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1 Principio de D’Alembert

O principio de D’ALAMBERT (1743) expande o principio dos Trabalhos Virtuais (PTV) do
caso estatico para o caso dindmico. A variagdo temporal da quantidade de movimento de uma

particula de massa invariante, conforme a segunda lei de Newton, ¢ descrita por:

- d_. d({ 5 d = d - ~ &
=—p=—mV)=—m-V.+m-—V. =ma=F 1
P=a? dt( ) a T M)

Para a “i-ésima” particula um sistema de N particulas e seu respectivo somatorio, obtém-se
0
d d =\ dm, - d - - o X

p.=—p =—\mV )=—FV.+m—V,.=m.a,=F = F =R 2
pz dtpl dt( i 1) t i ldt i [ i Z=1: Z 1 ()

1l
—_

A resultante R das forgas aplicadas pode ser separada em forgas internas e vinculares e as forgas
externas sendo que, apenas as forcas externas realizam trabalho. Aplicando o PTV nesta
particula e realizando o somatdrio para o agregado de N particulas, obtém-se a equacgdo de

equilibrio dindmico na forma de D ’Alembert para vinculos ideais:

5W:(:m+ﬁ;im+1*:;.Vinc—f71-6_1’l-)'57_";:0 N i( ext 4)

i=l

3u
I
o

3)

Estendendo o principio de D’Alembert para corpos rigidos, utilizando a férmula de campo de

aceleracdes, pode-se provar que:

g, =d,+a, NG, —0)+ @, Ad, A (G, —0)]

ﬁ[(lj“f’“ —m, 51‘)' Sig+ (MGJ‘ - [J]Gj &./)' 5‘9_/]
=

0 para j=1,2,3,...m 4)
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2 Equacao de LAGRANGE

Considere o agregado rigido de P; particulas cujas posi¢des sdo identificadas pelas coordenadas
ordinarias (xj, X2, X3, ..., X3n) submetidas a (Fj, P;) forgas. Utilizando o principio de D'Alembert
e determinando o trabalho virtual das for¢as inerciais e externas do agregado de NN particulas em
movimento acelerado no espaco tridimensional E° ¢ movimentos consistentes com os vinculos,

obtém-se:

3N
SW =3 (F,-ma;)-5x;=0 )

Jj=1

onde o dx; ¢ um deslocamento virtual de cada particula, compativel com a configuragdo do

sistema e condi¢des vinculares ideais.

Considere ainda a descrigdo da configuragdo do sistema em ¢; coordenadas generalizadas

independentes, obtém-se 3/V func¢des das n coordenadas generalizadas:

X = fl(%a%a%w-aqnat)

X, :fz(%:%>q3>""qn’t) (6)

Xyy = fzzv(%:%:%:---:qnat)

onde as ¢; coordenadas generalizadas sao decorrentes dos 3N movimentos das particulas menos
as respectivas restrigdes vinculares @;. que correspondem aos n Graus de Liberdade
independentes do sistema. As 3N fungdes f; sdo fungdes das g, coordenadas generalizadas e do

tempo.

O deslocamento elementar dx; do sistema, expresso em funcdo das n coordenadas generalizadas,

resulta em:
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" O0X, 6xj

dx. = Ldg. +
g g‘aqi o

(7

Para o deslocamento virtual dx; (infinitesimal) que transcorre independente do tempo, obtém-se:

ox; )
5xj—za oq,| (I para i=1,23,..,n (8)

i=1 04,

Retomando a expressao do trabalho virtual na forma de D ’Alembert para deslocamentos virtuais

generalizados aplicando o deslocamento virtual generalizado obtém-se:

n aX~ n

5W=3ZN:Fj-za’5qi ZZma ’5ql 0 )

=1 i=1 04; i=l j=1

O termo do primeiro somatorio, considerando a inversdo da ordem do somatodrio, ¢ denominado

de FORCA GENERALIZADA:

0 =

(1) (10)

i

SW = ZQ 5q. - Z":Zma faq, 0| (II) (11)

i=l j=1

A ENERGIA CINETICA total do sistema material de NV particulas é igual a:

1 N - 1 3N
T==Ym-V:==—>m | (IV) (12)
2j:1 p 2j:1 p p

A derivada parcial de T com respeito a derivada temporal da coordenada generalizada g;,

(utilizando a regra do produto) resulta em:
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T ox. ox,;
a—.:zm/ X, —*| (V) pois i-(xi'xf)zz X )f] (13)
¢, =5~ 0q aq; " 04,

Retomando a expressao do deslocamento elementar da coordenada ordinéria (equagdo I) e

diferenciando com respeito ao tempo:

n a ) a .
dx, =Y dg + ax, dt  dividindopordf i, =

J

d 1 i ax,‘
—X. = -g. + - 14
34, ; P ;aq 7 (14

Derivando parcialmente a ltima expressdo com respeito a 0g,, restara apenas o i - €simo termo

do somatério e o ultimo termo correspondente a derivada parcial em relagdo ao tempo nao

comparece:

0%, _0x;
- = (VD (15)
dq, 0q

i

Substituindo (VI) de volta na expressao da derivada parcial da energia cinética (V) obtém-se:

3N Ox.
O S5, 25 v (16)
04, j=1 a4,

Tomando novamente a derivada temporal da expressdo (VII) utilizando a regra da cadeia:

0 é]i Jj=1 0 q;

d(oT) ¥ . 0x; . d[0x,
E(_jzz{mj.xj. J +mf.xf.z(aqjﬂ (VIII) (17)

Utilizando novamente a regra da cadeia no ultimo termo de (VIII), lembrando que x; = f (91, >,

q3,---s 4n, t)

(a) (18)
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Da expressdo de x; derivando parcialmente em relagédo a 0g,

ox. . Ox, i . ox, & 0'x, A
L.4,+—2L  derivada parcial = —g,+——— (b) (19)
dq, ot dq, 504,04, dq,; 0t

n
X; = Z
i=1

Portanto as expressdes (a) e (b) sao idénticas:

d(0x, ox,
—| L= @IX) (20)
dt\ dq; ) 0g,
Aplicando (IX) em (VIII) obtém-se:
3N ox. ox.
L (R IR  o PIE c AT CTR IES @1
df aql = J J aql J J aql

A derivada parcial da energia cinética na coordenada generalizada i, considerando a massa

constante, resulta em:

=Y ey (22)

aqz j=1 aqi Jj=1 2 an
N m. O\x.-x, 3N ox., 3 ox,
a_T:z_j (/ j) =lij'2*j' - =ij'fcj' ’ (23)
dg, 52 Og 293 ogq, ‘= a4,

Que ¢ idéntica a ultima parcela da expressao (X), resultando, portanto em:

dfor _a_ng“F,.ax/ (24)
di\0q;, ) 0g, ' 0g,

J=1

Utilizando a descricao da forca generalizada Q; , descrita em (II), na expressdo anterior:
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W Ox, d[ar] oT _ (25)

=NrF.—= = S22 -0
0=2F 0 dt\og, ) oq

Jj=1 i

Para as forgas generalizadas conservativas @; , derivaveis da funcao potencial V=V (q1, q2, 43,

NC ,

i .

..... , qn), obtém-se para forcas ndo conservativas Q

—a—V=Q,. N i(@]jj_@T_FaV:QiNC (26)
¢, dt\0q;) 9q; 0g;
que é a EQUACAO DE LAGRANGE na forma de energia cinética T e potencial V:
d(aT ) or oV _ .
dt aq.k aqk aqk k para k=1,2,..,n 27)
Para a funcao Lagrangeana L =T —V , resulta na equacao de Lagrange:
d(oL)| OL
Sl a=0 (28)
dt\0q, ) 0y,

Obs.: Para sistemas ndo-holénomos, deve-se utilizar os multiplicadores de Lagrange que nao ¢

objeto deste texto.
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2.1 Exemplo 1: Anel arrastado por aro girante

Um pequeno anel P de massa m se move com velocidade
angular relativa 0k , mantendo-se em permanente contato com
o aro de raio R e centro em O, sem atrito. Por sua vez, o aro de
massa desprezivel, gira em torno do eixo vertical Oy, com
velocidade angular prescrita constante 1/ arrastando o anel.

Desprezando o atrito nos contatos, pede-se para determinar a

equagao de movimento do anel.

Resolucio: Sistema: anel de massa m ¢ vinculo devido ao aro
de raio R. Graus de liberdade ordindrios do sistema: @e y;
coordenadas generalizadas independentes ¢, = 6 ¢ ¢, = .

Diagramas: DVCL e DFCL. Referencial Oxyz movel

solidario ao aro. Teoremas: Energia Cinética, Energia

Potencial, For¢as Generalizadas e equagao de Lagrange.

A posigao relativa do ponto P € expressa no referencial movel como:
(P—O): xi+yj=Rsen6i —Rcosf |
Verifica-se que o anel (que tem movimento relativo) ¢ arrastado pelo movimento do aro.

Portanto a velocidade do ponto P ¢ obtida da composicdo de movimento como:

V,=V_  +V

rel arr
Derivando a posig¢ao relativa em relagao ao tempo, obtém-se a velocidade relativa do anel P:

v, —i(P—O)=Xf+yf=Rcos@9f+Rsen99f ouw V =V T

rel — rel rel
dt

A velocidade de arrastamento do ponto P ¢ expressa no referencial mével como:

1

. :VO+l/7/\(P—O):O+W]AR(sen0f—cosﬁj)
:—Rlpsenﬁlz

a

!

arr
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Finalmente a velocidade absoluta do ponto P e o quadrado resultam em:
I7P = R(cos@é’f+sent96"]’—y)sen6’l€)
V2= Rz(@2 +y” sen’ 9)

A energia cinética T do anel P resulta em:
1 5 1 .
T zzm-VPz :EmRZ(E’2 +y” sen’ (9)

A energia potencial V devido a ac¢do da gravidade sobre o anel P resulta em:

V =mg(R—Rcosh)

Tomando as seguintes derivadas parciais e temporal da primeira coordenada generalizada ¢, = 6

obtém-se:

a—T:mRzé = i 8—T = mR*0
06 dt\ o6

oT

—— =mR’y’senfcosb ; a—V:ngsenH
o6 o6

As EQUACOES DE LAGRANGE para g; coordenadas generalizadas sdo obtidas pelas seguintes

derivadas parciais e temporais das fungdes de energia cinética e potencial:

= Qi

dt\ 04,

d(or) ar o
dq, O0g,

Aplicando os resultados das derivadas parciais na equacdo de Lagrange, para a coordenada ¢; =

6, obtém-se a primeira equacao escalar:

(mRz)é —mR*y* sen@cos@ = —mgRsen &

Note que o primeiro escalar da equagio acima (mR?), corresponde a0 momento de inércia do
anel em torno do ponto 0. O segundo termo corresponde & aceleragio centripeta (Ry>) do anel.

Note ainda que o anel de massa m esta submetido a agdo gravitacional e vincular devido a

trajetoria prescrita de raio R imposta pelo aro.
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Para a segunda coordenada generalizada ¢, = y, o movimento ¢ determinado (prescrito ¥ = cte)
e portanto 1 =0. Tomando as seguintes derivadas parciais e temporal da segunda coordenada

generalizada ¢, = v

ﬂszzwsenze - 4 6_T = mR*j sen’ @+ 2mR* sen 6 cos A0y
oy dt\ oy

oT Ly ¥,

oy oy

Aplicando os resultados das derivadas parciais na equacdo de Lagrange, para a coordenada ¢, =

v, obtém-se a segunda equacao escalar:

mR™j7 sen” @+ 2mR* sen 0 cos 00y = O,

As forgas externas agentes sobre o anel sdo devido a gravidade e devido a guia de contato no
plano perpendicular a velocidade relativa, ou seja no plano 7 =k At . Entdo, sobre o anel
havera uma componente de forga de contato centripeta . =—F. ii e outra tangencial F, = F, k .

Para velocidade angular prescrita constante i j (7 =0) e considerando a forga generalizada

0, =M, como o momento externo aplicado no aro devido a reagdo da forca tangencial do anel

obtém-se

M =-2mR*sen 6 cos 00y

y —
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2.2 Exemplo 2: Carro e Péndulo Simples

Um carro de massa M se movimenta no plano Oxy, conforme mostrado na figura. O veiculo
desliza sobre o plano sem atrito e suporta um péndulo simples de massa m e comprimento L,
suspenso na articulagdo ideal C onde descreve o angulo & péndulo é submetido a forga
horizontal Fp aplicada no ponto B. Determinar as equagdes de movimento do sistema pelo

método de Lagrange.
N
§ g
Xa
y
] s

o @) @)

Resolucio: Sistema: carro de massa M e péndulo B de massa m e comprimento L. Graus de
liberdade ordinarios do sistema: x e @; coordenadas generalizadas independentes ¢; =x e ¢, = 6.
Diagramas: DVCL e DFCL. Referencial Oxy. Teoremas: Energia Cinética, Energia Potencial,
Forcas Generalizadas e equacao de Lagrange.

