inclinado do ângulo de nutação (t) em torno do eixo y. O pião tem velocidade angular de 

precessão K


  em torno do eixo vertical fixo Z. Determinar as equações de movimento do corpo 

rígido pelo método de Lagrange. 

 

Resolução: Sistema: pião de massa m com altura do centro de massa zG. Graus de liberdade 

ordinários do sistema: ângulos de Euler:   ,  e ; coordenadas generalizadas independentes q1 

=  , q2 =   e q3 = .  Diagramas: DVC e DFCL. Referencial:  Oxyz, móvel, solidário ao corpo 

mas não girando com ele, com pólo em O fixo. Teoremas: Energia Cinética, Energia Potencial, 

Forças Generalizadas e equação de Lagrange.  
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Em relação a base móvel Oxyz o pião é simétrico, a matriz de inércia é constante com os 

produtos de inércia nulos e o vetor velocidade angular tem as seguintes componentes: 
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A Energia Cinética T para eixos principais e considerando o pólo O fixo, é dada por: 
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A Energia Potencial V devido a gravidade em função das coordenadas do centro de massa é dada 

por: 
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    cos1,,  GzmghmgV  

 

As forças generalizadas Qi são todas nulas. 

 

Fazendo as derivadas parciais e temporais para a primeira coordenada generalizada q1 =  : 
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Utilizando a expressão de Lagrange obtêm-se: 
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Fazendo as derivadas parciais e temporais para a segunda coordenada generalizada  q2 =   : 
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Utilizando a expressão de Lagrange obtêm-se: 

  0sencossencossen 312   GzmgJJJ   

 

Fazendo as derivadas parciais e temporais para a terceira coordenada generalizada  q3 =   : 
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Finalmente utilizando a expressão de Lagrange obtêm-se: 
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Note que primeira equação na coordenada generalizada q1 =  , tem velocidade angular de 

precessão K


  em torno do eixo vertical fixo Z; a segunda equação na coordenada generalizada 

q2 =   está em torno do eixo dos nós y (ângulo de nutação (t)), e a terceira equação na 

coordenada  q3 =   de velocidade angular própria do pião k


 em torno do eixo z do sistema de 

coordenadas solidário ao eixo de simetria Oxyz. 

 

Retomando a equação de rotação em torno de um ponto, expressa na base móvel, e anulando os 

termos descritos para esse caso ( 0e    cte ), obtêm-se uma única equação: 

 

 

   

   

 



















Ozz

Oyzxy

Oxzyx

M
dt

d
J

MJJ
dt

d
J

MJJ
dt

d
J







cos

cossencossen

coscossen

2






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  














Oz

Oyzxz

Ox

M

MJJJ

M

0

sencos

0

   

 

Para a segunda equação ser possível é necessário a aplicação de um momento externo na direção 

j


 que, neste caso, é produzido pela ação gravitacional devido a altura zG do centro de massa do 

pião, conforme ilustrado: 

 

   

 
jzmgM

kimgkzM

KmgkzM

gmOGROOM

GO

GO

GO

OO













sen

cossen

0









 

 

 

OBSERVAÇÃO: Mantendo a forma completa, a equação diferencial 113, torna-se quadrática de 

segunda ordem em  , com duas soluções (ver Pesce, 2019): 

 

  

   
0

coscos

sensencos

2 



















xz

G

xz

z

Gzxz

JJ

zmg

JJ

J

mzJJJ





 

 

Quando 0cos  e xZ JJ   (pião achatado) a solução será um movimento progressivo (a 

direção da precessão será a mesma da rotação própria). Dependendo do aspecto do pião (esbelto 

ou bojudo) o movimento pode ser retrógrado (ver Pesce, 2019). 
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3.5 Exemplo 6 – Sistema com 3 GL 

 

O mecanismo plano ilustrado na figura compõe-se de uma barra CD de massa M, que desliza 

com atrito viscoso linear de constante c na guia horizontal com posição x. Um pêndulo simples 

de comprimento L e massa m concentrada em A, que oscila com posição angular  . A guia 

vertical solidária à extremidade da barra em C, restringe o movimento vertical y da articulação B 

do pêndulo e orienta a mola BC ligada rigidamente ao ponto C da barra e se movimenta com ela. 

A mola horizontal DE é ligada ao ponto fixo E e ao ponto D da barra. Uma força externa F(t) é 

aplicada em A ortogonal a linha do pêndulo. A mola BC tem constante elástica k1 e a mola DE k2 

respectivamente e massas desprezíveis. O atrito nos contatos também é desprezível. As 

coordenadas x e y são medidas a partir da configuração de equilíbrio estático do sistema. 

 

 

 

k1 

L 

x 

M 

A 

C 

 
F 

 
g 

O 

k2 

y 

B 

D 

E 

 
j 

 
i 

c 

 

 

Adotando x , y e   como coordenadas generalizadas do sistema, pede-se: 

a) Escrever a função energia cinética; 

b) Escrever a função energia potencial; 

c) Deduzir as equações de movimento do sistema utilizando o método de Lagrange. 

 

Resolução: Sistema: barra de massa M e pêndulo simples de massa m e comprimento L. Molas 

de rigidez vertical k1 e horizontal k2.  Diagramas: DVC. Referencial Oxy. Três graus de 

liberdade independentes do sistema: q1 = x, q2 = y  e  q3 =   . Uma força externa ortogonal (F, 

A) é aplicada. Teoremas: Energia Cinética, Energia Potencial, Forças Generalizadas e equação 

de Lagrange.  
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Utilizando a fórmula de campo de velocidades pode-se expressar a partir da velocidade de G do 

carro, a velocidade do ponto P do pêndulo, que tem movimento relativo em torno da articulação 

G que por sua vez é arrastado pelo movimento do carro (composição de movimento): 

 

     
22222 sen2cos2

sencossencos

)(

























































LyLyxLxV

jLyiLxjiLjyixV

LjyixuLkjyixBAVV

jyixV

ixV

A

A

BA

B

Bloco











 

 

A ENERGIA CINÉTICA total do sistema é a soma da energia cinética de cada corpo. A barra 

está apenas em translação (não tem rotação no plano considerado) e o pêndulo tem translação e 

rotação, conforme expressão anterior: 

        

 

   

    2222

22222
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2

2

1
sencos

2

1

2

1

sen2cos2
2

1

2

1
,,,,,

2

1

2

1
,,,,,

2

1

2

1


















mLyxmLymxmMT

LyLyxLxmxMyxyxT

VmVMyxyxT

JOGVmVmTTTT

A

O

T

OOPenduloBlocoTotal









 

Obs.: Pode-se alternativamente determinar a energia cinética do pêndulo utilizando o pólo B que 

é móvel, obtendo de maneira similar:     22

2

1

2

1
 





BzBBPendulo JBAkVmVmT  . 

