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The theory of viscosity of liquid mixtures presented here is based on Eyring's theory of ab- 
solute reaction rates. The most important conclusions drawn are that for liquids the free 
energies of activation for viscosity are additive on a number fraction or mole fraction basis and 
that interactions of like and unlike molecules must be considered. Methanol-toluene, benzene- 
toluene, and cyclohexane-heptane systems were analyzed with a three-body model and found 
to fit within the accuracy of the experimental data. Acetone-water mixtures fit a four-body 
interaction much better. Indications are that to describe acetone-water mixtures well would 
require consideration of seven- or eight-body interactions. 

The viscosity of liquid mixtures has 
attracted much attention in the litera- 
ture (3, 13, 14), both from the practi- 
cal standpoint of wanting to be able 
to predict the viscosity of a mixture 
from the properties of the pure com- 
ponents and from the theoretical view- 
point of wishing to gain a clearer in- 
sight into the behavior of liquid 
mixtures. I t  has long been recognized 
that viscosity-composition curves are 
not simple functions of composition. 
Almost never are they linear; they may 
have a maximum, a minimum, neither, 
or both. 

One of the early equations, and cer- 
tainly one of the most popular, relating' 
the absolute viscosity of a liquid to 
temperature (1, 2, 6) is 

(1)  
Eyring ( 5 )  gave the equation added 
theoretical significance in the following 
form: 

= AeB/' 

If A is assumed equal to A,, and 
AIAds is identified with the molecular 
volume, Equation (2)  may be written 
as 

hN AO*/RT 
c L = -  V (3) 

or 
hN 

AO*/RT v = p / p  = - M 
Eyring's picture of shear between 

two layers of liquid involves the suc- 
cessive passage of individual molecules 
from one equilibrium position to an- 
other as indicated in Figure 1. Such a 
passage requires that either a hole or 
site be available. The production of 
such a site requires the expenditure of 
energy to push back other molecules. 
The movement of the molecule may be 
regarded as the passage of the system 
over a potential-energy barrier, related 
to AGO. 

DERIVATION OF T H E  C U B I C  
EQUATION 

In a study of the viscosity of a mix- 
ture of molecules of types 1 and 2 a 
number of different encounters must 
be considered, some of which are 
shown in Figure 2. 

The types of interaction considered 
in this case are only three bodied and 
are, in effect, all in one plane. If the 
two types of molecules are different in 
size (radius) by more than a factor of 
1.5, it will probably become necessary 
to take into account other interactions 
involving more than three molecules 
and especially on a three-dimensional 
basis (instead of simply in one plane). 
The ratio of 1.5 to 1 in size is chosen 
arbitrarily. The three-body model 
shown in Figure 2 seems to describe 
the situation well for the methanol- 
toluene system; the ratio of molar vol- 
umes for this system is about 2.6, 
resulting in a ratio of the radii of ap- 
proximately 1.39. 

The type of interaction shown in 
Figure 2a would correspond to a free 
energy of activation of AG,", that is for 
pure component 1. The interaction of 
Figure 2h would be characteristic of 
AG,", or pure component 2. Interac- 
tions of types b, c, and d all correspond 
to two molecules of type 1 and one of 
type 2. One would expect the activa- 
tion energy for types c and d to be 
identical; they will be referred to as 
AG,,,". The free energy of activation 
for interaction b wil1,be referred to as 
A G , ~ , ~ ) .  Similarly energies of activation 
for types f and g would be equal and 
designated by AG,O, whereas type e 
may be designated by hGm0. 