No plano cartesiano Oxy da figura, as coordenadas ordinarias das posi¢des do ponto A do carro e
do ponto B do péndulo, se relacionam com as coordenados generalizadas, conforme as seguintes
relacdes:

(4=0)=(xpy,)=x,i+y, j=x,i+h]

(B—O):(B—C)+(C—O):L(senﬁf—cos@])+xA i =(Lsenf+x,)i —cosf

Derivando em relagdo ao tempo, obtém-se as velocidades dos pontos de interesse A ¢ B

utilizando a formula de campo de velocidades no sistema de coordenadas Oxyz com versores

i,je k pode-se expressar a velocidade do carro e do centro de massa do péndulo B, que tem
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movimento relativo em torno da articulacdo C, que por sua vez ¢ arrastado pelo movimento do

carro (composi¢cao de movimento):

|

— -

=%,i=V.=x.i =xi =4,

173 :VC +a?)/\(B—C):)'cz?+6"l;/\L(sen017—cos0]')

173 :Xf+L9(cosﬁf+sen9j): (x+Lécosﬁ)f+Lésen9j
V2=x*+2LcosOx0+ [*6

EN

A ENERGIA CINETICA total do sistema ¢ a soma da energia cinética de cada corpo. O carro

estd apenas em translacdo (ndo tem rotacdo no plano considerado). J4 o péndulo tem translagdo e

rotagdo conforme expressao anterior:

T = T:)agdo + T Péndulo
1 2 1 2
=M Vi mV;

T=(M;mjfc2 +mLcos€ic6>+%mL249'2

A ENERGIA POTENCIAL ¢ fungio apenas da altura £ da massa m do péndulo sendo obtida

por (as for¢as no vinculo ideal O ndo realizam trabalho):
V=V(@)=mg-h=mg-L(1-cosb)

Fazendo as coordenadas generalizadas ¢, = x e ¢, = @ ; a funcdo Lagrangeana depende da

posicdo (x e @) e da velocidade (xe@) do sistema, sendo definida como:
L=T-V onde L=L(x0,x,0)

As EQUACOES DE LAGRANGE para g; coordenadas generalizadas sdo obtidas pelas seguintes

derivadas parciais e temporais das fungdes de energia cinética e potencial:

i

d(oT) oT oV _
dt\0q;) 0q; 0q,
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T:(M;msz +mLcos0)'c6"+%mL26"2

V =mg-L(1-cos®)

Tomando as seguintes derivadas parciais da primeira coordenada generalizada ¢, = x:

a—'T:a—Yj:(M+m))'c+mLcos6’9. = ia—T = (M +m)3+mLcos 90 —mLsen 06
0q, O0x dt\ 0x
0q, Ox dq, Ox

Aplicando os resultados das derivadas parciais e derivando com respeito ao tempo na equagao de

Lagrange, na coordenada ¢, = x, e considerando a for¢a generalizada @), obtém-se a primeira

equacao escalar:

d(aTj oT v d(aTJ oT ov
to—=—| |-+ =0,

dt\og, ) oq, 0q di\ox) ox ox
(M +m)x+mLcos 00 —mLsen 06* = Q,

Tomando as seguintes derivadas parciais da segunda coordenada generalizada ¢, = 6

8'T :a—T.:mLcosﬁ)HmLz@ = 4 8_T =mLcos@x—mLsen00x+ml*6
0q, 00 di\ 06

or :a—T:—mLsenﬁé’fc ; o =8—V:mgLsen6’

g, 00 oq, 00

Aplicando os resultados na equacao de Lagrange nas coordenadas ¢, = 6 , considerando a forca

generalizada @,, obtém-se mais uma equagao escalar (note que o termo xé& se cancela):

d(arj oT oV d(@Tj oT v
+ = - + =0,

di\og,) 0q, 0q, dt\d0) 06 o6

mLcos@ % +mL*@ +mgLsen 6 = Q,
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As forgas generalizadas podem ser obtidas da formula propria ou utilizando a equivaléncia entre

o trabalho virtual ordinario e generalizado:

3N ax_ k N _ n
Qi:sz-a J ou 5W=2 L0F =) 0,40¢q,
Jj=1 q; Jj=1 i=1

Utilizando o método de equivaléncia do trabalho virtual, tem-se por analogia que:
Fp-61r,=0,-0¢,+0,-94¢,
Os deslocamentos virtuais podem ser obtidos das expressoes das velocidades:

v, :)'cz?+t9'l€/\L(sen6’z?—cost9j)
dB _dx- _do

———1+L—(sen0j+cosﬁf) = dB=(dx+Lcosfd@)i +Lsen0db j
dt dt dt

OB =(Sx+Lcos@50)i +Lsend SO |

Substituindo na expressao do trabalho virtual ordinario:

SW =F,-57,=F,i-(5xi +Lcos0507 + Lsen050)
SW =F,8x+(F, Lcos8)50

As forgas generalizadas por analogia resultam parag; =x ¢ ¢, = @ em:
SW=F,-5x+(F,Lcos)-56
oW =00q9+0,6q,

O=F, e Q,=F,Lcos@

Finalmente considerando as forgas generalizadas as equagdes de movimento resultam em:
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(M +m)x+mLcos @0 —mLsen 06* = F,
mLcos@ % +mL*0 +mgLsen 6 = F,Lcos 6

Note ainda que as equagdes sdo dependentes das aceleragdes devido ao vinculo e forma um

sistema linear que pode ser tratado por eliminagdo de variavel utilizando:

F
Cosejé—%senﬁJr—BCOSQ

mL

b=
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3 Funcao Dissipativa

As forgas generalizadas @; incluem forgas ndo conservativas que ndo podem ser derivadas a
partir de um potencial. Dentre essas forgas existe uma classe que engloba as forgas que sdo
proporcionais a velocidade e resistem ao movimento (mesma direcdo da velocidade, mas em

sentido oposto). Este tipo de forga pode ser descrito como:
F=—c-x (29)
Obtém-se para as forgas (F,P) em coordenadas ordinarias:

F=Fi+F j+Fk ; Vo=xi+%, j+Fik (30)
F,=—c;-x, para j=1,2,..,3N
Assim o0 TRABALHO VIRTUAL realizado por FORCAS DISSIPATIVAS aplicadas os N

corpos de um sistema, sao calculadas em coordenadas ordinarias como:

3N 3N
5W=25-5xj=—zlcj-xj-5xj 31)
f

J=1

Lembrando que os deslocamentos virtuais, sua derivada temporal e sua derivada parcial com

respeito a 0¢,, sdo dados por:

nOX, " O0X, ox. Ox,
ox, = L.S5q. ; O0x. = L.og = - L 32
el 12,0 04, g, G2

Portanto, substituindo no deslocamento virtual e na expressao do trabalho virtual, obtém-se:
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v n 3N a X
Ssq = ow=-Y|Ye, kL |.5q, (33)
i1 | j=1 0qg,

Lembrando também que a derivada parcial de sz em relagdo ¢, resulta em:

0%, 0t 1 0%
A T AT N B L7 (34)
0q, ' ' 04, dq, 2x; 0q,

Aplicando esta expressdo na expressao do trabalho virtual obtém-se:

n

ow§| et fon = ow- ST o0 09
j=1 q i ;

Definido a funcdo R (fungdo dissipativa de Rayleigh) e substituindo no trabalho virtual obtém-

S¢:

R=3ZN;(C ) = 5W=—i2—3-5q,. (36)
j=1 i=1 qi

Lembrando da expressdo do trabalho virtual das forcas generalizadas e comparando com a

expressao anterior, conclui-se que:

sw=Y0-6q, = |0=-2% (37)

Utilizando a expressdo da forgas generalizada dissipativa (Rayleigh), onde R = f(X,,X,,....,X,)

ou seja fungdo das coordenadas generalizadas, podendo portanto ser deslocada para o lado

direito da equagdo na féormula de balanco de energia, obtém-se:
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N7 0T VIR o (38)
dt\0q,) 9q; 0gq; 094,
Finalmente descrevendo na forma tradicional de Lagrange:
d(oL)| OL OR :
— — + =0 | = 1, 2,...., 39
dz(aq',) oq, T0q, O| P ! 2

3.1 Exemplo 3 — Carro, Pendulo Composto e Forgas

No sistema mostrado na figura, o carro 4 de massa M, que desliza sobre o plano sem atrito, esta
interconectado a uma mola de rigidez k e um amortecedor com coeficiente de dissipagao linear c.
No centro do carro A4, estd articulado um péndulo composto homogéneo de massa m e
comprimento L. Uma forca F, horizontal ¢ aplicada no carro e uma for¢a Fp € aplicada na
extremidade do pendulo ortogonal a ele. A mola tem deformacao nula quando a coordenada x do

ponto A vale zero. Determine as equagdes de movimento pelo método de Lagrange.

X I? N
A
o c '9 > g
A?\ M
k Q) N\ O
" L,m
N
Fp
0 P

Resolucio: Sistema: carro de massa M e péndulo composto de massa m e comprimento L.
Diagramas: DVCL e DFCL. Referencial: Aur7 k . Graus de liberdade independentes do

sistema: x e @ . Molas de rigidez k. e amortecedor de coeficiente de dissipagdo linear ¢. Forga
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horizontal (Fa, A) Forca ortogonal ao péndulo (Fp, P). Teoremas: Energia Cinética, Energia

Potencial, For¢as Generalizadas e equagao de Lagrange.

Utilizando a férmula de campo de velocidades pode-se expressar a partir da velocidade de G do
carro, a velocidade do ponto P do péndulo, que tem movimento relativo em torno da articulacao
G que por sua vez ¢ arrastado pelo movimento do carro (composicdo de movimento). Pode-se

utilizar qualquer sistema de coordenadas, como por exemplo u#, 7e k sendo u na direcdo de

PA , para expressar a velocidade quadratica do ponto G (evitar o termo cruzado na energia
potencial):
= i =senfii+cosf7
+ONG-A)=xi +0k AL/2ii
senii +cos@7)+L/207 = xsen 05+()&C050+L/29)f

~.

R

o L
Il

—_

Vo=x

2 .
G =X

8]

sen’O+x%cos’ O+ LcosOx0+ 120>/ 4=x*+LcosOx0+1°6*/4

A ENERGIA CINETICA total do sistema é a soma da energia cinética de cada corpo. O carro

estd apenas em translagdo (ndo tem rotacdo no plano considerado) e o péndulo tem translacdo e
rotagdo (pélo em G), conforme expressao anterior:

Lt =Tgieo + 7,

0 Bloco Pendulo

T(x,@,fc,é):%M-Vj +%m-l762 +%5)T[J]Gc?)

2
T(6,0.5.0)= 2 M & + Ll + Leos 050+ 26° 1 4)+ L 5 g2
2 2 2 12

(Mmoo cos0i 6+ Lmi2é?
2 2 6

A ENERGIA POTENCIAL ¢ fungdo da altura & do centro de massa G da massa m do péndulo

e da mola, sendo obtida por:

V= V(x’ 0) = Vgrav +I/elast = mg'h+%kxz =mg 'é(l—cose)+%kx2

A DISSIPACAO (Rayleigh) ¢ fungdo da velocidade do carro:

. |
R=R(x)=—cx
(%) 5
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Fazendo as coordenadas generalizadas ¢, = x e ¢, = @ ; a funcdo Lagrangeana depende da

posicdo (x e 8) e da velocidade (xe8) do sistema, sendo definida como:

L=T-V onde L=L(x,0,x%06)

As equacdes de LAGRANGE para ¢; coordenadas generalizadas sdo obtidas pelas seguintes

derivadas parciais e temporais, forgas dissipativas (R; ) e agdes externas (Q; ):

d(or) or 6V+8R
dt\ 04, aq, 0q, 04,

Realizando as seguintes derivadas parciais na coordenada generalizada ¢, = x

or _or =(M +m)x+mLcos60/2

8q1 T ox

d[otT =(M +m)x+mL/2cos 00 —mL/2sen 66
dr\ 0%

or _or_, or _av_,.

0q, O0x 8q1 T ox

OR _OR_

0q, O0x

Aplicando os resultados das derivadas parciais e derivando com respeito ao tempo na equagao de
Lagrange, na coordenada ¢; = x , e considerando a for¢a generalizada @), obtém-se a seguinte
equacao escalar:

d(oT ) or oV oR _d(oT) oI dV OR
—| — + + —t—+—

dt\ 04, aql 0q, 0gq, “dr\ox) ox ox ox
(M +m)i+mL/2cos00 —mL/2sen00* +cx+kx=0,

=0

Realizando as seguintes derivadas parciais na coordenada generalizada ¢, = 6
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2 2
oT 8T mL 08O+ JrmL 0 i 8_T :m_Lcosex_mLsen0x9+mL i
04, 00 2 3 dt\ 060 2 2 3
or oT mLsen@ . - ov . _ov mgL OR OR
=—=-——_—x0 ——send — ==
dq, 00 2 0q, T o0 2 0q, 00

Aplicando os resultados na equacdo de Lagrange nas coordenadas ¢, = @ , considerando a forca

generalizada @,, obtém-se mais uma equagao escalar (note que o termo xé& se cancela):

d(arj oT oV  OR d(arj oT oV oR _o
- 2

di\0q, ) 0q, oq, 0q, di\od) a0 a6 a0

mLcos&’).C.er é+gLsen6’
2 3 2

=0,

As forgas generalizadas podem ser obtidas da formula propria ou utilizando a equivaléncia entre

o trabalho virtual ordinario e generalizado:

ka
ou W=D F di =) 0, dg

i J=1 i=1

0 =

Utilizando o método de equivaléncia do trabalho virtual, tem-se por analogia que:

F,-8A+F, - 6P=0,-6¢,+0,-5q,

O deslocamento virtual do ponto 4 € do ponto P onde a forca horizontal F e a forca ortogonal

Fp estao aplicadas, pode ser obtido das expressoes das velocidades:

I7A:)'cf = a4 dxl = Mx=0dx
At dt

VP:(X+L9c059)f+Lésen9]

d—P: @+L s&’ﬁ z7+Lsen0ﬁ]

dt dt dt dt

SP =(Sx+Lcos@-56)i +(Lsend-50)

Substituindo na expressao do trabalho virtual ordinario:
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SW =F,i-6xi +F,7-(5x7 +Lcos0507 + Lsen 636 ;)
OW=F,0x+F, (cos@?+sen9])-(5x?+LcosH§6f+Lsen959]')
SW =F,5x+F,5x+LF,(cos’ 0+sen” 0)- 50
SW=(F,+F,cos0)5x+F,L56

As forgas generalizadas por similaridade resultam para g, =x e ¢, = € em:

SW=(F,+F,cos0)5x+F,L56
oW =0056q,+0,dq,

que resulta por analogia em:  |Q, =(F,+F,cos6) e Q,=F,L

Resultando finalmente nas duas equacdes diferenciais do sistema:

(M +m)i+mL/2cos06 —mL/2sen00* +cx+kx=F,+F,cos6

2
mL(;osﬁ).C.+ m?f, é+mgL

senf =F,L

Note que as equagdes tém termos de aceleragdo cruzados devido as for¢as do acoplamento do
pino em A. Neste caso o sistema linear formado pode ser tratado por eliminagdo de varidvel

3cos0 X—3—gsen9+ﬁ e obtendo:

2L 2L mL

utilizando: 6 =—

[M +m(1—3cos2 6’/4)])'6—msen6’(L6"2 /2+3gcos&’/4)+ ci+kx=F,—F,cos0/2
Pode-se também obter as forgas generalizadas aplicando a defini¢ao de forca generalizada:

3N ax

=Y F .— ara i=1,2,..,n
Ql Z J aq p

J=1 i

Para duas forcas ( F nA) (F, »,P) com as seguintes componentes F; e para posi¢do P e A4 com as

componentes x; tem-se:
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F,=Fi+F, j+Fk=F,i+0j+0k
(A—O)le17+x2j+x3l;=x17+0]+012

FP :F4Z+FSj+F6%I(FPCOSQ)Z+(FPS6n9)j+O§
(P—A)=x,1+x; ] +x.k=(x+Lsend)i —(LcosO)j+0k

Fazendo as derivadas parciais para ¢, =x ¢ ¢g» = @ de cada deslocamento x;:

x=x; x,=0; x,=0 ; x,=(x+Lsend) ; x,=(~Lcosh) ; x,=0

ox; N %:1;8x2:0;8x3:0;8x4:1;8x5:0;8x6:0

0q, O0x O0x ox ox ox O0x

Ox,

4o %20 ; 8x2:0 ; 8x3:O ; %=Lcosé’ ; aXS:Lsen&’ ; aXt”:O
0q, 06 00 00 00 00 06

Aplicando os resultados obtidos no somatério da forca generalizada, tém-se para cada

coordenada generalizada os seguintes resultados:

Ox _ _8(x+Lsent9)+FS_6(0)+F6‘6(0)
ox ox ox ox ox ox
0, =F-1+O-0+0-0+(F cosH)-l+0-O+0-O=FA+FL0059

025 Zl
0,- -2,

( ) ( )+F4'8(x+Lsenz9)+FS'6(—L0059)+Fé.6(0)
86’ 00 00 00 00
0,=F -0+0-0+0-0+(FP cos&’)-(LcosH)+(FPsen@)-(Lsen0)+0-0:FPL

Portanto: O =F,+F,cos0| e O, =F,L (c.q.d.)