 

A ENERGIA POTENCIAL é função da altura h da massa m do pêndulo e das molas, sendo 

obtida por: 

  2
2

2
1

2
2

2
1

2

1

2

1
cos1

2

1

2

1
),,( xkykymgLmgxkykymghmgVVyxVV elastgrav  

 

A DISSIPAÇÃO (Rayleigh) é função da velocidade da barra: 

2

2

1
)( xcxRR    
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Fazendo as coordenadas generalizadas q1 = x  , q2 = y  e  q3 =  ; a função Lagrangeana depende 

da posição (x , y e  ) e da velocidade (  e, yx ) do sistema, sendo definida como: 

 

 VTL       onde      ),,,,,(   yxyxLL   

 

As equações de LAGRANGE para qi coordenadas generalizadas são obtidas pelas seguintes 

derivadas parciais e temporais, forças dissipativas (Ri ) e ações externas (Qi ): 

i

iiii

Q
q

R

q

V

q

T

q

T

dt

d








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



















 

 

Realizando as seguintes derivadas parciais na coordenada generalizada q1 = x : 

   
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x

R
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x
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
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
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
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


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


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










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








1

2
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2

1

;;0

sencoscos 

 

 

Aplicando os resultados das derivadas parciais e derivando com respeito ao tempo na equação de 

Lagrange, na coordenada q1 = x , e considerando a força generalizada Q1, obtêm-se a seguinte 

equação escalar: 

  12
2sencos QxkxcmLmLxmM     

 

Realizando as seguintes derivadas parciais na coordenada generalizada  q2 = y : 
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









 

 

Aplicando os resultados na equação de Lagrange nas coordenadas q2 =   , considerando a força 

generalizada Q2, obtém-se mais uma equação escalar (note que o termo x  se cancela): 
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21
2cossen QmgykmLmLym     

 

Realizando as seguintes derivadas parciais na coordenada generalizada  q3 =  : 
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Aplicando os resultados na equação de Lagrange nas coordenadas q3 =   , considerando a força 

generalizada Q3, obtém-se mais uma equação escalar (note que o termo x  se cancela): 

  3sensencos QmgLLyxmL     

 

As forças generalizadas podem ser obtidas da fórmula própria ou utilizando a equivalência entre 

o trabalho virtual ordinário e generalizado: 
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 


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Utilizando o método de equivalência do trabalho virtual, tem-se por analogia que: 

 332211 qQqQqQAF  


 

 

O deslocamento virtual do ponto A onde a força externa F está aplicada pode ser obtido da 

expressão da velocidade: 
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Determinando o trabalho virtual ordinário em cada direção: 
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      
   
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As forças generalizadas por similaridade do trabalho virtual, resultam em: 

FLQFQFQ  321 esen;cos   

 

Resultando finalmente nas três equações diferenciais do sistema: 
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4 LINEARIZAÇÃO 

 

Para aplicação de técnicas avançadas de análise como por exemplo em Controle, é necessário 

obter o sistema linearizado. Para atender a este requisito a aplicação da técnica de linearização 

para PEQUENAS OSCILAÇÕES em torno de um ponto de operação pode ser utilizada. 

 

Lembrando do cálculo que uma função diferencial  xfx  , com posição de equilíbrio na 

origem x0 = 0 tem sua descrição linearizada por expansão em série (Mac Lauring - ver detalhes 

no Anexo A) como:  

         ....
!3!2

32

 xf
x

xf
x

xfxxfx  (40) 

 

na mencionada posição de equilíbrio x0 = 0 onde   00 xf , obtêm-se por expansão em série 

com termos de ordem superior agrupadas em  R2(x) e desprezados: 

 

    xRxfx 200   (41) 

 x
x

f
xouxfx

x















0

  (42) 

 

sendo o movimento do sistema restrito a uma vizinhança da origem, a equação linearizada 

representará bem o seu comportamento. 

 

Considere agora, um sistema descrito pela equação de Lagrange: 

 

 0
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


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T
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T
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d


    para   i = 1, 2, 3, ...., n (43) 
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Nas coordenadas generalizadas a energia cinética pode ser escrita na forma geral como: 

 

   



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k
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j
ii qqqqT
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,
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1
;       onde    nnkj qqqeqqqf  ,...,,,...,, 2121,   (44) 

 

Definindo para a posição de equilíbrio em torno da origem:  0...,,0,0,, jijia   então, a primeira 

parcela da expansão em série (ordem quadrática), será descrita como: 
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onde: 
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2
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2

2

,

j
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q
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
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Agrupando de forma matricial obtêm-se o que é chamada de matriz Hessiana [H]T da função de 

energia cinética T dada por: 
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Definindo a(j, k) na origem como: 
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Considere agora a expansão em série da função de Energia Potencial V , em torno da origem das 

coordenadas generalizadas: 

 

 210 VVVV       onde         22
2

2
12211 ,...,,,...,, nn qqqfVeqqqfV   (49) 

 

A primeira parcela V0 , é o termo constante, que é arbitrário (cota de referencia da função 

potencial). Esta parcela não influi nas equações de movimento que são função da derivada 

parcial nas coordenadas generalizadas ( iqV  / ) e pode ser desconsiderada. 

 

A segunda parcela  nqqqfV ,...,, 211  , é o termo linear que tem a forma geral: 

 

 




















n

j
j

j

q
q

V
V

1
1       onde       nqqqfV ,...,, 211   (50) 

 

Se a origem é um ponto de equilíbrio, a energia potencial é mínima neste ponto e todas as suas 

derivadas parciais primeiras se anulam na origem:  

 

 0
















origemjq

V
      portanto        0,...,, 211 nqqqV  (51) 

 

A última parcela  22
2

2
12 ,...,, nqqqfV  , contém os termos quadráticos e tem a forma geral: 

 

 



n

k
kjkj

n

j

qqV
1

,
1

2
2

1
     onde   

kj

jkkj
qq

V






2

,,      e   
2

2

,

j

jj
q

V




  (52) 

 

Agrupando de forma matricial obtêm-se o que é chamada de matriz Hessiana da função de 

energia potencial V: 
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  
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
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













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2
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2
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2
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2

2
1

2

q

V

qq

V

qq

V

q

V

H V  (53) 

 

que é a parcela de menor ordem a ser considerada. Definindo b(j, k) na origem como: 

 