In any binary mixture of mole frac- 
tion x1 the fraction of the times inter- 
actions of type a (Figure 2)  would be 
x:, as long as the number of molecules 
of types 1 and 2 was statistically large. 
Corresponding occurrences of the vari- 
ous types of interactions are listed 
below : 

Type of interac- 
tion 1-1-1 1-2- 1 

Fraction of total 
occurrences x1= XIZXZ 

The assumption made here of course is 
that the probability for the interactions 
is dependent only on the concentration 
and not on the free energy of activa- 
tion. This might well be a point tp  
question. Perhaps the rate of each in- 
dividual interaction is proportional to 
the energy of activation in much the 
same manner as the reaction rate of a 

chemical reaction. I t  may be assumed 
that for the mixture there is. a free 
energy of activation AGO and further 
that 
AG" = x," AG,' + x,%, AG,,' + 

2x1% AG,," +x,xf AG,,," +2x,x2' 
A G ~ O  + x," hG20 (5) 

Two additional assumptions are made 
at this point: 

AG,,," = AG,," = AG,,', and (6)  
AG~,O = A G , ~ "  = AG=* (7) 

Incorporating Equations (6)  and (7) 
into Equation ( 5 )  results in 

AG" = x,3 AG," + ~x;x, AG,' + 
3~~x29 AG,,O + x," AG," (8) 

It was necessary to make assumptions 
( 6 )  and (7) because with the cubic 
Equation ( 5 )  it is not possible to de- 
termine four arbitrary constants. Even 
though AG,," and AG,,," would be 
expected to be physically different, it 
is not possible to differentiate between 
them with viscosity-composition data 
alone. Equation (5) may be written 

AGO = x,3 AG,O + x;xz (hGm* + 
2AG,,") + x1x22 (AG,,," + 

2AG,*) + x;AG,O (9) 
in which case 

(10) 
AG,,' + 2AGlu4 

3 
AG,+ = 

(11) 
hG2=0 + 2AGlZ2' 

3 
AG,," = 

It  must be. further emphasized that 
for certain systems the three-body, 
essentially planar model indicated here 
may have to be modified to incorporate 
three-dimensional, four-body (or more) 
interactions. The most important result 
of the theory proposed here is that the 
free energies of activation for viscosity 
are the additive quantity. The fact that 
the three-body model fits so well for 
several systems, as shown below, lends 

2-1-1, 2-2-1, 
1-1-2 2-1-2 1-2-2 2-2-2 

support to the premise that, at least for 
certain cases, the one-dimensional ap- 
proach is sufficient. For the acetone- 
water system discussed below, a four- 
body model was used. This approaches 
the multibody, three-dimensional prob- 
lem. For this system the four-body 
model is much more reasonable than 
the three-body model discussed here. 
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-0.e.. 
Fig. 1. Distances between molecules in a 

liquid (5). 

The multibody model would necessi- 
tate a lengthy, if not unwieldy, equa- 
tion having many constants; such an 
equation may be necessary for certain 
mixtures. 

For each type of energy of activation 
considered here a corresponding 
matic viscosity may be assigned, 
For the mixture 

For pure component 1 

For interactions of types b, c, and d in 
Figure 2 

(14) hN eAo,a*/RT v, = - 
M, 

For interactions of types e, f ,  and g in 
Figure 2 

(15) e A Q , , * l R T  
h N  
M, 

v, = - 
and for pure component 2 

(16) h N  ' eAo2.1RT 
v2 = - 

Ma 
Substituting Equation (8)  into (12) 
results in the following expression for 
the kinematic viscosity of the mixture: 

Maw = xiMi + ~aMz 

Mu = (2M1 + Mz)/3 since these in- 
teractions involve two molecules of 
type 1 and one molecule of type 2. 

M, = ( Mi + 2M,) /3 since the three- 
body interactions involve two mole- 
cules of type 2 and one of type 1. 
Substituting these quantities into Equa- 
tion (19) and condensing the equation 
results in 

lnv = xlslnvl + 3~,2xdnv, + 3x1xzlnv,, 

+ x,"lnv2 - ln[xl + x2M,/Ml] 

+ 3x,'x21n[ ( 2  + M,/M,) /3] 

+ 3xlx,21nC (1 + 2M,/M,) /3] 

+ xtln [M2/Ml] (20) 

It is noted that the entire equation 
involves only two undetermined con- 
stants, V- and v,. Other features of the 
equation include the possibility of hav- 
ing a maximum, a minimum, neither, 
or both for v as a function of x. 

If MJM, = 1.0, the last four terms 
of the equation vanish. Every term of 
the equation contains the logarithm to 
the base e, and hence each term may 
be replaced by the logarithm to the 
base 10, with which it is often more 
convenient to work. 