MECANICA ANALITICA 25

3.2 Exemplo 3: Disco em Movimento

Um disco de centro D, massa m ¢ raio r, rola sem escorregar com velocidade angular @, sobre a
superficie AB, com posi¢do do seu ponto de contato C definida pela cota s, medida ao longo da
superficie AB, a partir do ponto 0. O balancim de ABD massa M ¢ momento de inércia Jo,, tem
movimento angular 4 em torno da articulacdo ideal em O fixa. O centro de massa G do
balancim dista e do ponto de articulagio em O. No setor de arco de raio R na extremidade
inferior do balancim estdo ancoradas duas molas de rigidez k/2 cada. As molas estdo em seu

comprimento livre quando @ = 0. Um torque externo oscilatorio 7(f) =7, cos(Q¢) atua no

balancim. Considerando as coordenadas generalizadas ¢; =s e ¢, = 6, determinar as equagdes

de movimento em funcdo dos pardmetros m, r, M, Jo, , e, g, R, k.

Resolucao: Sistema: disco de massa m e raio r ¢ balancim de massa M. Graus de liberdade
ordinarios do sistema: s e & ; coordenadas generalizadas independentes ¢, = s ¢ q» = 6.
Diagramas: DVC e DFCL. Referencial Oxy. Teoremas: Energia Cinética, Energia Potencial,

Forcas Generalizadas e equacao de Lagrange.

a) Para expressar a posicao absoluta D do disco em fun¢ao da posi¢ao s ao longo da superficie
AB, adota-se a base solidéria ao balancim Oii7 k e obtém-se: (D-0)=(D-C)+(C-0)

= (D-0)=-sii+r7 ou (D—O):—s(cos@f+sen6’])+r(—sen6’?+cos6’]’)



MECANICA ANALITICA 26

b) A velocidade @ do disco em fungao de s pode ser obtida da cinematica considerando o

rolamento sem escorregamento:

¢) A funcao de Energia Potencial do sistema em funcgdo de s e € e dos parametros r, e, g, m ¢ M.

¢ obtida da expressdo da Energia Potencial do sistema: V =V,  +V,

Balancim

+V

isco Mola

Vo =mg-hy, =mg-(ssen@—rcos6)
VBalancim = Mg ’ e(l —COs 0)

Vow= Z%ki X' = 2(%%13292) = %k}?ze2

A Energia Potencial total do sistema resulta em:

V=mg (ssen@—rcos@)+Mge(l—cos0)+(kRZHZ)/2

d) Escreva a fungdo a Energia Cinética do sistema em fungio de s e 6 e dos pardmetros m ¢ Jo,.

A energia cinética do sistema: T =T, . +7,.,..... - Para o disco D tem-se:
Disco — I/rel + Varr
rel = —Su

V, =Vo+@&A(D-0)=0+0k A(~sii+r7)=-s07 —r0ii

Tpiseo =lm-l75 +%a)T 171, =%m-[($+r9)2 +s? 92]+%[%mr2ja)2

2
Considerando que o disco rola sem escorregar:
) - A 1 2 A2 1 .2
T =—ms™ +mrs@+—ms”~ 0~ +—ms
2 2

Para o balancim, utilizando o referencial mével Ou 7 k solidario ao conjunto, obtém-se:

G = Vel + arr I/rel = 0

#W 2170+(?)/\(G—0)=0+9]€/\(—€)f=€9 u
7=

Balancim EM (8292 )+_[‘]Oz ]02

A Energia Cinética total do sistema resulta portanto em:
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! .
T:%mjz +mr$9+—(ms2 +Me* +J02)92

e) Deduza as equagdes de movimento utilizando o método de Lagrange, valida enquanto o disco

permanece sobre a barra. Para o primeira coordenada generalizada ¢, = s tém-se:

or or 3 : d(oT) 3 . 5
—=——="ms+mréd - —| = =—mS+mr6

dg, 05 2 di\ox) 2
or _or _ »

0q, Os

ov oV OR OR
—=——=mg-senf ; —=——=

0q, Os 0q, O0x

d(|or _5T+8V+8R_
dt\0q,) 0q, 0q; 04, i

%m§+mré—m592 +mg-senf =0

Para a segunda coordenada generalizada ¢, = @ obtém-se:

6'T =a—7.1=mr;§+(ms2 +M82+JOZ)9 =

0q, 00

4 8_T :mr's'+(ms2 +Me2+JOZ)65+2mSS*6’

dt\ 00

0q, 00 0o

or :a—V:mg-scos6’+mg-rsen6’+Mg-esen9+kR26’
0q, 00

Forca generalizada: Utilizando o principio dos trabalhos virtuais:

SW=YF-5i+M-50=).0,-6¢,=0
7:00=0,-00 = Q,=t1

Finalmente a segunda equagao para coordenada generalizada ¢, = @ resulta em:

mr§+(m52 +Me’ +JOZ)65+2ms$9+mgscos&’+mgrsen0+Mgesen9+kR20:r(t)

f) Fazendo a substituicdo de § da primeira equagdo na segunda, obtém-se e equacao diferencial

de segunda ordem isolada em At):
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§:§(—ré+séz+gsen9)

[JOZ +ms’ +§mr2 +Me2jé+§mrs92 +2ms$t9+mgscos@Jr%mgrsent9+Mgesent9+kR20=T(t)
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3.3 Exemplo 4 - Trem

Dois veiculos em movimento livres num plano horizontal sdo interligados por molas e
amortecedores lineares. As posi¢des x;(f) e x(f) sio medidas a partir das condi¢des iniciais com
as molas livres. O veiculo da esquerda esta submetido a uma forga F(f). Resolver o sistema pelo

método de Lagrange e montar as equagdes de movimento na forma matricial.

Xi(t) Xa(t)
— £ —
1
Cy —p O C3
k1 ) ( ko ) ( ks

Resolucao: Sistema: Veiculo de massa m; ¢ veiculo de massa m,. DFCL: for¢as das molas ¢
amortecedores sobre os corpos, for¢a externa £ ; Vinculos: rolete inferior deslizante sem atrito e
interligacdo entre os veiculos e as paredes com conjuntos mola+amortecedor. Sistema de
coordenadas generalizadas ¢; = xi(t) € ¢» = x»(t). Teoremas: Energia Cinética, Energia

Potencial, Forgas dissipativas e formula de Lagrange:

L. 1 ; 1 ) 1 1 1
T(xl’xz’xlﬂxz)zgmlxlz+Em2x22 S V(xl’xz):§k1x12+5k2(xz_x1)2+§k3x§

As forgas dissipativas dos amortecedores sdo proporcionais a velocidade e obtidas pela funcdo de

Rayleigh:
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As forgas ativas externas F; podem ser obtidas por similaridade utilizando a expressdao do

trabalho virtual para q; = x;(t):

3N n
5W:sz'5xj=ZQi'5qz' = F-ox=0-0q = F=0
j=1 i=1

Fazendo as derivadas parciais para a coordenada ¢; = x;(¥) :

oT oT . d(oT . oT oT

T T AL Xy = o EmX ——=-—=0
0q, O0x, dt 0x, 0q, Ox

oV oV OR OR ) . .

a_:_:klxl_kz(xz_xl) _.:_.:clxl_CZ(XZ_‘xl)
q, 0x 9q, 0%

Fazendo as derivadas parciais para a coordenada ¢, = x(?).

or oT ) d(oT or oT
N = N :m2x2 — - :mzxz = =
0q, O0Xx, dt\ 0x, 0q, Ox,
oV orv OR OR ) . .
P = = 3x2+k2(x2_x1) . :_.:C3x2+cz(x2_x1)
q, 0x, 0q, O0x,

Finalmente langando os valores obtidos nas equagdes de Lagrange:

d(oT | oI oV OR ne
— — |~ + +—=0,
dt\0q,) 0Oq, 0q; 04,

m, X, +(cl +cz)xl +(k1 +k2)xl —¢, X, —ky x, = F
m, X, +(c2 +c3))'c2 +(k2 +k3)x2 —c, X, —k,x, =0

Rearranjando as duas equacdes na forma matricial:
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Note que os termos fora da diagonal principal das matrizes de rigidez [K] e amortecimento [C]
correspondem ao acoplamento entre os corpos, produzido pelo sistema mola+amortecedor que

interliga os dois corpos.

3.4 Exemplo 5 - Piao

Um rotor axi-simétrico (pido) de massa m se movimenta no espago 3D, em torno do ponto de
apoio em O, conforme ilustrado na figura. O pido gira com velocidade angular prépria 1/'/1? em
torno do eixo z sistema de coordenadas solidario ao eixo de simetria do pido Oxyz, que esta
inclinado do angulo de nutagdo At) em torno do eixo y. O pido tem velocidade angular de
precessdo ¢ K em torno do eixo vertical fixo Z. Determinar as equagdes de movimento do corpo

rigido pelo método de Lagrange.

Resolucio: Sistema: pido de massa m com altura do centro de massa zg. Graus de liberdade
ordinarios do sistema: angulos de Euler: ¢, ¢ y; coordenadas generalizadas independentes ¢,
=¢,q,= 0 e q;= . Diagramas: DVC e DFCL. Referencial: Oxyz, movel, solidario ao corpo
mas nao girando com ele, com pdlo em O fixo. Teoremas: Energia Cinética, Energia Potencial,

Forcas Generalizadas e equacao de Lagrange.
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Em relagdo a base movel Oxyz o pido ¢ simétrico, a matriz de inércia é constante com o0s

produtos de inércia nulos e o vetor velocidade angular tem as seguintes componentes:

E)I‘Elzw£ e @ari‘:¢k+éj

a_jabs :a)rel +£)arr :_¢Sen97+9j+(w+¢COSQ)E

@, =00 +0,j+ok

A Energia Cinética T para eixos principais e considerando o p6lo O fixo, ¢ dada por:

| J, 0 0] | |
T(¢, 9,w,¢,0,1ﬂ)=5{a)1 o, o0 J, 0|, =§(Jla)12 +J,0; +J3a)32)
0 0 Jif o

T(¢, Q,y/,é,ﬁ',l/)):%(Jl(—ésen@)z +.J,6” +J3(¢50050+y'/)2)

A Energia Potencial V devido a gravidade em funcdo das coordenadas do centro de massa ¢ dada

por:
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V(p,0,w)=mg-h=mg-z,(1-cosb)
As forgas generalizadas Q; sao todas nulas.

Fazendo as derivadas parciais e temporais para a primeira coordenada generalizada g; = ¢:

or _a_T:JI sen” @ g+.J, c050(0056’¢5+l/))

og, 0¢

d(oT d ’ A S

—| — |=—|J, sen“ @d+ J, cosB\cosO ¢+
dt(w] LU sen® 09+, cosblcos 04+
or _or oV _av_ R _3R_|
0q, 0¢ 0q, 0¢ 0q, 0¢

Utilizando a expressao de Lagrange obtém-se:

d(aTj 6T oV OR .
+ =Qi

— - +
dt\0q;) 0q; 0q; 04,

%[J1 sen’ @ p+J, cos&’(c056’¢5+(/))]: 0

Fazendo as derivadas parciais e temporais para a segunda coordenada generalizada ¢, = 8 :

a,T :a—T.:Jzé’ 4[or =J,0

0q, 06 dt\ 00

oT » . .

£:J1 sendcosf ¢ —J3sent9¢(cost9¢+ l//)

oV ov OR OR
=——=mg-z,senl — ==

0q, 06 0q, 06

Utilizando a expressao de Lagrange obtém-se:

J, é—Jl sen@cos@9¢+J3 sen&é(cos@é+y))+mg.zc send =0

Fazendo as derivadas parciais e temporais para a terceira coordenada generalizada ¢z = y :

33
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£=£:J3(W+COSH¢)

0¢, Oy

d(oT . .

—|—|=J,\y —sen 8O P+ cosb

dt(al/'/j 3(W ¢ ¢)

or o ov_ov_,  OR_OR_
g, Oy dq, Oy ¢, oy

Finalmente utilizando a expressdo de Lagrange obtém-se:

J3(1/7+c059é5—sen09¢5):0

%[J1 dsen’ O+ J, cosH(y)+¢500s0)]= 0
J, é—Jl #* senfcosO+J, ¢5sen6’(l/'/+¢3c059): —mg -z, cos 6
J3%(1/)+g/5cos€)=0

Note que primeira equagdo na coordenada generalizada ¢, = ¢ , tem velocidade angular de
precessdo ¢ K em torno do eixo vertical fixo Z; a segunda equacio na coordenada generalizada
q> = 6 estd em torno do eixo dos nds y (angulo de nutacdo Ht)), e a terceira equacdo na
coordenada ¢; = y de velocidade angular propria do pido 1/'/12 em torno do eixo z do sistema de

coordenadas solidario ao eixo de simetria Oxyz.