 

origemkj

kj
qq

V
b


















2

,             
 


n

j

n

k
kjkji qqbqV

1 1
,2

2

1
)(  (54) 

 

A função Lagrangeana do problema linearizado será portanto 222 VTL  . Fazendo as derivadas 

parciais e temporais dos termos da função Lagrangeana obtêm-se: 

 

 





 n

k
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i
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q

T

1
,

2 


            













 n

k
kki

i

qa
q

T

dt

d

1
,

2 


 (55) 

 





 n

k
kki

i

qb
q

V

1
,

2  (56) 

 

Montando a equação de Lagrange linearizada para pequenos deslocamentos em torno da posição 

de equilíbrio, obtêm-se finalmente: 

 

 0
1

,
1

,  


n

k
kki

n

k
kki qbqa      para     i = 1, 2, 3, ...., n (57) 

 

Esta equação também pode ser apresentada na forma matricial, utilizando as matrizes [A] e [B] e 

o vetor de coordenadas generalizadas {qi} da seguinte forma: 
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n
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q
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bbb

q

q
q
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
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           0 qBqA   (58) 

 

onde se reconhece de imediato que [A] é a matriz de massa, associada com as acelerações das 

coordenadas generalizadas e [B] é a matriz de rigidez, associada com as coordenadas 

generalizadas {qi} do sistema linearizado. 

 

 

4.1 Linearização Exemplo 1: Massa Pêndulo 

 

No sistema mostrado na figura, o bloco de massa m, está apoiado sobre uma 

mola de rigidez k e um amortecedor de constante c. O bloco desliza sem 

atrito nas guias verticais. Uma barra AB de massa M e comprimento 2L está 

articulada no ponto A do bloco, formando o angulo  com a vertical. Uma 

força F(t) é aplicada no ponto B da barra e ortogonal a ela. A mola têm 

comprimento livre y0 . Determine as equações de Lagrange e linearize o 

sistema e identifique o ponto de equilíbrio. 

 

RESOLUÇÃO: Sistema: barra (pêndulo) de massa M e comprimento 2L e bloco de massa m. 

Graus de liberdade independentes do sistema: q1 = y(t) e q2 = (t). Força F(t) ortogonal à barra. 

Mola de rigidez k. Amortecimento angular linear de coeficiente c. DVC; DFCL; Referencial: 

xyzO . Teoremas: Energia Cinética, Energia Potencial, Forças Generalizadas e Dissipativas e 

equação de Lagrange.  

 

No plano cartesiano Oxy da figura, as coordenadas ordinárias do bloco e da barra se relacionam 

com as coordenados generalizadas  21 e qyq , conforme as seguintes relações: 

Utilizando a fórmula de campo de velocidades pode-se expressar a partir da velocidade de A do 

bloco a velocidade do centro de massa G da barra que tem movimento relativo em torno da 

 

g 

 B 

y 

A m 

k 
c 

F(t) 
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articulação A que por sua vez é arrastado pelo movimento vertical do bloco (composição de 

movimento): 

 

 
     

2222 sen2

sencossencos

sencos)(




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
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
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



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

















LyLyV

jLyiLjiLjyV

ijLkjyAGVV

jyV

G

G
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A









 

 

A ENERGIA CINÉTICA total do sistema é a soma da energia cinética de cada corpo. O bloco 

está apenas em translação (não tem rotação devido ao apoio nas superfícies guias laterais) e a 

barra tem translação e rotação, conforme expressão anterior: 

 

 

 

  2
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2
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1

2

1
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1
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1
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


























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MLMyLMyMymT
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TTyT

G
T
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  222

3

2
sen

2

1
  LMyLMymMT   

 

A ENERGIA POTENCIAL é função da altura h da massa m do bloco, da massa M da barra e 

da força elástica da mola de comprimento livre y0, sendo obtida por: 

 20__
2

1
),( yykhMghmgVVVyVV GOelastgravBarragravBloco    

   20
2

1
cos yykLyMgymgV    

 

A função dissipativa de Rayleigh é proporcional à velocidade das extremidades do amortecedor: 

2

2

1
)( ycyRR    

 

As forças generalizadas Qi podem ser obtidas pelo princípio dos trabalhos virtuais PTV: 
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2211)(0 qQqQBtFqQMrFW iijjii   


 

 

O deslocamento virtual do ponto B é dado por: 

   
   

  jdLydidLBd
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A força ordinária é:  jiFF


 sencos   

Portanto as forças generalizadas para  21 e qyq  resultam em: 

 
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FLQeFQ 2sen 21    

 

Alternativamente pode-se utilizar a definição de forças generalizadas: 
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Fazendo as coordenadas generalizadas q1 = y  e  q2 =  ; a função Lagrangeana depende da 

posição (y e  ) e da velocidade (  ey ) do sistema, sendo definida como: 

 

 VTL       onde      ),,,(  yyLL   
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As equações de LAGRANGE para qi coordenadas generalizadas são obtidas pelas seguintes 

derivadas parciais e temporais: 
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Realizando as seguintes derivadas parciais na coordenada generalizada q1 = y : 
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Aplicando os resultados das derivadas parciais e derivando com respeito ao tempo na equação de 

Lagrange, na coordenada q1 = y , e considerando a força generalizada Q1, obtêm-se a seguinte 

equação diferencial: 

 

       sencossen 2

1

111

FyykgmMycMLMLymM

Q
x

V

x

T

x

T

dt

d

q

V

q

T

q

T

dt

d

o 

















































  

 

Realizando as seguintes derivadas parciais na coordenada generalizada  q2 =  : 
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Aplicando os resultados na equação de Lagrange na coordenada q2 =   , considerando a força 

generalizada Q2, obtém-se mais uma equação escalar: 
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Assim as equações diferenciais do sistema para cada grau de liberdade são: 
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Note que os termos cruzados de aceleração (  ey ) correspondem às forças do acoplamento na 

articulação em A. Neste caso o sistema linear formado pode ser tratado por eliminação de 

variável. 