Further development of the equa- 
tions may be made by using 

AG" = AH" - TAS' (21) 

at a given temperature. Substitution of 
Equation (21) into Equation (12) re- 
sults in 

. 

0 0 0  0 
o - o - - o -  o-- 

0 B O O  
(h)  (el (f) (9 1 

Fig. 2. Types of viscosity interactions in a 
binary mixture, three-body model. 

Substitution of Equations (23) through 
( 2 6 )  into Equation (20) results in an 
equation relating the viscosity of a 
liquid mixture to both composition and 
temperature. In such an equation the 
only constants not known a P T ~ O T ~  or 
not involving the pure components are 
Aslz", AS,", AH,,", and AHa". If these 
constants are assumed independent of 
temperature, a method is provided for 
extrapolating viscosity-composition data 
at two temperatures to other tempera- 
tures. 

Forerunners to Equation (20) are 
those by Kendall (11); Glasstone, 
Laidler, and Eyring ( 5 )  ; Hirschfelder, 
Curtiss, and Bird ( 8 )  ; and Frenkel ( 3 ,  
4 ) .  The latter was one of the first to 
consider interactions of molecules of 1 
with 2. Frenkel's equation is 

lnp = xl'lnp, + 2x1x2lnp- + xz'lnb 
(27) 

Kendall's equation is 

Taking logarithms of Equations (13) 
through (17), combining to eliminate 
the free energies of activation, and re- 
arranging yields 

lnv = xlslnvl + 3x?x21nvB + 3x1x$ 
h N  

xi% - Inv,, + xtlnva + In - - h N  
M,,, Mi 

hN h N  
M, MZl 

3XiX:h - - 3x,'x,ln - - 

When one recalls that x," + 3 % ' ~ ~  

Equation (18) may be written 
+ 3XiX," + X," = (Xi + X Z ) ~  = 1.0, 

Inv = 0 (x) - In Mast + x,Jln M, 
+ 3x,'dn M, + 3xlx21n M,, 

The various molecular weights may be 
assumed to be as follows: 

+ x,"h Mz (19) 
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. .  or 
Furthermore lnp = xllnpl + xJnk (29) 

The similarity of Equations (27) and 
Mi (29) to Equation (20) is at once ap- 

parent. For Equation (27) or (29) to h N  
ylz - e - A s , * / R  eAE, ,* /RT (24) hold, however, requires that the molal 

MlZ voldmes of the mixture, component 1, 
h N  and component 2 all be equal. This 

v, - e - A a z l * / R  e A E a ~ * I R T  (25) condition seldom obtains. Equation 
M, (27) can have a maximum or a mini- 

mum, but not both, as required by the 
hN e-A8zt/R e A E a 8 / R T  (26) experimental data for methanol-toluene 
M, mixtures ( 7 ) .  

v1 = - hN e - A s l * / R  e A E , * / R T  (23) 

and 

v2 = - 
TABLE 1. ENTHALPIES AND ENTROPIES OF ACTIVATION FOR 

VISCOSITY FOR THE METHANOL-TOLUENE SYSTEM 

AH," = 2.27 kcal./g.mole AS," = -0.000369 kcal./g.mole "K. 

AHlz* = 2.64 kcal./g.mole AS-" = -0.000511 kcal./g.mole O K .  

AH,' = 2.04 kcal./g.mole AS,' = -0.00246 kcal./g.mole OK. 

AHz" = 1.88 kcal./g.mole AS," = -0.00364 kcal./g.mole "K. 
These constants were determined for the temperature range from 20' to 60°C. 
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I~EXPE~IMENT~L DATA A I TABLE 2. KINEMATIC VISCOSITIES FOR THE METHA~OL-TOLUENE SYSTEM 0.76 

20.00"C. 25.00"C. 

Vl, cs. 0.7373 0.6914 

Via, CS. 0.9093 0.8609 

VZ, cs. 0.6420 0.5850 
V2, cs. 0.6786 0.6414 

DERIVATION OF THE QUARTIC 
EQUATION 

When one considers the movement of 
a molecule in a mixture from one equi- 
librium position to another, the three- 
body interactions considered above 
may not always be realistic. This 
would be especially true where the size 
of one component molecule is much 
greater than the size of the other com- 
ponent molecule. 