Retomando a equagdo de rotacdo em torno de um ponto, expressa na base movel, e anulando os

termos descritos para esse caso (0 =g =y = cte e 6 =0), obtém-se uma tnica equacio:

—Jx%(ﬁsenﬁ)—Jy¢56.'COSt9+Jz 9(W+¢0059):M0.x

J, %(9)—]}( ¢* sen@cosf+J, ¢5sen6’(l/'/+¢fcost9):M0y

JZ%(I,[/+¢50056’):MOZ
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0=M,,
[(JZ —J,)dcosO+J. w’] gsend=M,,
0=M,,

Para a segunda equacao ser possivel € necessario a aplicagado de um momento externo na dire¢ao

—

J que, neste caso, ¢ produzido pela acdo gravitacional devido a altura zg do centro de massa do

pido, conforme ilustrado:

M, =(0-0)AR, +(G-0)Amg
]VIO =0+zGl€/\—mglz

M, :ZGEA—mg(—sen05+cosHE)
M, =mgz;sen6 j

OBSERVACAO: Mantendo a forma completa, a equagao diferencial 113, torna-se quadratica de

segunda ordem em ¢, com duas solugdes (ver Pesce, 2019):

[(JZ—Jx)¢50050+JZl/)](z'ﬁsené’:mz(;sené’
G VG mes,

(J.—-J,)cos & ? (J.—-J,)cos & B

Quando cosd>0e J,>J_ (pido achatado) a solugdo serd um movimento progressivo (a

direcao da precessao serd a mesma da rotacao propria). Dependendo do aspecto do pido (esbelto

ou bojudo) o movimento pode ser retrogrado (ver Pesce, 2019).
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3.5 Exemplo 6 — Sistema com 3 GL

O mecanismo plano ilustrado na figura compde-se de uma barra CD de massa M, que desliza
com atrito viscoso linear de constante ¢ na guia horizontal com posi¢dao x. Um péndulo simples
de comprimento L e massa m concentrada em A, que oscila com posicao angular @ . A guia
vertical solidaria a extremidade da barra em C, restringe o movimento vertical y da articulagdo B
do péndulo e orienta a mola BC ligada rigidamente ao ponto C da barra e se movimenta com ela.
A mola horizontal DE ¢ ligada ao ponto fixo £ e ao ponto D da barra. Uma for¢a externa F(t) ¢
aplicada em 4 ortogonal a linha do péndulo. A mola BC tem constante elastica k; e a mola DE k;
respectivamente e massas despreziveis. O atrito nos contatos também ¢ desprezivel. As

coordenadas x e y sdo medidas a partir da configuragdo de equilibrio estatico do sistema.

Adotando x, y e @ como coordenadas generalizadas do sistema, pede-se:
a) Escrever a fungdo energia cinética;
b) Escrever a funcao energia potencial;

¢) Deduzir as equagdes de movimento do sistema utilizando o método de Lagrange.

Resolucio: Sistema: barra de massa M e péndulo simples de massa m e comprimento L. Molas
de rigidez vertical k; e horizontal k,. Diagramas: DVC. Referencial Oxy. Trés graus de
liberdade independentes do sistema: ¢, =x, g =y e ¢3 = € . Uma for¢a externa ortogonal (F,
A) ¢ aplicada. Teoremas: Energia Cinética, Energia Potencial, For¢as Generalizadas e equacao

de Lagrange.
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Utilizando a férmula de campo de velocidades pode-se expressar a partir da velocidade de G do
carro, a velocidade do ponto P do péndulo, que tem movimento relativo em torno da articulagao

G que por sua vez ¢ arrastado pelo movimento do carro (composi¢ao de movimento):

|

=Xxi

Bloco

1

=Xi+yJ

&~

1

=V, +@~(A-B)=xi+yj+0k ALii=xi+y ] +LOT
f :xf+y]+L9(cost+sen9]):(x+L90050)f+(y+Lésen9)]
V?=x"+2Li0cosO+ j* +2LyOsen O+ L0’

A

|

A ENERGIA CINETICA total do sistema ¢ a soma da energia cinética de cada corpo. A barra

esta apenas em translagcdo (ndo tem rotagcdo no plano considerado) e o péndulo tem translagdo e

rotacdo, conforme expressao anterior:
1 - = T 1
TTotal = TBloco + TPendulo = T= EmVOZ + mVO ’ [a) A (G - O)]"’E{Q)}T [']]0 {a)}
T(xayaeaxayag):%M'Vz +%M'I7A2
.. . N 1 ) 1 ) . A .2 . A 272
T\x,v,0,x,y,0 _EMX +Em X +2Lcos@xO+y +2LsenlyO+ L6
1 o 1, . RV B
T= E(M +m)x +§my +mL(cos @ x+ sen@y)0+EmL 0
Obs.: Pode-se alternativamente determinar a energia cinética do péndulo utilizando o p6lo B que

é movel, obtendo de maneira similar: T, ,, = %m ViemV,. [9 kA(Ad- B)]+%J .07

A ENERGIA POTENCIAL ¢ fun¢ao da altura A da massa m do péndulo e das molas, sendo

obtida por:

V=V(xy00)=V, +V,., =mg-h+mgy+%k1 ¥’ +%k2 x’ :mg-L(l—cos9)+mgy+%k1 y° +%k2 x’

grav

A DISSIPACAO (Rayleigh) é fungdo da velocidade da barra:

) 1 .,
R=R(x)=—cx
(x) 5
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Fazendo as coordenadas generalizadas ¢; =x , ¢, =y e ¢3 = 6; a fung¢do Lagrangeana depende

da posicdo (x, y e 8) e da velocidade (%, e 6) do sistema, sendo definida como:

L=T-V onde L=L(x,,6,%7,0)

As equacdes de LAGRANGE para ¢q; coordenadas generalizadas sdo obtidas pelas seguintes

derivadas parciais e temporais, forgas dissipativas (R; ) e acdes externas (Q; ):

d(or) or aV OR _
dt\ 0q, 6‘61, ﬁql 6‘%

Realizando as seguintes derivadas parciais na coordenada generalizada ¢; = x

a—?za—T.:(M+m)x+mLcosﬁé -, dor = (M +m)x +mL cos 00 — mLsen 06
0q, Ox dr| ox%
or _or or _or OR _OR )
=0 ; =k, x ; =cx
5q1 Cox 8q1 T ox 8q1 T 0%

Aplicando os resultados das derivadas parciais e derivando com respeito ao tempo na equagao de
Lagrange, na coordenada ¢; = x , e considerando a for¢a generalizada @), obtém-se a seguinte

equagao escalar:

(M +m)x+mLcos 00 —mLsen 06 +cx+k, x=Q,

Realizando as seguintes derivadas parciais na coordenada generalizada ¢, =y :

a—'T:a—T_:m)'mesen&’H. - 4 8_T = my +mLsen 06 +mlL cos 6
0q, Oy dt\ oy

8_T:8_T:0 : 8V_5V_k ytmg 6R aR ~0

0q, 0y dq, 0y 84, 0¥

Aplicando os resultados na equacao de Lagrange nas coordenadas ¢, = 6 , considerando a forca

generalizada @, obtém-se mais uma equagao escalar (note que o termo x€ se cancela):
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my+mLsen @6 +mLcos0 6 +ky+mg=0,

Realizando as seguintes derivadas parciais na coordenada generalizada ¢z = 6

8.T :a—]j:mL(cosﬁx+sen0y)+mL29

0q, 00

dfor :mL(cosHjc'+senHy—sen99x+coseéy)+mL2§

dt\ 00

or =6—T:—mLsen95c9

dq, 00

or =a—V:mLé(sen@fc—cos&’jz)+mgLsen9 6{% :6—1.{:0
dq, 00 0q, 00

Aplicando os resultados na equacdo de Lagrange nas coordenadas ¢; = @ , considerando a forca

generalizada @3, obtém-se mais uma equagao escalar (note que o termo xé& se cancela):

mL(cos@jé+sen9j}+Lé)+ mgLsend = Q,

As forgas generalizadas podem ser obtidas da formula propria ou utilizando a equivaléncia entre

o trabalho virtual ordinario e generalizado:

3N ox. ko _> n
QizZﬂ-aqf ou 6W=Z:‘Fj-drj:llQ[-dq[
Jj= i=

j=1 i

Utilizando o método de equivaléncia do trabalho virtual, tem-se por analogia que:

F-64=0,-6¢,+0,-6¢,+0;- 84,

O deslocamento virtual do ponto 4 onde a for¢a externa F esta aplicada pode ser obtido da
expressdo da velocidade:

VA = ()'c+ L6cos 0)? +(j/ +L6Osen 6’)]

% = (%+Lcos€%)f+(%+Lsen0%)]

S4=(5x+Lcos050)i +(5y+Lsend50) ]

Determinando o trabalho virtual ordinario em cada direcgao:
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5W:13-521:F(cos@f+sent9j)-[(5x+Lcos056’)1?+(5y+Lsen950)j]
SW =(Fcos@&x+FcosdLcosd56)+(FsendS y+ Fsenf Lsen650)
OW =Fcos@-0x+Fsenf-0y+FL-060

As forgas generalizadas por similaridade do trabalho virtual, resultam em:

Q =Fcosf ; Q,=Fsenf ¢ Q,=FL

Resultando finalmente nas trés equagdes diferenciais do sistema:

(M +m)x+mLcos 00 —mLsen 06° +c i+ k, x = F cos 0
my+mLsen @60 +mLcosO O + k,y+mg = Fsen6
mL(cosé’)'c'+sen0j>+L9)+mgLsen9=FL

40
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4 LINEARIZAGCAO

Para aplicagdo de técnicas avancadas de andlise como por exemplo em Controle, ¢ necessario
obter o sistema linearizado. Para atender a este requisito a aplicagdao da técnica de linearizacao

para PEQUENAS OSCILACOES em torno de um ponto de operacao pode ser utilizada.

Lembrando do célculo que uma fungdo diferencial x = f (x), com posicao de equilibrio na

origem X, = 0 tem sua descri¢ao linearizada por expansao em série (Mac Lauring - ver detalhes

no Anexo A) como:

2 3

X :f(x)+x-f'(x)+x7!f"(x)+x—f"’(x)+.... (40)

3!

na mencionada posi¢do de equilibrio xo = 0 onde f (xo): 0, obtém-se por expansdo em série

com termos de ordem superior agrupadas em R,(x) e desprezados:

=0+ f'(0)x+R,(x) (41)
x=f"x ou x={ﬂ} X (42)
ox |,

sendo o movimento do sistema restrito a uma vizinhanca da origem, a equacdo linearizada

representard bem o seu comportamento.

Considere agora, um sistema descrito pela equagao de Lagrange:

el + =0 ara i=1,2,3,...,n 43
— p (43)

d(oT _aT oV
0q, 0q;

94;
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Nas coordenadas generalizadas a energia cinética pode ser escrita na forma geral como:

n n

1 . . )
ql,q, EZ 4,9, onde «a,, :f(ql, Gs2q, € G5 qz,...,qn) (44)

j=1 k=l

Definindo para a posi¢ao de equilibrio em torno da origem: ¢a, , =, ; (O, 0,...,0) entdo, a primeira

parcela da expansao em série (ordem quadratica), sera descrita como:

1 n n . .
T2=—2 Zaj,k'qj’qk (45)
2 j=1 k=1
onde:
or oT o'T . o'T
Ay =Q = = — e particularmente a =0 (46)
' ' aq] an aqjan aq/

Agrupando de forma matricial obtém-se o que ¢ chamada de matriz Hessiana [H]r da fungdo de

energia cinética T dada por:

o°’T o'T
04, 04,04

)= L O (47)
04,04, 04,

Definindo a ) na origem como:

o°T A
a === obtém-se: T,(q,)= zza, k q] i (48)
aqj agk origem j -
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Considere agora a expansdo em série da func¢do de Energia Potencial V', em torno da origem das

coordenadas generalizadas:

V:V0+V1+I/2 Onde I/1 :f(qD ‘ha---;qn) € VZ :f(qlza ‘]22a’q5) (49)
A primeira parcela ¥, , € o termo constante, que ¢ arbitrario (cota de referencia da fungdo

potencial). Esta parcela ndo influi nas equagdes de movimento que sdo fun¢do da derivada

parcial nas coordenadas generalizadas (0V /0¢q, ) e pode ser desconsiderada.

A segunda parcela V, = f (ql, qss-9, ), ¢ o termo linear que tem a forma geral:

| oV
V= Z|:8_}q/ onde V= f(q: ¢304,) (50)
=11 94;

Se a origem ¢ um ponto de equilibrio, a energia potencial ¢ minima neste ponto e todas as suas

derivadas parciais primeiras se anulam na origem:

o =0  portanto Vl(ql, qz,...,qn):O (51)
a qj origem

A tltima parcela V, = f (qf, G, ), contém os termos quadraticos e tem a forma geral:

1 & & oV oV
V = Y Onde L, = = (] L= 52
2 7 = ﬂ],k q/ 9 ﬁj,k ﬁk,] aqj _aqk ﬁ],j aq]2 ( )

Agrupando de forma matricial obtém-se o que ¢ chamada de matriz Hessiana da funcdo de

energia potencial V-
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o’V o’V
0q;  04¢,0q
H}, = ! L2 53
L0 IS (53)
04,04, 0 %2
que ¢ a parcela de menor ordem a ser considerada. Definindo b, ) na origem como:
o’V &8
bjv=| 5=~ = N(g)== bii-4q;-q (54)
j’k {a qj 0 9k :|origem 2 2 ; k=1 Y '

A fun¢do Lagrangeana do problema linearizado serd portanto L, =7, —V, . Fazendo as derivadas

parciais e temporais dos termos da fun¢do Lagrangeana obtém-se:

oT, < . d (0T, 4 .
_— = L. - —_— | = Lt 55
34, zaz,k q dt(aqij Zaz,k q (55)

k=1

v, &
=>» 5 - 56
n Z ki (56)

Montando a equacdo de Lagrange linearizada para pequenos deslocamentos em torno da posicao

de equilibrio, obtém-se finalmente:

Zai,k Gyt Zbi,k 4, =0 para i=1,2,3,..,n (57)
k=1 k=1

Esta equagdo também pode ser apresentada na forma matricial, utilizando as matrizes [4] e [B] e

o vetor de coordenadas generalizadas {¢;} da seguinte forma:
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ay  ap a,, 7 by by, by, q, 0

x b, b, .. b
S el | o L Rt TS e
a, a, a,, q” bnl bﬂ2 b”” @n 0

onde se reconhece de imediato que [4] ¢ a matriz de massa, associada com as aceleragdes das
coordenadas generalizadas e [B] ¢ a matriz de rigidez, associada com as coordenadas

generalizadas {g;} do sistema linearizado.