 

Ponto de Equilíbrio: 

Para determinar o ponto de equilíbrio do sistema  Tyq  , pode-se fazer nulas as acelerações 

e velocidades nas equações de movimento no ponto de equilíbrio estável  Tyq  . 
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Alternativamente, pode-se obter as derivadas parciais das funções potenciais que serão nulas no 

ponto de equilíbrio  Tyq   do sistema homogêneo. Para a coordenada q1 = y : 
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Para coordenada q2 =    
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Análise da Estabilidade: 

A estabilidade do ponto de equilíbrio pode ser verificada inspecionado a matriz Hessiana da 

função potencial calculada no ponto de equilibro (deve ser definida positiva). 
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Linearização das equações: 

Para realizar a linearização das equações do sistema não amortecido, deve-se realizar as 

seguintes etapas: obter os coeficientes i,j  e   i,j , fazer a simplificação na posição de equilíbrio 

da origem e obter os coeficientes ai,j  e  b i,j , e montar as equações na forma matricial: 
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k
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n

k
kki qbqa        para       i = 1, 2, 3, ...., n 

 

Os coeficientes i,j  e   i,j , são obtidos das derivadas parciais duplas da energia cinética e 

potencial em relação as velocidade e coordenadas generalizadas: 
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Utilizando os termos da matriz Hessiana acima, as duas equações finais resultam em: 
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i = 1   02,11,12,11,1
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Rearranjando as equações linearizadas na forma matricial, obtêm-se finalmente: 
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4.2 Linearização Exemplo 2: Pêndulo Partícula 

 

Considere a partícula P de massa m deslizando sem atrito dentro do tubo guia de comprimento 

2L, massa M, sendo sustentado pela mola de rigidez k e comprimento livre x0. O movimento x(t) 

ocorre em torno de articulação O lubrificada, produzindo uma dissipação linear de constante 

angular c . Um momento externo M(t) é aplicado no tubo guia. Obtenha as equações de 

movimento e linearize o sistema. 

 

 

g 

(t) 
P, m 

L, M 

x(t) 

O 

k 

M(t) c 

 

 

 

RESOLUÇÃO: Sistema: tubo guia (pêndulo) de massa M e comprimento L e partícula de massa 

m. Graus de liberdade independentes do sistema: q1 = x(t) e q2 = (t). Mola de rigidez k. 
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Amortecimento angular linear de coeficiente c. DVC; Referencial: xyzO . Teoremas: Energia 

Cinética, Energia Potencial, Forças Generalizadas e equação de Lagrange.  

 

No plano cartesiano Oxy da figura, as coordenadas ordinárias da partícula e do tubo se 

relacionam com as coordenados generalizadas  21 e qxq , conforme as seguintes relações: 
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Derivando em relação ao tempo, obtêm-se as velocidades dos pontos P e do centro de massa G 

do tubo (Note que o termo cruzado do quadrado se anula): 
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Ou alternativamente compondo o movimento: arrrelP VVV
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Ou utilizando o referencial kuO
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 obtêm-se similarmente: 
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Energia Cinética:    T = T tubo + T partícula                O
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Tomando o pólo em O:         O
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Energia Potencial: 
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Função de Dissipação de Rayleigh: 
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Equações de Lagrange: 
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Note que esta é a equação Newton, complementada pela aceleração centrípeta 2x . 
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Note que o primeiro termo corresponde ao momento de inércia com parcela variável x da 

posição da partícula. O terceiro termo corresponde ao momento (braço x) devido a força de 

Coriolis xm2 . 

 

Para realizar a linearização do sistema deve-se realizar as seguintes etapas: obter os coeficientes 

i,j  e   i,j , fazer a simplificação na posição de equilíbrio da origem e obter os coeficientes ai,j  e  

b i,j , e montar a equação na forma matricial: 
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Os coeficientes i,j  e   i,j , são obtidos das derivadas parciais duplas em relação as velocidade e 

coordenadas generalizadas: 
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Obs.: seno  = 0 para  = 0.Utilizando os termos da matriz Hessiana acima, as duas equações 

finais resultam em: 
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Na forma matricial: 
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Note que para o sistema linearizado as matrizes tornaram-se diagonais e, portanto o acoplamento 

entre os movimento não está mais descrito nas equações. 

 

4.3 Linearização Exemplo 3: Carro Pêndulo Composto 

 

No sistema mostrado na figura, o bloco de massa m, está interconectado com duas molas de 

rigidez k. No centro O do bloco, está articulada uma barra de comprimento L e massa m. As 

molas têm deformação nula quando a coordenada x do ponto O vale zero. Determine as equações 

de Lagrange e linearize o sistema. 

 

 

g 
 

k 

L, m 

x 

O m 

k 

 

 

Resolução: Sistema: bloco de massa m e pêndulo de massa m e comprimento L. DVC e DFCL; 

Duas molas de rigidez k. Graus de liberdade independentes do sistema: q1 = x e q2 =  . 

Referencial: Oxy. Teoremas: Energia Cinética, Energia Potencial, Forças Generalizadas e 

equação de Lagrange.  

 

Utilizando a fórmula de campo de velocidades pode-se expressar a partir da velocidade de O do 

bloco a velocidade do centro de massa G do pêndulo que tem movimento relativo em torno da 

articulação O que por sua vez é arrastado pelo movimento do bloco (composição de movimento): 
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A ENERGIA CINÉTICA total do sistema é a soma da energia cinética de cada corpo. O bloco 

está apenas em translação (não tem rotação devido ao apoio na superfície) e o pêndulo tem 

translação e rotação, conforme expressão anterior: 

 

 
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A ENERGIA POTENCIAL é função da altura h da massa m do pêndulo e das forças elásticas 

das molas, sendo obtida por: 

 

  222 cos1
22

1

2

1
),( xk

L
mgxkxkhmgVVxVV elastgrav    

 

Fazendo as coordenadas generalizadas q1 = x  e  q2 =  ; a função Lagrangeana depende da 

posição (x e  ) e da velocidade (  ex ) do sistema, sendo definida como: 

 

 VTL       onde      ),,,(  xxLL   

 

Não há forças dissipativas (Ri = 0) nem ações externas (Qi = 0). As equações de LAGRANGE 

para qi coordenadas generalizadas são obtidas pelas seguintes derivadas parciais e temporais: 
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Realizando as seguintes derivadas parciais na coordenada generalizada q1 = x : 
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xk
x

V

q
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Aplicando os resultados das derivadas parciais e derivando com respeito ao tempo na equação de 

Lagrange, na coordenada q1 = x , e considerando a força generalizada Q1, obtêm-se a seguinte 

equação diferencial: 

 

02sen
2

cos
2

2 2

111

















































xk
mLmL

xm

Q
x

V

x

T

x

T

dt

d

q

V

q

T

q

T

dt

d
x

 


 

 

Realizando as seguintes derivadas parciais na coordenada generalizada  q2 =  : 
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Aplicando os resultados na equação de Lagrange nas coordenadas q2 =   , considerando a força 

generalizada Q2, obtém-se mais uma equação diferencial: 
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LINEARIZAÇÃO: 

 

Para realizar a linearização do sistema deve-se realizar as seguintes etapas: obter os coeficientes 

i,j  e   i,j , fazer a simplificação na posição de equilíbrio da origem e obter os coeficientes ai,j  e  

b i,j , e montar a equação na forma matricial: 

 

0
1

,
1

,  


n

k
kki

n

k
kki qbqa        para       i = 1, 2, 3, ...., n 

 

Os coeficientes i,j  e   i,j , são obtidos das derivadas parciais duplas da energia cinética e 

potencial em relação as velocidade e coordenadas generalizadas: 
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Utilizando os termos da matriz Hessiana acima, as duas equações finais resultam em: 
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Na forma matricial obtêm-se: 
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Note que a matriz de inércia tem termos fora da diagonal principal que correspondem às forças 

do acoplamento do pino em O. Neste caso o sistema linear formado pode ser tratado por 

eliminação de variável. 