4.1 Linearizagdo Exemplo 1: Massa Péndulo

No sistema mostrado na figura, o bloco de massa m, estd apoiado sobre uma

mola de rigidez k e um amortecedor de constante ¢. O bloco desliza sem

atrito nas guias verticais. Uma barra 4B de massa M e comprimento 2L esta
F(t)

articulada no ponto A4 do bloco, formando o angulo & com a vertical. Uma
forga F(t) ¢ aplicada no ponto B da barra e ortogonal a ela. A mola tém 172
: : . . o o B
comprimento livre y, . Determine as equagdes de Lagrange e linearize o

sistema e identifique o ponto de equilibrio.

RESOLUCAO: Sistema: barra (péndulo) de massa M e comprimento 2L e bloco de massa m.
Graus de liberdade independentes do sistema: ¢, = y(?) € ¢» = &1). Forga F(t) ortogonal a barra.
Mola de rigidez k. Amortecimento angular linear de coeficiente c. DVC; DFCL; Referencial:

Oxyz. Teoremas: Energia Cinética, Energia Potencial, For¢cas Generalizadas e Dissipativas e

equacao de Lagrange.

No plano cartesiano Oxy da figura, as coordenadas ordinarias do bloco e da barra se relacionam
com as coordenados generalizadas ¢, =y e ¢, =6, conforme as seguintes relagdes:

Utilizando a formula de campo de velocidades pode-se expressar a partir da velocidade de 4 do

bloco a velocidade do centro de massa G da barra que tem movimento relativo em torno da
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articulagdo 4 que por sua vez ¢ arrastado pelo movimento vertical do bloco (composicao de

movimento):

!

4 :y]

VG :I7A +c?)/\(G—A)=y]+912AL(—cosﬁj+sen9f)

VG :y]+L6’(cosﬁf+sen0f):(Lécos@)f+(y+LésenH)j
V2=3"+2Lsenf yO + [*6

A ENERGIA CINETICA total do sistema ¢ a soma da energia cinética de cada corpo. O bloco

esta apenas em translacao (ndo tem rotacao devido ao apoio nas superficies guias laterais) e a

barra tem translagdo e rotacdo, conforme expressao anterior:

r (y .0, 0) = Thioco + Tpurra

| e .
T=5m.Vj+5M.VGZ+Ea)T[J]Ga)

T=lmy2 +1My2 +1M2Lsen9y9+lML29'2 L m
2 2 2 2 2

ey

12

T:%(M+m)y2+MLsen9y9+§ML292

A ENERGIA POTENCIAL ¢ fung¢ao da altura A da massa m do bloco, da massa M da barra ¢

da forca elastica da mola de comprimento livre yy, sendo obtida por:

V = V(y, 9) = VB + VBarraigmv + I/velasz‘ = mg : hO + Mg ’ hG +%k(y - yO )2

loco _grav

V:mg.y+Mg(y—LCOSt9)+%k(y_J’0)2

A fungdo dissipativa de Rayleigh ¢ proporcional a velocidade das extremidades do amortecedor:

R=R<y'>=%cy‘2

As forcas generalizadas Qi podem ser obtidas pelo principio dos trabalhos virtuais PTV:
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SW=YF-3i+Y M, 60,=0=Y.0,-6q, = F(t):6B=0,:6¢,+0, 3¢,

O deslocamento virtual do ponto B ¢ dado por:

173 :I7A+a3/\(B—A)=y]+6"l€A2L(—cosﬁj+sent917)

VB :yj+2L9(cosﬁf+sen9f): 2L€'cost+(y+2Lésen8)f
dB=2Ld0cosOi +(d y+2LdOsend);

A forga ordinaria é: F = F(cos@f + sen@]’)

Portanto as forgas generalizadas para ¢, =y e g, =6 resultam em:
F(cosé’z?+sen6’]')-5B:Q1 0y+0Q,-00

SB=2L50cosOi +(5y+2L50send) ]
F(cos&’f+sen6’])-(2Lé‘HcosH?+(5y+2L56’sen0)]): Q-0y+0Q,-60
2FL(cos2 0 +sen’ 49)549+Fsen495y=Q1 5y+Q,-66

O, =Fsenf e Q,=2FL

Alternativamente pode-se utilizar a defini¢do de forgas generalizadas:

m._ ai;
O=pF- ’

; ’ aqi
FB:(A—O)+(B—A):y]+2L(—cos0}+sean):2Lsent917+(y—2Lc0st9)]'
%:%:1]‘ e Ol :%=2Lcost91?+2Lsen6’]

g, Oy dq, 00

0, =F(cos€f+sen0]’)-l]’=Fsen9
o, :F(c050f+senH])-ZL(cost+sen6’]): 2FL

Fazendo as coordenadas generalizadas ¢ =y e ¢, = @ ; a fungdo Lagrangeana depende da

posicdo (v e 8) e da velocidade (7 e @) do sistema, sendo definida como:

L=T-V onde L=L(y,6,7,0)
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As equacdes de LAGRANGE para ¢q; coordenadas generalizadas sdo obtidas pelas seguintes

derivadas parciais e temporais:

df(aor) or aV OR
dt\ 04, aq 6ql 8(]1 !

Realizando as seguintes derivadas parciais na coordenada generalizada ¢, =y :

or _or =(M +m)y+MLsen 66

a% ay

dfor =(M +m)y+ MLsen 06 + ML cos 06
dt ax

or _or_, . oR_oR_

a% oy ’ 841 oy

WV (M +m)g+k(y-y,)

a% ay

Aplicando os resultados das derivadas parciais e derivando com respeito ao tempo na equagao de
Lagrange, na coordenada ¢; = y , e considerando a forca generalizada @), obtém-se a seguinte

equacao diferencial:

Ox 0x
(M +m)y+MLsen 0 + MLcos06” +c y+(M +m)g+k(y—y,)=Fsen@

d(or) or ov _d(ar) or ov_,
dt\o6g, ) oq oq, dt\ox :

Realizando as seguintes derivadas parciais na coordenada generalizada ¢, = 6
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2
8?’ =a—7?=MLsenHy+4ML 0
0q, 06

2

4 8_T :MLsenHy—MLcosﬁéy+4ML 0
dt\ 00
or :a—T:—MLcosﬁyé
dq, 00
or :a—V:MgLsenH
0q, 06
or _or _,
0q, 06

Aplicando os resultados na equagao de Lagrange na coordenada ¢, = @ , considerando a forca

generalizada @,, obtém-se mais uma equacao escalar:

Oy

dfor)_or ov _d(or) oT oV _
dt\oq,) 0q, 0q, dt\o0) 00 00
2

MLsenHj}+4ML

0+ Mg Lsenf =2FL

Assim as equagoes diferenciais do sistema para cada grau de liberdade sdo:

(M +m)3+MLsen 0 + MLcos06” +c y+(M +m)g+k(y—y,)=Fsen@
2

MLsen 6y + M L 0+ Mg Lsenf =2FL

Note que os termos cruzados de aceleragdo (j e 6) correspondem as forgas do acoplamento na
articulagdo em A. Neste caso o sistema linear formado pode ser tratado por eliminagdo de

variavel.

Ponto de Equilibrio:

Para determinar o ponto de equilibrio do sistema g = [y 6’]T , pode-se fazer nulas as aceleragdes

e velocidades nas equagdes de movimento no ponto de equilibrio estavel g = [)7 0 ]I .
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(M +m)y+MLsen 6 + MLcos06” +c y+(M +m)g+k(y—y,)= Fsen@
(M+m)g+k(y—y,)=Fsend = y=[-(M+m)g+ky,+Fsen6|/k

2

MLsen9j5+4ML

0+ Mg Lsenf =2FL

Mg Lsen@=2FL = @ =arcsen 2F
MgL

Alternativamente, pode-se obter as derivadas parciais das fungdes potenciais que serdo nulas no

ponto de equilibrio g = [)7 7] ]’ do sistema homogéneo. Para a coordenada ¢, =y :

V:mg.y+Mg(y—LCOSt9)+%k(y_yo)2

oV

—} =0 = (M+m)g+k(y=y,)=0
Y15

y=[-( +m)g+ky, ]k

Para coordenada ¢, = @

V:mg-y+Mg(y—Lcost9)+%k(y—yo)2
o =0 = MgLsenf =0
00 5

@ =n-x (para n par)

Analise da Estabilidade:

A estabilidade do ponto de equilibrio pode ser verificada inspecionado a matriz Hessiana da

funcdo potencial calculada no ponto de equilibro (deve ser definida positiva).

V:mg.y+Mg(y—LCOSt9)+lk(y_yo)2

4, ], {Z}Tl =0 = {a}={§}:{yo—(M;m)g/k}

[\
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Linearizacio das equacdes:
Para realizar a linearizacdo das equacdes do sistema ndao amortecido, deve-se realizar as
seguintes etapas: obter os coeficientes a;; e fi;, fazer a simplificagdo na posi¢do de equilibrio

da origem e obter os coeficientes a;; € b;;, e montar as equagdes na forma matricial:

da G +Y.b g =0 para  i=1,2,3,..n
k=1 k=1

Os coeficientes a;; e pfij , sdo obtidos das derivadas parciais duplas da energia cinética e

potencial em relagdo as velocidade e coordenadas generalizadas:
AN -2 s 2 5 s
T(yﬁ,y,@):E(M +m)y +MLsen6?y0+§ML o

V(y,@):(M+m)g-y—Mchos0+%k(y—yo)2

azT azT o
=55z~ M +m) =Sl = )
2 2
A, = 88_ gg =MLsend a,, = aa' gg =0
ng na origem ng
a, =———=MLsenf ay, =— [0 =
T 000y T 000y
62T 4ML2 aZT A 4ML2
a2,2 = 802 = 3 a2’2 = 892 |0:O ZT
o oV
ﬂu:@yz =k le:@yz =k
g 2
Pra= — =0 1,2 = o Zlg":o:
© 0y0d : 2" 5,00
PO na origem 2y
Prr = =0 b,, = §;3°=°= 0
000y 000y
oV o
ﬂz,z = PV = MgLcos6 bz,z _ v y 0=MgL

Utilizando os termos da matriz Hessiana acima, as duas equagdes finais resultam em:
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i=1 zai,kﬁk"'zb@k'qk :al,l'j}+al,2'é—'—bl,l'y+b1,2'9:(M+m)j}+ky:0
k=1 k=1

2
ML G MgLo =0

i=2 Zai,k "Gy +Zbi,k 4 =ay, 'j}"'az,z'é"'bz,l 'y"'bz,z 0=

k=1 k=1

Rearranjando as equagdes linearizadas na forma matricial, obtém-se finalmente:

M e ol e )

4.2 Linearizacao Exemplo 2: Péndulo Particula

Considere a particula P de massa m deslizando sem atrito dentro do tubo guia de comprimento
2L, massa M, sendo sustentado pela mola de rigidez k e comprimento livre xy. O movimento x()
ocorre em torno de articulagdo O lubrificada, produzindo uma dissipagdo linear de constante
angular ¢ . Um momento externo M(¢) ¢ aplicado no tubo guia. Obtenha as equagdes de

movimento e linearize o sistema.

RESOLUCAO: Sistema: tubo guia (péndulo) de massa M e comprimento L e particula de massa
m. Graus de liberdade independentes do sistema: ¢; = x(?) ¢ ¢q> = 6(t). Mola de rigidez k.
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Amortecimento angular linear de coeficiente ¢. DVC; Referencial: O xyz. Teoremas: Energia

Cinética, Energia Potencial, For¢as Generalizadas e equacao de Lagrange.

No plano cartesiano Oxy da figura, as coordenadas ordindrias da particula e do tubo se

relacionam com as coordenados generalizadas ¢, =x e ¢, =8, conforme as seguintes relagdes:

(P-0)=(x,y), =(xsend, —xcosd)=(g,senq,, —q, cosq, )
(G-0)=(x,y),,, =(Lsen,~Lcos@)/2=(Lsenq,,~Lcosq,)/2

Derivando em relagdo ao tempo, obtém-se as velocidades dos pontos P e do centro de massa G
do tubo (Note que o termo cruzado do quadrado se anula):

V,= ()'csen 0+xcos€9)f+(—5ccos@+xsen 4949)]' =  VI=x"+x'6

V. = L(cos@95+sen96’])/2 = V2, =I0"/2

Tubo

—

Ou alternativamente compondo o movimento: VP =V

rel

—

17 -V, =xu= x( cos&’]+sen6’f)

—

+
Va,,, =V,+w,, /\(P—O):0+9EAx(—cosﬁj+sen91) (cosﬁz +sen0])

V,= ( cos@]’+sen017)+9x(cos€f+sent9]‘)

V ( sen@—i—éxcos&)f+(—5ccos0+9xsenz9)]’

V=% 2+ X0’

Ou utilizando o referencial O 7 k obtém-se similarmente:

—xii 3 V,, =V, +&@A(P—0)=0+0k Axii=x07

a.
+V

Parr

— —

=V,

- 5 = 52 .2 2 A2
orel =Xu+x0t = Vy=x"+x0

~

Energia Cinética: T =T .+ Tparticula - To = %m VO2 +m I70 ’ [CT) A (G - 0)]+ % {a)}t [JO ]{(0}

2
Tomando o pélO em O: TOtubo —040 +%{a)}l [Jo ]{a)} - T’Ubo _ %%02

, 1 , L (. :
T particula =—m Vz NN T particula —— m(xz + xzez)
2" 2
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T:(lMﬁ +lmx2j9'2 +lmx2
6 2 2

Energia Potencial:

V(x,0)=Mg L(1-cos 6’)—mgxcosé’+§(x—x0)2

L :T—V:(éML2 +%mx2j6"2 +%m§c2 —MgL(l—cosé’)+mgxc056’+§(x—x0)2

Funcio de Dissipacao de Rayleigh: R = Z%Ct g}

i=l1

. |
Fungdo de dissipag¢do: R = 5092

3N n
Forcas Generalizadas: oW = ZF/ Ox,+M-660= ZQi 0q,

=1 im1
M-60=0-6q,+0Q,-0q,
0,=0 ¢ Q=M

Equacoes de Lagrange:

i 8_T _8_T+8—V+8—6=Qi para i=1,2,3,...n
dt aq, 5q, 8% aqz

Para a coordenada g, = x

or . d(aTj .
=mx - =mx

ox dr\ ox
a_T:mxéz ; a—V:—mgcosl9+k(x—xo) ; 8—1?:0
ox ox ox

m(jé—xéz)+ k(x—x,)—mgcos@=0
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Note que esta ¢ a equacio Newron, complementada pela aceleragdo centripeta x6°.

Para a coordenada: g, =6

8_T_ (1ML2 +mx2j9 - i(aTj =(1ML2 +mx2jé+2mxx9

06 \3 di\o6) \3
a—T:O , 8_V: Mg£+mgx sen ; a—R.:c-E"
06 06 2 00

(%ML2 +mx2j9+cé+2mxx9+(MgL +mgx)senf =M

Note que o primeiro termo corresponde ao momento de inércia com parcela variavel x da

posicdo da particula. O terceiro termo corresponde ao momento (braco x) devido a forca de

Coriolis 2mx@ .
Para realizar a linearizagdo do sistema deve-se realizar as seguintes etapas: obter os coeficientes

aj e Pij, fazer a simplificagdo na posi¢do de equilibrio da origem e obter os coeficientes a;; €

b;;, e montar a equagdo na forma matricial:

Day G+ by g =0 para i=1,2,3,...n
k=1 k=1

Os coeficientes a;; € Bij, sdo obtidos das derivadas parciais duplas em relagdo as velocidade e

coordenadas generalizadas:
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oV
00’

181,2 =

ﬂl,l =

182,1 =

Obs.:

finais resultam em:

i=2

Na forma matricial:

(_1

3 ML’ + mx;, j& + (mx0 + ML)g0 M(t)—cO

k=
mi+hkx=0

_al,l al,z}{%}_’_{
%1 @ |42
(M2 13+ mx?)

0

= (mgx + MgL)cos 0

oV
0x06
oV
060 x

ﬂz,z =

=mgsen @

=mgsenf

oV
ox’

=k

=

k=1

bll b12

ol

21

em torno da origem

em torno da origem

|

{Q
Q

o

a,, =

11

o°T .. 1
ﬁ 9=00 = 51\4[42 + mxg
aT XXO
a, = ox 8900_
4 8T xxo
21" 500%
aT x=0
a,, :Wb:o: m
892 |x oL =mgx, +MgL
oV vexy
2 = ox 6090
6V xxﬂ_
21" 500x
an:xo
bz,zzﬁﬁozk

56

seno &= 0 para @ = 0.Utilizando os termos da matriz Hessiana acima, as duas equagdes

n
a "y +Zbi,k gy =4, 'H+a1,z 'jé+b1,1 'H+b1,z x=0,
=1

zazk Qk+zbzk 9y =4y, 9+a22 x+b21 9+b22 x=0,
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Note que para o sistema linearizado as matrizes tornaram-se diagonais e, portanto o acoplamento

entre os movimento nao esta mais descrito nas equagoes.

4.3 Linearizacao Exemplo 3: Carro Péndulo Composto

No sistema mostrado na figura, o bloco de massa m, esta interconectado com duas molas de
rigidez k. No centro O do bloco, estd articulada uma barra de comprimento L e massa m. As
molas tém deformacao nula quando a coordenada x do ponto O vale zero. Determine as equagdes

de Lagrange e linearize o sistema.

X

I%
Oam

@) o
%L, m g
o

Resolucio: Sistema: bloco de massa m e péndulo de massa m ¢ comprimento L. DVC e DFCL;

Duas molas de rigidez k. Graus de liberdade independentes do sistema: ¢; = x e ¢, = 6.
Referencial: Oxy. Teoremas: Energia Cinética, Energia Potencial, Forcas Generalizadas e

equacao de Lagrange.

Utilizando a férmula de campo de velocidades pode-se expressar a partir da velocidade de O do
bloco a velocidade do centro de massa G' do péndulo que tem movimento relativo em torno da

articulacao O que por sua vez ¢ arrastado pelo movimento do bloco (composicao de movimento):

1

—

I

s 170+a?)/\(G—0):Xf+6’l€AL/2(—cos0]+sen0f)

VG Xf+L/26’(cosﬁf+sen0]):(x+L/26’cos9)f+L/26’sen9]
/2 =x*+ LcosOx0+1'0% /4

l0
I
=



MECANICA ANALITICA 58

A ENERGIA CINETICA total do sistema ¢ a soma da energia cinética de cada corpo. O bloco
esta apenas em translacdo (ndo tem rotagdo devido ao apoio na superficie) e o péndulo tem

translacdo e rotacao, conforme expressdo anterior:

T(x’ 9’ x’ 6) = ]1171000 + TPéndulo
1 -, 1 -, 1. -
T:Em-VOZJrEm-VGZJrEa)T[J]Ga)
22 2
T=—m5c2+lmfc2+lmLcos6’X9+—mL6 +lmL—6"2
2 2 2 2 4 2 12

T =mx* +%mLcos6’x9+%mL292

A ENERGIA POTENCIAL ¢ funcdo da altura A da massa m do péndulo e das forgas elasticas

das molas, sendo obtida por:

V=V(x,0) =V, +V

grav elast

1 1 L
=mg-h+5kx2 +Ekx2 =mg-5(l—cosﬁ)+kx2

Fazendo as coordenadas generalizadas ¢; = x e ¢, = @ ; a fun¢do Lagrangeana depende da

posicdo (x e @) e da velocidade (% e ) do sistema, sendo definida como:
L=T-V onde L:L(x,é’,)'c,é")

Nao hé forgas dissipativas (R; = 0) nem acdes externas (Q; = 0). As equacdes de LAGRANGE

para ¢; coordenadas generalizadas sdo obtidas pelas seguintes derivadas parciais e temporais:

d(|or _8T+8V+8R_
dt\0q,) 0Oq, 0q; 04, i

Realizando as seguintes derivadas parciais na coordenada generalizada ¢, = x :
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£=£=2mx+lmLcosﬁé

0gq, 0x 2

4 8_T :2mk+lmLcosﬁé—lmLsent992
dt\ 0x 2 2

0q, Ox dq, Ox

Aplicando os resultados das derivadas parciais e derivando com respeito ao tempo na equagao de

Lagrange, na coordenada ¢; = x , e considerando a for¢a generalizada @), obtém-se a seguinte

equagao diferencial:

d(aT] oT ov d(arj oT v
- ~TA =0,

_ _ + - | a4
dt\0q,) 0q, 0Ogq, dt\ox) Ox Ox

2mjé+m—Lcoseé—mTLsen992 +2kx=0

Realizando as seguintes derivadas parciais na coordenada generalizada ¢, = 6:

oT 0T mL . mL .

—=——=—cosfx+ 7
0q, 060 2

2

i 8_T :m—Lcosﬁi—m—Lsen0x9+mL 0
dt\ 00 2 2 3
or =8—T:—m—Lsen0x9
dq, 06

or :a—Vzm—gLsenﬁ
dq, 06 2

Aplicando os resultados na equacdo de Lagrange nas coordenadas ¢, = @ , considerando a forca

generalizada @,, obtém-se mais uma equacao diferencial:

Oy

dfor)_or ov _d(or) ot ov _
dt\oq,) oq, 0q, dt\o0) 00 00

ml?

mTLcosé’jH é+ngLsen6’:O
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LINEARIZACAO:

Para realizar a linearizaciao do sistema deve-se realizar as seguintes etapas: obter os coeficientes
aj e Pij, fazer a simplificagdo na posicdo de equilibrio da origem e obter os coeficientes a;; ¢

b;;, e montar a equagdo na forma matricial:

Day G+ b g =0 para  i=1,2,3,..n
k=1 k=1

Os coeficientes a;; e pfij , sdo obtidos das derivadas parciais duplas da energia cinética e

potencial em relagdo as velocidade e coordenadas generalizadas:

T(x,0,%6)=mi’ +%mLcosH§c9+%mL292 e V=V(x0)= mg-%(l—cos&’)+kx2

o°’T o°T ..
a,, = PYE =2m a, =W|0,g=2m
0 - 0°T _ mLcos@ Y = o’T |x=0_m_L
2 9x00 2 na orieem 2 0x00 " 2
__ T _mLcoso N o_mL
> 900x 2 ' 000x " 2
o’'T mlL’ o’T .., ml’
“2T 507 T 3 G2 = 557 0= "3~
oV o
ﬂl,l = o2 =2k b1,1 =W|azg=2k
oV o
A= 5vag" b = 5r5g10~"
5 na origem 5
B, = o -0 b :a_Vr‘j):o
> 000x > 900x
5, - oV _ mgLcos@ b = oV o mgL
2 00° 2 200" 2

Utilizando os termos da matriz Hessiana acima, as duas equagdes finais resultam em:
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: . X . s . mL
i=1 Zai’k g, +Zb,.,k gy =ay,-X+a, 0+b,-x+b, -l9=2mx+m79+2kx=0
k=1 k=1

n n .. )5 I .. I
i=2 Zai’k-ijk+2b[,k-qk:az’l-)'c'+a2’2-19+b2,1-x+b2,2-0:m7)'é+m 0+%9=0

k=1 k=1

Na forma matricial obtém-se:

2m  — 2k 0
g =
2 0 o
n;L m3L b 5 o 0

Note que a matriz de inércia tem termos fora da diagonal principal que correspondem as forgas
do acoplamento do pino em 0. Neste caso o sistema linear formado pode ser tratado por

eliminacao de variavel.

4.4 Posicao de Equilibrio

Para que um fungdo x; = f (¢,,9,+G5---q,) a condi¢do necessaria para que um determinado

ponto (51,52,53,...., q_n) seja um ponto de equilibrio ¢ necessario que todas as derivadas parciais,

calculadas naquele ponto especifico, sejam nulas. Para definir se este ponto critico ¢ um ponto de
maximo, minimo ou de sela, ¢ preciso calcular o determinante da matriz Hessiana ¢ seus

menores principais.

EXEMPLO: Para o exercicio anterior a energia potencial foi determinada a partir do referencial

em (—x) para a particula como:

V(x,0)= Mg%(l—cos 0)+mg x(1—cos 9)+§(x—x0 )i
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Tomando para a particula o referencial em O, (termo mg x ndo comparece) o ponto de equilibrio

ocorre quando as derivadas parciais da funcao potencial ¥ sdo nulas:

a_V:M:(Mg£+mngsenl9=0
0q, 00 2
a—V:M:—mgcos@+/’c(x—x0):o
0q, 0x

Da primeira equagao (descartando o termo entre paréntesis) tem-se que sen €= 0, que substituido

na segunda, resulta em duas posi¢des de equilibrio vertical para baixo e para cima (para n par ou

impar) resultando em:

(Mgéﬂnngsené’:o = 0=0¢ 0 =nr paran=1273..

X=X +M = f:xoi% pois cosd = *1

=X, P

A matriz Hessiana permite verifica se os pontos de equilibrio sdo estdveis ou instaveis:

o oV
(], = oq;  0q,0q, _ (mgx+MgL/2)cos® mgsend
' oV o’V mg sen @ k

04,04, 8%2
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4.5 Exemplo de Posi¢ao de Equilibrio: Péndulo Invertido

Considere o sistema composto por uma particula P de massa m articulada em torno de O através
de uma barra rigida de comprimento L e massa desprezivel, O sistema se mantém no plano Oxy
e a particula é submetida a uma forcas vertical F. A barra ¢ conectada a uma mola torcional de
rigidez angular kg sendo que a posicao neutra da mola ocorre para = 0. Desconsiderando a agdo

gravitacional, pede-se:

a) Descrever a expressdo da energia cinética 7 do sistema em funcdo da coordenada
generaliza 4

b) Escrever a expressdo da energia potencial V' do sistema;

c) Obter a equagdo de movimento utilizando o método de Lagrange;

d) Determine as posi¢des de equilibrio do sistema e a estabilidade em fun¢do da forca
vertical F. Verificar a existéncia de flambagem.

e) Para cada caso de equilibrio estavel, linearize a equacdo de movimento e determinar a

frequéncia de vibragao nesta posicao.

RESOLUCAO: Sistema: particula P de massa m articulada em O com a barra de comprimento

L. Graus de liberdade independentes do sistema: &) = ¢;. Referencial ¢ coordenadas O7 ;.



MECANICA ANALITICA 64

Teoremas: Energia Cinética, Energia Potencial, Fun¢do dissipativa, Forcas Generalizadas e

equagao de Lagrange.