 

 

4.4 Posição de Equilíbrio 

 

Para que um função  nj qqqqfx ....,,,, 321  a condição necessária para que um determinado 

ponto  nqqqq ....,,,, 321  seja um ponto de equilíbrio é necessário que todas as derivadas parciais, 

calculadas naquele ponto específico, sejam nulas. Para definir se este ponto crítico é um ponto de 

máximo, mínimo ou de sela, é preciso calcular o determinante da matriz Hessiana e seus 

menores principais. 

 

EXEMPLO: Para o exercício anterior a energia potencial foi determinada a partir do referencial 

em (–x) para a partícula como: 
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Tomando para a partícula o referencial em O, (termo mg x não comparece) o ponto de equilíbrio 

ocorre quando as derivadas parciais da função potencial V são nulas: 
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Da primeira equação (descartando o termo entre parêntesis) tem-se que sen  = 0, que substituído 

na segunda, resulta em duas posições de equilíbrio vertical para baixo e para cima (para n par ou 

impar) resultando em: 
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A matriz Hessiana permite verifica se os pontos de equilíbrio são estáveis ou instáveis: 
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4.5 Exemplo de Posição de Equilíbrio: Pêndulo Invertido 

 

Considere o sistema composto por uma partícula P de massa m articulada em torno de O através 

de uma barra rígida de comprimento L e massa desprezível, O sistema se mantém no plano Oxy 

e a partícula é submetida a uma forças vertical F. A barra é conectada a uma mola torcional de 

rigidez angular k sendo que a posição neutra da mola ocorre para  = 0. Desconsiderando a ação 

gravitacional, pede-se: 

 

a) Descrever a expressão da energia cinética T do sistema em função da coordenada 

generaliza  ; 

b) Escrever a expressão da energia potencial V do sistema; 

c) Obter a equação de movimento utilizando o método de Lagrange; 

d) Determine as posições de equilíbrio do sistema e a estabilidade em função da força 

vertical F. Verificar a existência de flambagem. 

e) Para cada caso de equilíbrio estável, linearize a equação de movimento e determinar a 

frequência de vibração nesta posição. 

 

 
 
F 

L 

O 

P, m 

x 

(t) 

y 

k 

 

 

RESOLUÇÃO: Sistema: partícula P de massa m articulada em O com a barra de comprimento 

L. Graus de liberdade independentes do sistema: (t) = q1. Referencial e coordenadas jiO


. 
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Teoremas: Energia Cinética, Energia Potencial, Função dissipativa, Forças Generalizadas e 

equação de Lagrange.  

 

Utilizando a fórmula de campo de velocidades pode-se expressar a velocidade do ponto P a 

partir de O fixo: 

 

 

  222

0

















LV

LuLkV

OPVV

P

P

OP







 

 

A ENERGIA CINÉTICA da partícula P com velocidade descrita conforme expressão anterior 

em torno do pólo O resultando em: 

 

  222

2

1

2

1
)(  


 LmVmT P   

 

A ENERGIA POTENCIAL é função da força F aplicada na partícula P e da mola de rigidez 

angular k,sendo obtida por: 

 

2

2

1
cos)(  kFLVV   

 

Fazendo a coordenada generalizada q1 =  ; a função Lagrangeana depende da posição angular 

( ) e da velocidade angular ( ) da barra, sendo definida como: 

 

 VTL       onde        ,LL   

 

A equação de LAGRANGE para a q1 coordenada generalizadas é obtidas pelas seguintes 

derivadas parciais e temporais: 

 

 i

iiii

Q
q

R

q

V

q

T

q

T

dt

d






























    para    i = 1, 2, 3, ...., n 
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Realizando as seguintes derivadas parciais na coordenada generalizada q1 = : 

 










 sen;0
11

22

1

FLk
V

q

VT

q

T

mL
T

dt

d
mL

T

q

T










































 





 

 

Aplicando os resultados das derivadas parciais e deriva temporal da coordenada q1 =   na 

equação de Lagrange obtêm-se a seguinte equação escalar: 

 

1

111

Q
VTT

dt

d

q

V

q

T

q

T

dt

d
















































 

0sen2    FLkmL 
 

 

Posição de Equilíbrio: A posição de equilíbrio ocorre quando as derivadas parciais da função 

potencial V são nulas ou fazendo a equação dinâmica com aceleração nula (condição de 

equilíbrio): 

  
0

,...,,, 0321 




i

n

q

TqqqqV
 

Para este caso:   cos
2

1 2 FLkV              
 





 senFLk

V





 

Que resulta na expressão :          0sen  

FL

k
 

 

A solução em função do ângulo   está apresentada na Figura 1 a seguir: 
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 

(k/FL)-sen 

(k/FL)>1 

(k/FL)=1 

(k/FL)<1 

2 

-2 

1 

 

Figura 1 – Lugar da Raízes 

 

A função indica que além da solução   1 = 0  há duas outras para - 2  e  1  quando k  < FL 

A solução  1 =   existe se k = 0. 

 

Estabilidade: A solução é estável se: 

  
0

,...,,,
2

0321
2






i

n

q

TqqqqV
             0cos  FLk  

 

a) Estabilidade para a solução   1 = 0            0 FLk  

  Estável se:   
L

k
F   

  Instável se:   
L

k
F   

  Bifurcação quando:   
L

k
F   quando se define a carga crítica de flambagem. 

 

b) Estabilidade para a solução   2  

 

 Se:   
L

k
F    existem duas outras soluções em   2  para  0 <  2  <  
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 Equação de equilíbrio em  2        22sen  

FL

k
    ou   

2

2
2

tan
cos




 

FL

k
  

 Lembrando que 0cos   FLk , obtêm-se:  0
tan

1
2

2 












k  que é sempre positiva 

portanto raízes estáveis. 

 

RESUMINDO:  

Se 
L

k
F   existe uma posição de equilíbrio estável em   = 0. 