Utilizando a féormula de campo de velocidades pode-se expressar a velocidade do ponto P a

partir de O fixo:

A ENERGIA CINETICA da particula P com velocidade descrita conforme expressdo anterior

em torno do polo O resultando em:

T(é)z%m-(ﬁp)z =%m-L292

A ENERGIA POTENCIAL ¢ funcao da forca F aplicada na particula P e da mola de rigidez

angular kg,sendo obtida por:
V =V (6)=FLcos® +%k902

Fazendo a coordenada generalizada ¢, = @ ; a funcdo Lagrangeana depende da posi¢ao angular

(0) e da velocidade angular (9) da barra, sendo definida como:
L=T-V onde L=L(6,0)

A equagdao de LAGRANGE para a ¢q; coordenada generalizadas ¢ obtidas pelas seguintes

derivadas parciais e temporais:

i 8?1 _8T+6V+86=Qi para i=1,2,3,...,n
dt\ 0q; dq, 0q, 0g,
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Realizando as seguintes derivadas parciais na coordenada generalizada ¢, = &

0g, 06 dr\ 06
O 0T o, 9V OV k90— FLseno
0q, 00 d0q, 00

Aplicando os resultados das derivadas parciais e deriva temporal da coordenada ¢; = € na

equagao de Lagrange obtém-se a seguinte equacao escalar:

d(aTj oT aV_d(aTj or ¥ _,
1

— = |-t = = |-—+—=
dt\og, ) oq, oq dt\od) 00 a6

mI?0 +k,0 — FLsen6 =0

Posicao de Equilibrio: A posi¢do de equilibrio ocorre quando as derivadas parciais da funcao
potencial V' sdo nulas ou fazendo a equacdo dindmica com aceleracdo nula (condigcdo de

equilibrio):

a(V(QI’qZ’Q3""7 4q, )_TO) 0

oq,;
Para este caso: V' :%kﬁz +FLcos@ = GV_(@: k,0 — FLsen @
A k,
Que resulta na expressao : L f—-senf =0

A solugao em fungdo do angulo @ esté apresentada na Figura 1 a seguir:
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(kG/FL)-sen6

(k/FL)=1

/

/7 (WFL)<1

Figura 1 — Lugar da Raizes

A funcdo indica que além da solucdo &, =0 ha duas outras para-6, ¢ &, quando kg < FL

A solugdo @ = x existe se kg = 0.

Estabilidade: A solugio ¢ estavel se:

az(V(ql’q25q3""’qn )_TO) >0

> = k—FLcos@ >0
aqz’

a) Estabilidade para a solugdo 6,=0 =  k,—FL>0

Estavel se: F < k—g
L

. k,

Instavel se;: F > T

. k .
Bifurcagdo quando: F = Tg quando se define a carga critica de flambagem.
b) Estabilidade para a solucdo +6,

k ) N
Se: F > Tg existem duas outras solugdes em +6, para 0< 8, <7x

66
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Equagdo de equilibrioem 8, = send, = k—06’2 ou cosé, = EL
L FL tané,

Lembrando que k,—FLcos@ >0, obtém-se: £, (1 o % j >0 que ¢ sempre positiva
a

2

portanto raizes estaveis.

RESUMINDO:

k . . S .
Se F < TH existe uma posicao de equilibrio estavel em @ = 0.

k ) - s .. e . L.
Se F > Tg existem duas posi¢des de equilibrio estaveis em 8, simétricas e 8, = 0 instavel.

Frequéncia natural: Para cada posicdo de equilibrio estavel, pode-se linearizar a equagdo de

movimento e determinar frequéncia de vibragao naquela posi¢ao.

Equacio de movimento: mI*6 +k,0— FLsen6 =0
Linearizagio: movimento linearizado em torno @ =0 = senf~0 = mLl’6+(k,~FL)0=0

k,—FL
ml?

k A .
Para F < TH a frequéncia natural serd o =

Linearizaciio: movimento linearizado em torno +6, substituindo varidvel = f=60-6, e
utilizando formula de soma de angulos (sen(a + 3)):

mIf+k, (0, + ,B)—FLsen(H2 + ,B)z 0 pois 6,=0

sen(@, + )= cos Bsend, +sen Bcosh, =senb, + fcosb,

mI*f+k, (0, + B)— FL(sen 6, + Bcos,)=0

k,0, = FLsen0,

m’ i+ (k, — FLcos8,)B =0

2 _ k,—FLcos0,

A frequéncia natural serd: |@ 2
m
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4.6 Linearizagdo Exemplo 4: Particula em Guia Circular

Um rolete Q de massa desprezivel desliza sobre uma pista cilindrica ideal de raio R, mantendo-
se no plano Oxy, ¢ formando um angulo ¢ em relacdo a vertical conforme indicado na figura.
Uma particula P de massa m, ligada a Q por uma haste de massa desprezivel e comprimento L
bascula com o angulo 6.

a) Descrever a expressdao da energia cinética T do sistema em func¢do das coordenadas

generalizas ge 6

b) Escrever a expressdo da energia potencial ¥ do sistema;

c) Obter s equagdes de movimento utilizando o método de Lagrange;

d) Supondo que o sistema realize pequenas oscilagdes em torno da configuragao de

equilibrio, obter as equagdes do movimento na forma linearizada.

Resolucio: Sistema: particula P de massa m formando um péndulo de comprimento L e o rolete

Q de massa nula que se movimenta sobre a pista cilindrica de raio R. Graus de liberdade
independentes do sistema: ) = q; ¢ &) = q,. Referencial e coordenadas O j . Teoremas:

Energia Cinética, Energia Potencial, Fun¢do dissipativa, Forcas Generalizadas e equacao de

Lagrange.
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A posi¢ao 7(¢) do ponto P em relagdo ao centro fixo O ¢ descrita por:

F=xi+yj=(P-0)

(P-0)=(P-0)+(0-0)
(Q—O):R(sen¢f—cos¢])
(P—Q):L(sené’f—cosé’])
(P-0)=(Rseng+ Lsend)i —(Rcosp+ Lcosb);

xl :f(qla ‘b,--’ qna q'la ‘?2,--’ qn 7t) e xz :f(qla ‘]2;--: qna q‘la qz:"a qn ’t)
x=Rsengq, +Lseng, e y=-Rcosq,—Lcosqg,

Portanto:

Utilizando a féormula de campo de velocidades e a identidade trigonométrica de soma de angulos
(cos (a + ,b’) =cosa-cos fFsena-sen ff), pode-se expressar a velocidade do ponto P a partir de

O fixo:

vV, :%[(R sen @+ Lsen H)f—(R cos@+ Lcos 0)]]

v, :(Rcos¢¢5+Lcos6’9)f+(Rsen¢¢5+LSGH99)j
V:=R*§ +L’0* +2RLcos(6—¢)p0

A ENERGIA CINETICA da particula P com velocidade descrita conforme expressdo anterior

em torno do polo O resultando em:

T(¢,0,¢5,9)=%m-l713 =%m-[R2¢'52+L292+2RLcos(9—¢)¢59]

A ENERGIA POTENCIAL ¢ funcao da altura & da massa m da particula P sendo obtida por:

V:V(¢,0):mg-(l—Rcos¢—Lcose)

Fazendo as coordenadas generalizadas ¢, = ¢ e ¢, = @ ; a fungdo Lagrangeana depende da

posicdo (ge 6) e da velocidade (@e8) da particula , sendo definida como:
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L=T-V onde L=L(4,0,4,0)

As equacdes de LAGRANGE para ¢q; coordenadas generalizadas sdo obtidas pelas seguintes

derivadas parciais e temporais:

v B

i a?v 8T+6V aR—Q para i=1,2,3,
dt\0q;) 0q; 0q, 04,

Realizando as seguintes derivadas parciais na coordenada generalizada ¢, = ¢

or oT

—— =~ =mR*¢+mRLOcos(0— ¢

04, 8¢ ( )

d(”] mR*§+mRLE cos(0— ¢) - mRLOsen(0 - 40— ¢)

i\ 04

d(or N .
dt(8¢] mR*@ +mRL6 cos(6 — p)—mRLEO* sen(8 — ¢)+ mRLPH0sen(0 — ¢)
oT oOT . ov or :
—=—=mRL@Osen\0-¢) ; —=——=mgRseng ; Q" =0
dq, 0¢ ©-9) dq, 0¢

Aplicando os resultados das derivadas parciais e deriva temporal da coordenada ¢; = ¢ na
equagao de Lagrange e considerando a forga generalizada Q;, (note que os termos indicados em

vermelho se cancelam) obtém-se a seguinte equagao escalar:

= Ql

dfor) or ov _dfor) or ov
di\6g, ) 0q, o0q di\og) o¢ o4

mR>¢ +mRLcos(0—¢) 6 —mRLsen (0 —¢) 0> + mgRsengd =0

Realizando as seguintes derivadas parciais na coordenada generalizada ¢, = 6:



MECANICA ANALITICA 71

or _oT _

24, YN mI*0+mRLpcos(0 — )

d|(o 2 ‘ )~ ¢
dt(ag] mL*0-+ mRL§ cos(0 — §)~mRLesen(0 - )0~ ¢)

d (aT] mI*6 +mRL cos(6 —p)—mRLF sen(0 — ¢)+ mRLH* sen(6 — )

dt\ 06
oL aT——mRL sen(0—¢) ; oL :a—VzmgLsenﬁ ; 0 =0
oq, 00 oq, 00

Finalmente, aplicando os resultados obtidos para a coordenada ¢, = @ na equagdo de Lagrange e

considerando a forga generalizada @,, obtém-se mais uma equagao escalar:

mL*60 + mRL cos (9— ¢)¢ +mRLsen (49 — ¢)¢2 +mgLsend =0

Expressando na forma matricial, utilizando o vetor de coordenadas ¢ ={¢ 6} obtém-se:

M (@) {g}+[Cla. g} +[Fl{a}=0

onde:

[M<q>]=[ R mRL cos (9—¢)}

mRL cos (60— ¢) mL’
N1 0 —mRLsen (0 —¢)0
SOl [mRL sen (0 —¢)d 0 }

[F(q)] = [ng seng mglsen H]T

Note os termos fora da diagonal principal da matriz de massa M(q), que ¢ multiplicada pelas
aceleracdes, correspondem ao acoplamento entre o cilindro e a particula (for¢a vincular). Note

também que a matriz C(q) ¢ anti-simétrica.

LINEARIZACAO: Utiliza-se das formas quadraticas da Energia Cinética ¢ Energia Potencial

para realizar a linearizagdo do sistema em torno do ponto de equilibrio g=0 ¢ 8=0.
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1 &L .. | &
Tzzgzzai,k"]/‘]k € szazzbi,k'q/‘q}c

j=1 k=1 j=1 k=1

Em seguida deve-se realizar as seguintes etapas: obter os coeficientes a;j e fi; , fazer a
simplificacdo na posi¢do de equilibrio da origem e obter os coeficientes aij € b;;j, e montar a

equacao na forma matricial:

0
4qi

E2 ox. ox. o'V
a; :zm; o1, € bj,k =
i=1 oq, * Ogq, * aqja%

J

Day G +Y.b g =0 para i=1,2,3,...n
k=1 k=1

Os coeficientes a;; e fij , sdo obtidos das derivadas parciais duplas da energia cinética
1 , : .. ) )
T = Sm: [R2 ¢*+ L 0” +2RLcos(0—¢)p 49] em relagdo as velocidade generalizadas e da funcio

potencial V =mg - (1 —Rcos¢g—Lcos 0) em relagdo as coordenadas generalizadas:

T T
0511_2(]52: R’ a11_2¢2|z?): R’
o'T o°'T 4
o, =— =mRLcos(0— = 9= mRL
1,2 a¢a€ ( ¢) ) 1,2 axaeb—o
s na origem 5
o, =T =mRL cos (60— ¢) _oT Y0 =mRL
> 0604 o ohex
o°T o°T .
a,,= 00° =ml’ a,, _ﬁ@:g r
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oV oV
=5 = meosg b= e
2 2
ﬁl,z = 88¢8VH =0 bl,z = 68¢g9 |gzg= 0
5 em torno da origem 5
oV oV 40
ﬂ2,12898¢=0 b2,1=898¢|azo=0
oV OV e
Ps= PYE =mgLcos® b,,= 00 lp—o=mgL

Utilizando os termos da matriz Hessiana acima, as duas equacdes finais resultam em:

zai,k "y +Zbi,k qr =y, '¢.+a1,2 'é+b1,1 '¢+b1,2 0=0,
k=1 =1

i=1
mR*¢ +mRLO+mgR¢ =0
i=2 Zai,k “qy +zbi,k gy =ay, '&"‘az,z 'é+b2,1 '¢+b2,2 0=0,
= =1 =1

mRL$ +mL*0 +mgLO =0

Descrevendo o sistema na forma matricial obtém-se:

a, al,z}{%} {bl,l bl,2j|{Ql} {Ql}
%1 @ |42 by by, |19, 0,
'mR® mRL|[¢| [meR 0 [g] _[0
\mRL  mL’ ||6 0 mgLl||l@] |0

Note que para o sistema linearizado o acoplamento de forgas entre os movimento devido ao

vinculo permanece descrito na matriz de massas. O sistema linear de equacdes obtido pode ser

tratado isolando as variaveis ¢ e 6 por substituicdo.

Veja exemplo de movimento de péndulo duplo em:

https://www.myphysicslab.com/pendulum/double-pendulum-en.html
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4.7 Linearizagdo Exemplo 5: Disco — Barra Guia

O balancim de massa M e momento de inércia
Jiz, tem movimento angular @ (t) prescrito em
torno da articulagdo ideal em O fixo. O centro

de massa G do balancim dista e do ponto 0. O

1

disco de massa m e raio r, rola sem escorregar
sobre a guia AB, com posi¢do definida pela
cota u, medida ao longo da guia por um sensor

de posicdo, a partir do ponto O. Este sistema

também ¢é conhecido como bola/barra.
Adicionalmente no setor de arco de raio R na extremidade inferior do balancim estdo ancoradas

duas molas de rigidez k/2 cada. As molas estdo em seu comprimento livre quando & = 0. Um
momento externo 7(¢) ¢ aplicado no balancim. Considerando as coordenadas generalizadas ¢, =

u e q,= 6 pede-se:

a) Escreva a funcio de Energia Cinética do sistema em fungio de i, @ e dos parametros m, r, M

e Jg,. Dois corpos rigidos: balancim e o disco. Para o disco utilizando o referencial mével

Ou 7 k solidario ao balancim, obtém-se:

T= TDisco +1T, Balancim

AD:Vrel-i_ Harr

arel:uﬁ

= 40+6?)/\(D—O):O+91€A(uﬁ+r?)=u9f—r9ﬁ

A =uﬁ+u9f—réﬁ:(u—r9)ﬁ+u9f = V2=i’ —2ur9+(r2 +uz)6"2
Ty =%m-[u2 —2u r6’+(r2 +u2)92]+%(%mr2ja)2

Da cinematica do disco para rolamento sem escorregamento tem-se: @ =—u/r
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Thieo =%m-[a2 —2u r9+(r2 +u2)6"2]+%m122

.1 ] ]
T —Emuz—mru6’+—m-r26’2+5mu292

Disco —

Para o balancim utilizando o referencial movel Ou 7 k solidario ao conjunto com O fixo, obtém-

se:
AG = i’el + Harr I7rel = O
Ha,,,:V0+E)/\(G—O):0+9k/\(—e)r =efu
52 22

. =e 0

:%M-(e292)+%[JG2]92

Balancim

A Energia Cinética total do sistema resulta em:

T:imu2 —mrué’+lmr2 6> +%mu2 6’ +%M(6292)+%[J62]92

ngmuz —mru9+%mu292 +%(mr2 +Meé’ +JGZ)92

b) Escreva a fun¢do de a Energia Potencial e de dissipag@o do sistema em funcao de u ¢ e dos

parametros m, r, g, R, k, M ;

V = V + VBalancim + VM()la

Disco

VDisco = mgh = mg'usenﬁ
VBalancim = mg h = Mg 'R(I_COS H)
1 1k 1
V. =S —kx?=2 __Rzgzj:_kRZQZ
Mola 22 i Vi (2 2 2

A Energia Potencial total do sistema resulta em:
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V:mgusen6’+Mg-R(l—cos&’)+%kR26’2

¢) Deduza as equagdes de movimento utilizando o método de Lagrange. Para o primeira

coordenada generalizada ¢; = u :

or oT 3 . : d{oT) 3 .. -
=—=—mu-mrf = — =Emu—m7’9

0, ou 2 dt\ ou
or _or _ . .é

0q, Ou

ov oV O0R OR
—=—=mg-senf ; —=—=0
0q, Ou 0q, Ou

d(|or _8T+5V+8R_
dt\0q,) 0Oq, 0q; 04, i

%mi[—mré—mu92+mgsen920

Para a segunda coordenada generalizada ¢, = 6,:

8'T =a—].1=—mrd+(mu2+mr2+Mez+JGZ)9 =
0q, 00

4 8_T :—mrii+(mu2+mr2+Mez+JGz)é+2muu9
dt\ 060

oT _oT . 2R _,

0q, 00 00

or :a—V:mgucos6’+MgRsen9+kR26’

0q, 00

Forc¢a generalizada: Utilizando o principio dos trabalhos virtuais:

76
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SW=YF-5i+M-60=)Y0,5q,=0
T-60=0,-60 = Q,=T

Finalmente a segunda equac¢ao para coordenada generalizada ¢, = € resulta em:

—mrii+(mu2 +mr’ +M e’ +JGZ)9+2muu9+mgucos«9+MgRsen9+kR29:T(t)

Fazendo a substituicdo de ii da primeira equacdo na segunda, obtém-se:

ii=§(r55+u92 —gsenH)

(JOZ +%mr2 +mu’ jé—%mrué’z +2mu u0'+mg(u cosH—%rsen 6’]+MgRsen6’+kR20 =T(¢)

Linearizacao:
Para realizar a linearizacdo das equag¢des do sistema ndo amortecido, deve-se realizar as
seguintes etapas: obter os coeficientes a;; e Bi;, fazer a simplificagdo na posi¢do de equilibrio

da origem e obter os coeficientes a;; € b;;, e montar as equacdes na forma matricial:

Da G+ b g =0 para  i=1,2,3,..n
k=1 k=1

Os coeficientes a;; e fij , sdo obtidos das derivadas parciais duplas da energia cinética e

potencial em relagdo as velocidade e coordenadas generalizadas:
T(u, 0,u, 9)= %muz —mrd9'+%mu29'2 +%(mr2 +J,, )2

V(u,0)= mgusen67+Mg-R(l—cos6?)+%kR292
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o°’T 3 o°T .., 3
al,lzauz :Em all_Fb:o_Em
_ T 0T -
Y0006 . b 6y00 """
5 na origem s
_oT _ _oT e
> 060u 0606y
0’ o’T .
22 = .2=mr2+JOZ 2,2_ﬁ|a=g:m72+‘]02
oV oV ._
131,1 = o =0 b1,1 = 8)/2 |9=g:0
o oV .
= =mg cosb = “=0—m
ﬂl,z 0uoo g ' 1.2 5y89|€_0 g
ot na origem Sy
by = = mg cos 0 b, =———|"=mg
> 000u 000y
oV oV ..
Bor= 20° = kR b,,= 20° 0= kR’

Utilizando os termos da matriz Hessiana acima, as duas equagdes finais resultam em:

c . X . s 3 . s .
i=1 Zai,k-qk+2bi’k-qk:al,l-u+a1’2-l9+b1,1-u+b1,2-Gzimu—mr9+mg0:0 e i=2

k=1 k=1
Zai,k-c'jk+2bi’k-qk=a2,1-ii+a2,2-9'+b2)1-u+b2’2-6’=—mrii+(mr2+JOZ)é+mgu+kR26’:O
k=1 k=1

Rearranjando as equagdes linearizadas na forma matricial, obtém-se:

R v e P SN

As equacgdes lineares obtidas pode ser isolas nas varidveis i e € por substitui¢ao, obtendo:
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o _ 2
ii:gré—zgﬁ e gomri nzgu kR" 6
3 3 (mr +JOZ)

e substituindo em cada equagdo, resulta em:

(%mrz +%J02jii+mgru+ rkR’ +(mr2 +J02)g]9:0

(%mrz +J02j9+(§mgr+kR2j9+mgu =0

Ou finalmente na forma matricial;

%m,,er%JOZ 0 o [mer R+ 0, )]l ) (o
CR TN Ty g s

2 2
0 (% —— mg (5 mgr + kR j

que ¢ apropriada para aplicagdo da técnica de controle.

79
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5 Vinculos Nao-Holonomos

Uma equagdo vincular cinematica que ndo pode ser integrada corresponde a um vinculo NAO-
HOLONOMO. Quando hé vinculos ndo-holénomos no sistema (que nio ¢ objeto deste texto),
utiliza-se de termos adicionais, chamados de Multiplicadores de Lagrange, para tratar

explicitamente os efeitos vinculares. A equacao de Lagrange do primeiro tipo tem a forma:

i aT _8T+6V+C1:Qim (59)
dt\0q;) 0q; 0q,

onde as forgas vinculares C; sdo descritas por Ax multiplicadores de Lagrange da seguinte forma:

v, 04
C =24 o (60)



MECANICA ANALITICA 81

6 Vantagens e Desvantagens do Método Analitico

A técnica analitica que utiliza a equacdo de Lagrange para solu¢do do sistemas mecanicos

naturalmente tem vantagens e desvantagens. Lista-se a seguir alguns destes aspectos:

Vantagens: a) A abordagem de Lagrange gera automaticamente tantas equagdes quantos graus
de liberdade houver. b) As equagdes de Lagrange usam naturalmente as coordenadas
generalizadas do sistema. A formulagdo de Lagrange usa escalares relacionados com a energia
ao passo que o equacionamento por Newton requer grandezas vetoriais. ¢) A abordagem
Lagrange elimina naturalmente as forgas de restri¢do vinculares. E possivel fazer o mesmo com
a abordagem direta (newfoniana), mas sua capacidade de minimizar o nimero de variaveis
depende muito de habilidade. No método de Lagrange as forcas sdo automaticamente tratadas,
porque as forgas generalizadas incluem apenas componentes de for¢a em direcdes de

movimentos admissiveis.

Desvantagens: a) Erros cometidos na formulagdo das energias cinética T, potencial V e trabalho
ndo conservativo Wnc, poderao nunca ser percebidos. b) A fisica das forcas e os diagramas de
forgas do corpo livre sdo ignorados. ¢) Deve-se sempre avaliar cada uma das equagdes obtidas
pelo método de Lagrange e questionar se faz ou nao sentido fisico. d) A determinacdo das forgas
generalizadas pode ser tanto ou mais trabalhosa no método Lagrangeano quanto no método

direto.
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8 Anexo A - Expansao em Série

Relembrando do célculo, considere que o comportamento de um sistema seja descrito pela
equacado diferencial x = f (x) e que na origem x = 0 seja uma posicao de equilibrio. Sendo uma

posicdo de equilibrio sua variagdo nesta posi¢do serd nula, conforme descrito por:

i=f(x) = x=/0)=0 (61)

A funcio f pode ser expandida em série (Mac Lauring) obtendo:

2 3

i=f(x)+x f’(x)-i—% f"(x)+§ (%) ... (62)

Na mencionada posi¢ao de equilibrio, onde x = 0, obtém-se pela expansdo em série:

% =0+ 1(0)x+ R,(x) (63)
onde: f'= {ﬂ} e |R2 (x] ¢ de ordem de x°. A equagdo diferencial resulta, portanto em:
x
x=0
x=f"x ou x={ﬂ} ‘X (64)
ox |,

que ¢ a equagdo linearizada, associada a funcdo x=f (x) Se o movimento do sistema

permanece restrito a uma vizinhanga da origem, a equagdo linearizada representard bem o seu

comportamento.
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9 Anexo B - Analise Modal

Para sistema mecanicos com mais de um grau de liberdade e acoplados, a transformacdo de
coordenadas para outra base conveniente pode ser util. As coordenadas modais que sao
coincidentes com os modos de vibrar, permite solucionar o problemas realizando uma analise

modal analitica.

Considere o sistema discreto, livre ndo amortecido composto por duas massas com movimento

horizontal conforme ilustrado na figura:

x1(t) Xo(1) Xo(t)
— — —

Cq Co C3 Cn
e el

ki @) @) Ke ) ) ks @) ) K

. ~ . . T T
Sendo o sistema acoplado, haverdo dois modos de vibrar: @, = {x11 xlz} e @, = {le xzz}

com frequéncias naturais distintas @, e o,. Para [C]=[0] e [F]=[0] as equagdes do sistema na

forma de Newton se reduzem a:

v {5} + [K [l = {0 (65)

A historia temporal do movimento de cada grau de liberdade (x, e x, ), para um determinada

frequéncia natural (@, ) e portanto modo de vibrar @, ={x, x,,} sera:

{xl } = {x“}-e"""" ou simplesmente  {x}. = {®,}- " (66)
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Utilizando esta solugdo e sua derivada de segunda ordem ({i} =-@”-{®,} ") na equago

1

dindmica do sistema, obtém-se:

—o’ M@} +[K)i@}e =0} =  &-(K]-o - [M)@}={0} (67

como e #0 resta solucionar o seguinte problema classico de auto-valor e auto-vetor para

A=0’:
(k]-o* M)f@}={0} = ([M]'[]-2:[1])i@}={o} (68)

Reescrevendo as equacdes na forma tipica do auto-problema, obtém-se a matriz dindmica do

sistema [4]=[M]'[K], associada com os auto-valores 1, = e os auto-vetores {®,}:

T Koi=2-0) = [dfow}=1-lo) (69)
A solugdo tipica do auto-problema ¢ feito pelo calculo do determinante:
det(K]-o-[M])={0} ou det(M]'[K]-4-[1])=1{0} (70)

E importante constatar que os modos de vibrar representam uma base ortogonal no espago. Desta

forma a matriz modal apresenta as seguintes propriedades:

o flej=0 < {of[xle,j-0 (71)

sendo {<I>l.} 0 i-ésimo modo de vibrar associado com a i-ésima frequéncia natural ®,; (idem

para j). Assim tem-se que:

{CDI,}T[M]{CDI,}:I ¢ {(Di}T[K]{CDI,}: o, (72)
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Neste caso os modos {<I> ,-} sao normalizados em relacdo a matriz € massa o que implica que a

matriz modal [®]=[{®,} {®,} .. {®,}] ¢ ortonormal.

O sistema mecanico com multiplos corpos (Multibody System - MBS) expresso em coordenadas
fisicas {x}, também pode ser expresso em coordenadas modais {gq}, através da transformagio

de base, tal que:

{x}=[@]-{q} (73)
Substituindo na equacdo anterior e pré multiplicando por {(I) ,.} obtém-se:

@] [M]oligi+ o] [K]olg)=0 (74)

Assumindo que a matriz modal [CI)] ¢ normalizada em relagdo a matriz de massa [M ] e

considerando a propriedade de ortogonalidade tem-se:

o M]o]=li] < [o][k]o]=[0] (75)

onde [Q] =diag (a)lz,a)z2 s OO ) Aplicando esse resultada na equacdo anterior obém-se a equagao

modal do sistema mecanica com multiplos corpos, expressa na base modal que ¢ desacoplada e

dada por:

{gj+[Q]-1q}=10} (76)

9.1 Exemplo Modal

Dois veiculos em movimento livres num plano s3o interligados por molas e amortecedores
lineares. As posi¢des xi(7) € x,(f) sao medidas a partir das condigdes iniciais com as molas livres.

Montar as equagdes de movimento na forma matricial e resolver o sistema pelo método de modal
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calculando as frequéncias naturais € modos de vibrar, para os seguintes pardmetros do sistema:

m=m,=m,c,=c,=c;=0¢ek =k,=k =k

Xi(t) Xo(t)
— —
C C2 Cs
i
k1 ) C ke ) ( ks

Resolucao: Sistema: Veiculo de massa m; ¢ veiculo de massa m,. DFCL: for¢as das molas ¢
amortecedores sobre os corpos; Vinculos: rolete inferior deslizante sem atrito e interligagdo entre
os veiculos e as paredes com conjuntos mola+amortecedor. Utilizando o TR e montando na

forma matricial as equagdes para os dois graus de liberdade obtém-se:

0 m -k 2k

[M1=[’" 0} o [Kl{zk "ﬂ o e K= o)

Resolvendo o auto-problema determinando o polindmio caracteristico em A, obtido pelo

determinando do sistema onde 1= @”:

det(K]-2-[M])=1{0} = det[{zk__]jm Zk__l;sz{o} = (2k—Am) -k*=0

k k* . , ~ A .
A —-4—2 +3— =0 cujas raizes sdo os auto-valores ou frequéncias naturais: @, =~vk/m e
m m

®,, =+3k/m e substituido esses valores na equacdo do sistema obtém-se os auto-vetores:

O, ={ 1}/ ed,={ -1}.