Se 
L

k
F   existem duas posições de equilíbrio estáveis em  2 simétricas e 1  = 0 instável. 

 

Frequência natural: Para cada posição de equilíbrio estável, pode-se linearizar a equação de 

movimento e determinar frequência de vibração naquela posição. 

 

Equação de movimento:  0sen2    FLkmL   

Linearização: movimento linearizado em torno    = 0     sen       02    FLkmL   

Para 
L

k
F   a frequência natural será 

2

2

mL

FLk 
   

 

Linearização: movimento linearizado em torno   2  substituindo variável     2    e 

utilizando fórmula de soma de ângulos (sen( + )): 

   
 

   

  0cos

sen

0cossen

cossencossensencossen

00sen

2
2

22

222
2

22222

222
2





























FLkmL

FLk

FLkmL

poisFLkmL







 

 

A frequência natural será:    
2

22 cos

mL

FLk 
    
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4.6 Linearização Exemplo 4: Partícula em Guia Circular 

 

Um rolete Q de massa desprezível desliza sobre uma pista cilíndrica ideal de raio R, mantendo-

se no plano Oxy, e formando um ângulo  em relação a vertical conforme indicado na figura. 

Uma partícula P de massa m, ligada a Q por uma haste de massa desprezível e comprimento L 

bascula com o ângulo .  

a) Descrever a expressão da energia cinética T do sistema em função das coordenadas 

generalizas  e  ; 

b) Escrever a expressão da energia potencial V do sistema; 

c) Obter s equações de movimento utilizando o método de Lagrange; 

d) Supondo que o sistema realize pequenas oscilações em torno da configuração de 

equilíbrio, obter as equações do movimento na forma linearizada. 

 

 

 
g 

(t) 

L 

O 

P, m 

R 

x 

Q 

(t) 

y 

 

 

 

Resolução: Sistema: partícula P de massa m formando um pêndulo de comprimento L e o rolete 

Q de massa nula que se movimenta sobre a pista cilíndrica de raio R. Graus de liberdade 

independentes do sistema: (t) = q1 e (t) = q2. Referencial e coordenadas jiO


. Teoremas: 

Energia Cinética, Energia Potencial, Função dissipativa, Forças Generalizadas e equação de 

Lagrange.  
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A posição )(tr


 do ponto P em relação ao centro fixo O é descrita por: 

 

 
 

    jLRiLROP

jiLQP

jiROQ

OQQPOP

OPjyixr















coscossensen)(

cossen)(

cossen)(

)()()(

)(











 

Portanto: 
   

2121

2121221211

coscosesensen

,,..,,,,..,,,,..,,,,..,,

qLqRyqLqRx

tqqqqqqfxetqqqqqqfx nnnn



 
 

 

Utilizando a fórmula de campo de velocidades e a identidade trigonométrica de soma de ângulos 

(    sensencoscoscos   ), pode-se expressar a velocidade do ponto P a partir de 

O fixo: 

 

    

   
  
























cos2

sensencoscos

coscossensen

22222 RLLRV

jLRiLRV

jLRiLR
dt

d
V

P

P

P

 

 

A ENERGIA CINÉTICA da partícula P com velocidade descrita conforme expressão anterior 

em torno do pólo O resultando em: 

 

   


  cos2
2

1

2

1
),,,( 22222 RLLRmVmT P  

 

A ENERGIA POTENCIAL é função da altura h da massa m da partícula P sendo obtida por: 

 

  coscos1),( LRmgVV   

 

Fazendo as coordenadas generalizadas q1 =   e  q2 =  ; a função Lagrangeana depende da 

posição ( e  ) e da velocidade (  e ) da partícula , sendo definida como: 
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 VTL       onde      ),,,(  LL   

 

As equações de LAGRANGE para qi coordenadas generalizadas são obtidas pelas seguintes 

derivadas parciais e temporais: 

 

i

iiii

Q
q

R

q

V

q

T

q

T

dt

d






























    para    i = 1, 2, 3, ...., n 

 

Realizando as seguintes derivadas parciais na coordenada generalizada q1 = : 

 

 

    

     

  0;sen;sen

sensencos

sencos

cos

11

22

2

2

1

























































nc
iQmgR

V

q

V
mRL

T

q

T

mRLmRLmRLmR
T

dt

d

mRLmRLmR
T

dt

d

mRLmR
T

q

T



























 

 

Aplicando os resultados das derivadas parciais e deriva temporal da coordenada q1 =   na 

equação de Lagrange e considerando a força generalizada Q1, (note que os termos indicados em 

vermelho se cancelam) obtêm-se a seguinte equação escalar: 

 

1

111

Q
VTT

dt

d

q

V

q

T

q

T

dt

d
















































 

0sen)(sen)(cos 22   mgRmRLmRLmR   

 

Realizando as seguintes derivadas parciais na coordenada generalizada  q2 =  : 
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 

    

     

  0;sen;sen

sensencos

sencos

cos

2

22

22

2

2

2

























































ncQmgL
V

q

L
mRL

T

q

L

mRLmRLmRLmL
T

dt

d

mRLmRLmL
T

dt

d

mRLmL
T

q

T



























 

 

Finalmente, aplicando os resultados obtidos para a coordenada q2 =   na equação de Lagrange e 

considerando a força generalizada Q2, obtém-se mais uma equação escalar: 

 

    0sensencos 22   mgLmRLmRLmL   

 

Expressando na forma matricial, utilizando o vetor de coordenadas  T
q   obtêm-se: 

 

         0),()(  qFqqqCqqM   

onde: 

 

   
 

   
 

   TmgLmgRqF

mRL

mRL
qqC

mLmRL

mRLmR
qM











sensen)(

0sen

sen0
),(

cos

cos
)(

2

2


































  

 

Note os termos fora da diagonal principal da matriz de massa M(q), que é multiplicada pelas 

acelerações, correspondem ao acoplamento entre o cilindro e a partícula (força vincular). Note 

também que a matriz C(q) é anti-simétrica. 

 

 

LINEARIZAÇÃO: Utiliza-se das formas quadráticas da Energia Cinética e Energia Potencial 

para realizar a linearização do sistema em torno do ponto de equilíbrio  = 0  e   = 0. 



MECÂNICA ANALÍTICA 

RSB PME—3200 LDSV – POLI - USP 

72

 

 k

n

j

n

k
jki qqaT 

 


1 1

,2
2

1
    e    k

n

j

n

k
jki qqbV 

 


1 1

,2
2

1
 

 

Em seguida deve-se realizar as seguintes etapas: obter os coeficientes i,j  e   i,j , fazer a 

simplificação na posição de equilíbrio da origem e obter os coeficientes ai,j  e  b i,j , e montar a 

equação na forma matricial: 
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Os coeficientes i,j  e   i,j , são obtidos das derivadas parciais duplas da energia cinética 
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1 2222 RLLRmT  em relação as velocidade generalizadas e da função 

potencial   coscos1 LRmgV   em relação às coordenadas generalizadas: 
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Utilizando os termos da matriz Hessiana acima, as duas equações finais resultam em: 
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Descrevendo o sistema na forma matricial obtêm-se: 
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Note que para o sistema linearizado o acoplamento de forças entre os movimento devido ao 

vínculo permanece descrito na matriz de massas. O sistema linear de equações obtido pode ser 

tratado isolando as variáveis   e  por substituição. 

 

Veja exemplo de movimento de pêndulo duplo em: 

https://www.myphysicslab.com/pendulum/double-pendulum-en.html 

 



MECÂNICA ANALÍTICA 

RSB PME—3200 LDSV – POLI - USP 

74

 

4.7 Linearização Exemplo 5: Disco – Barra Guia 

 

O balancim de massa M e momento de inércia 

JGz, tem movimento angular  (t) prescrito em 

torno da articulação ideal em O fixo. O centro 

de massa G do balancim dista e do ponto O. O 

disco de massa m e raio r, rola sem escorregar 

sobre a guia AB, com posição definida pela 

cota u, medida ao longo da guia por um sensor 

de posição, a partir do ponto O. Este sistema 

também é conhecido como bola/barra. 

Adicionalmente no setor de arco de raio R na extremidade inferior do balancim estão ancoradas 

duas molas de rigidez k/2 cada. As molas estão em seu comprimento livre quando  = 0. Um 

momento externo )(tT


 é aplicado no balancim. Considerando as coordenadas generalizadas q1 = 

u  e  q2 = , pede-se: 

 

a) Escreva a função de Energia Cinética do sistema em função de u ,   e dos parâmetros m, r, M 

e JGz.  Dois corpos rígidos: balancim e o disco. Para o disco utilizando o referencial móvel 

kuO


  solidário ao balancim, obtêm-se: 
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Da cinemática do disco para rolamento sem escorregamento tem-se: ru /  
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Para o balancim utilizando o referencial móvel kuO


  solidário ao conjunto com O fixo, obtêm-

se: 
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A Energia Cinética total do sistema resulta em: 
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b) Escreva a função de a Energia Potencial e de dissipação do sistema em função de u e  e dos 

parâmetros m, r, g, R, k, M ; 
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A Energia Potencial total do sistema resulta em: 
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c) Deduza as equações de movimento utilizando o método de Lagrange. Para o primeira 

coordenada generalizada q1 = u : 
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Para a segunda coordenada generalizada q2 = ,: 
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Força generalizada: Utilizando o princípio dos trabalhos virtuais: 
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Finalmente a segunda equação para coordenada generalizada q2 =   resulta em: 
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Fazendo a substituição de u  da primeira equação na segunda, obtêm-se: 
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Linearização: 

Para realizar a linearização das equações do sistema não amortecido, deve-se realizar as 

seguintes etapas: obter os coeficientes i,j  e   i,j , fazer a simplificação na posição de equilíbrio 

da origem e obter os coeficientes ai,j  e  b i,j , e montar as equações na forma matricial: 
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Os coeficientes i,j  e   i,j , são obtidos das derivadas parciais duplas da energia cinética e 

potencial em relação as velocidade e coordenadas generalizadas: 
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
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


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
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
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
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
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




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



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





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





20
02

2
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0
0

2
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0
0

2

2,1

0
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2

1,1

|

|

|
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kR
V

b

mg
y

V
b

mg
y

V
b

y

V
b

u

u

u

u














 

 

Utilizando os termos da matriz Hessiana acima, as duas equações finais resultam em: 

 

i = 1  0
2

3
2,11,12,11,1

1
,

1
,  



 mgmrumbubauaqbqa
n

k
kki

n

k
kki

      e   i = 2 

  022
2,21,22,21,2

1
,

1
,  



 kRumgJmrumrbubauaqbqa Oz

n

k
kki

n

k
kki

  

 

Rearranjando as equações linearizadas na forma matricial, obtêm-se: 

 

  













































0

002/3
22 

u

kRmg

mgu

Jmrmr

mrm

Oz



 

 

As equações lineares obtidas pode ser isolas nas variáveis  eu  por substituição, obtendo: 
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 OzJmr

kRumgumr
gru






2

2

e
3

2

3

2 


    e substituindo em cada equação, resulta em: 

 

   0
2

3

2

1 222 







 gJmrrkRumgruJmr OzOz   

0
3

2

3

1 22 
















 umgkRmgrJmr Oz   

 

Ou finalmente na forma matricial: 

 

  





























































































0

0

3

2

3

1
0

0
2

3

2

1

2

22

2

2



u

kRmgrmg

gJmrrkRmgr
u

Jmr

Jmr
Oz

Oz

Oz




 

 

que é apropriada para aplicação da técnica de controle. 
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5 Vínculos Não-Holônomos 

 

Uma equação vincular cinemática que não pode ser integrada corresponde a um vínculo NÃO-

HOLÔNOMO. Quando há vínculos não-holônomos no sistema (que não é objeto deste texto), 

utiliza-se de termos adicionais, chamados de Multiplicadores de Lagrange, para tratar 

explicitamente os efeitos vinculares. A equação de Lagrange do primeiro tipo tem a forma: 

 

 nc
ii

iii

QC
q

V

q

T

q

T

dt

d

























 (59) 

 

onde as forças vinculares Ci são descritas por k multiplicadores de Lagrange da seguinte forma: 

 

 





i

k
ki

q

f
C   (60) 
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6 Vantagens e Desvantagens do Método Analítico 

 

A técnica analítica que utiliza a equação de Lagrange para solução do sistemas mecânicos 

naturalmente tem vantagens e desvantagens. Lista-se a seguir alguns destes aspectos: 

 

Vantagens: a) A abordagem de Lagrange gera automaticamente tantas equações quantos graus 

de liberdade houver. b) As equações de Lagrange usam naturalmente as coordenadas 

generalizadas do sistema. A formulação de Lagrange usa escalares relacionados com a energia 

ao passo que o equacionamento por Newton requer grandezas vetoriais. c) A abordagem 

Lagrange elimina naturalmente as forças de restrição vinculares. É possível fazer o mesmo com 

a abordagem direta (newtoniana), mas sua capacidade de minimizar o número de variáveis 

depende muito de habilidade. No método de Lagrange as forças são automaticamente tratadas, 

porque as forças generalizadas incluem apenas componentes de força em direções de 

movimentos admissíveis. 

 

Desvantagens: a) Erros cometidos na formulação das energias cinética T, potencial V e trabalho 

não conservativo Wnc, poderão nunca ser percebidos. b) A física das forças e os diagramas de 

forças do corpo livre são ignorados. c) Deve-se sempre avaliar cada uma das equações obtidas 

pelo método de Lagrange e questionar se faz ou não sentido físico. d) A determinação das forças 

generalizadas pode ser tanto ou mais trabalhosa no método Lagrangeano quanto no método 

direto. 
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8 Anexo A – Expansão em Série 

 

Relembrando do cálculo, considere que o comportamento de um sistema seja descrito pela 

equação diferencial  xfx   e que na origem x = 0 seja uma posição de equilíbrio. Sendo uma 

posição de equilíbrio sua variação nesta posição será nula, conforme descrito por: 

 

     00  fxxfx   (61) 

 

A função f  pode ser expandida em série (Mac Lauring) obtendo: 

 

         ....
!3!2

32

 xf
x

xf
x

xfxxfx  (62) 

 

Na mencionada posição de equilíbrio, onde  x = 0, obtêm-se pela expansão em série: 

 

    xRxfx 200   (63) 

 

onde:  
0















x
x

f
f    e   xR2    é de ordem de x2. A equação diferencial resulta, portanto em: 

 x
x

f
xouxfx

x















0

  (64)  

 

que é a equação linearizada, associada à função  xfx  . Se o movimento do sistema 

permanece restrito a uma vizinhança da origem, a equação linearizada representará bem o seu 

comportamento. 
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9 Anexo B – Análise Modal 

 

Para sistema mecânicos com mais de um grau de liberdade e acoplados, a transformação de 

coordenadas para outra base conveniente pode ser útil. As coordenadas modais que são 

coincidentes com os modos de vibrar, permite solucionar o problemas realizando uma análise 

modal analítica. 

 

Considere o sistema discreto, livre não amortecido composto por duas massas com movimento 

horizontal conforme ilustrado na figura: 

 

 
x1(t) 

m1 

c1 

k1 

x2(t) 

m2 

c2 

k2 

c3 

k3 

Xn(t) 

Mn 

Cn 

Kn 

 

 

Sendo o sistema acoplado, haverão dois modos de vibrar:   T
xx 12111   e  T

xx 22212   

com frequências naturais distintas 1  e 2 . Para    0C  e    0F  as equações do sistema na 

forma de Newton se reduzem à: 

        0 xKxM   (65) 

 

A historia temporal do movimento de cada grau de liberdade ( 21 xex ), para um determinada 

frequência natural ( 1 ) e portanto modo de vibrar  T

iii xx 21 será: 

 tie
x

x

x

x
1

12

11

2

1 

















   ou simplesmente       ti
ii

iex   (66) 
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Utilizando esta solução e sua derivada de segunda ordem (    ti
ii

iex   2 ) na equação 

dinâmica do sistema, obtêm-se: 

 

        02  titi eKeM                       02  MKe ti   (67) 

 

como 0tie   resta solucionar o seguinte problema clássico de auto-valor e auto-vetor para 

2  : 

        02  MK                       0
1




IKM   (68) 

 

Reescrevendo as equações na forma típica do auto-problema, obtêm-se a matriz dinâmica do 

sistema      KMA
1

 , associada com os auto-valores 2
ii    e os auto-vetores  i : 

 

        
 KM

1
                 A  (69) 

 

A solução típica do auto-problema é feito pelo cálculo do determinante: 

       0det 2  MK        ou              0det
1




IKM   (70) 

 

É importante constatar que os modos de vibrar representam uma base ortogonal no espaço. Desta 

forma a matriz modal apresenta as seguintes propriedades: 

      0 j

T

i M       e           0 j

T

i K  (71) 

 

sendo  i  o i-ésimo modo de vibrar associado com a i-ésima frequência natural  in  (idem 

para j). Assim tem-se que: 

      1 i

T

i M       e           2
ini

T

i K   (72) 
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Neste caso os modos  i  são normalizados em relação a matriz e massa o que implica que a 

matriz modal          n ...21   é ortonormal. 

 

O sistema mecânico com múltiplos corpos (Multibody System - MBS) expresso em coordenadas 

físicas   x , também pode ser expresso em coordenadas modais   q , através da transformação 

de base, tal que: 

      qx   (73) 

 

Substituindo na equação anterior e pré multiplicando por  i  obtêm-se: 

             0 qKqM
TT   (74) 

Assumindo que a matriz modal    é normalizada em relação a matriz de massa  M  e 

considerando a propriedade de ortogonalidade tem-se: 

       IM
T

       e             K
T

 (75) 

 

onde    22
2

2
1 ...,,, ndiag  . Aplicando esse resultada na equação anterior obêm-se a equação 

modal do sistema mecânica com múltiplos corpos, expressa na base modal que é desacoplada e 

dada por: 

        0 qq  (76) 

 

 

9.1 Exemplo Modal 

 

Dois veículos em movimento livres num plano são interligados por molas e amortecedores 

lineares. As posições x1(t) e x2(t) são medidas a partir das condições iniciais com as molas livres. 

Montar as equações de movimento na forma matricial e resolver o sistema pelo método de modal 
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calculando as frequências naturais e modos de vibrar, para os seguintes parâmetros do sistema: 

mmm  21 , 0321  ccc  e kkkk  321  

 
x1(t) 

m1 

c1 

k1 

x2(t) 

m2 

c2 

k2 

c3 

k3 

 

 

 

Resolução:  Sistema: Veículo de massa m1 e veículo de massa m2. DFCL: forças das molas e 

amortecedores sobre os corpos; Vínculos: rolete inferior deslizante sem atrito e interligação entre 

os veículos e as paredes com conjuntos mola+amortecedor. Utilizando o TR e montando na 

forma matricial as equações para os dois graus de liberdade obtêm-se: 

  









m

m
M

0

0
     e      














kk

kk
K

2

2
              0 xKxM   

Resolvendo o auto-problema determinando o polinômio característico em , obtido pelo 

determinando do sistema onde 2  : 

      0det  MK          0
2

2
det 























mkk

kmk




         02 22

 kmk   

034
2

2
2 

m

k

m

k
   cujas raízes são os auto-valores ou frequências naturais: mkn /1    e  

mkn /32    e substituído esses valores na equação do sistema obtêm-se os auto-vetores: 

 T
111   e  T

112  . 

 

 