The four-body model approaches 
more nearly a three-dimensional treat- 
ment. The interactions to be considered 
are shown in Figure 3. Types a and 'p  
are seen to correspond to the pure 
components 1 and 2 respectively. 
Types b, c, and d would be expected 
to be identical, whereas type e should 
be different from the previous three. 
Since, however, types b through e all 
involve three molecules of component 
1 and one molecule of component 2, it 
is not possible to differentiate between 
the interactions with viscosity data 
alone. Six interactions are involved 
with two molecules of each component, 
interactions f through k; and four in- 
teractions are discerned with three 
molecules of component 2 and one of 
component 1, types I through 0. 

As before, the energies of activation 
for the four-body interactions are 
added in proportion to the fraction of 
the total occurrences for each inter- 
action shown in Figure 3: 

AGO = x;AG,* + ~ x ~ ~ x ~ A G ~ ~ ~ * '  

37.80"C. 50.05"C. 60.11 "C. 
0.72 I Y U  

0.5908 0.5138 0.4590 

0.7080 0.6004 0.5359 
0.5195 0.4595 0.4159 
0.5621 0.5009 0.4592 

+ 6x12x22AGIu2*' + 4xlx,"AG,,*' 

+ X;AG,* 

In this equation AGlD4' is an equiva- 
lent free energy for interactions of 
types b, c, d, and e and does not dif- 
ferentiate between the first three and 
the last interaction. Likewise A G ~ ~ ~ * '  
and AGmI4' are combinations similar to 
those made in Equations (10) and 
( 1 1 ) .  A G ~ ~ * '  combines the free ener- 
gies of activation for types f ,  g, and h 
with those of i, i, and k. AG-*' com- 
bines the free energies of activation 

and 0. 

2 

9 
E0.4 

o.440 0.2 0.4 0.6 0.8 1.0 
MOLE FRACTION METHANOL 

Fig. 4. Viscosity of liquid methanol-toluene 
mixtures. 

for type 1 with those of types rn, n, + x,'ln ( M J M , )  ( 3 1 )  

By techniques entirely analogous to 
the method given above, the following 
equation is derived:. 

lnvmt. = x,'lnvl + 4x~xz1n~'1112 

+ 6x,"xz4n~',, + 4 ~ ~ x ; l n v ' ~  

+ xallnv, - In ( x1 + x2 M,/Ml) 

+ 4x8xzln[ (3  + M,/M1)/4] 

+ 6x?x,'ln[ ( 1  + M J M , )  /2] 

+ 4x,x,"ln[ ( 1 + ~ M z / M I )  /4] 

RESULTS 
Methanol-Toluene System 

Equation (20) was tested first with 
the experimentally obtained data for 
the viscosity of mixtures of methanol- 
toluene solutions (7 ) .  The data for 
each temperature were used in Equa- 
tion (20), and the constants vE and vzl 
were determined by the method of 
least squares. Then, with these con- 
stants, lnv was calculated at each com- 
position given. Noting that 

The molecule in the center of each group Is considered to be moving 

perpendicular to the page between the other three molecules 

model. 
Fig. 3. Types of viscosity interactions in a binary mixture, four-body 
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Fig. 5. Kinematic viscosity as a function of temperature. 
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LIQUID MOLE FRACTION 
MORE VOLATILE COMPONENT 

Fig. 6. Kinematic viscosities of mixtures as a 
function of composition. 

lnv,.le. - lnvex,,ttl. = Ainv 

AV v,nie - vexpt ' i  
=-= 

V V 

one can compare calculated and ex- 
perimental viscosity determinations by 
calculating a percentage difference as 
100 times Alnv. The average percent- 
age difference at each temperature was 
calculated by averaging the absolute 
value of the difference at each com- 
position without regard to sign. Except 
for three data points at 25°C. and one 
at 37.8"C., all the calculated viscosity 
values agree with the experimental 
data with a maximum difference of * 
0.5%. The average difference, again 
excepting the three points at 25"C., is 
about 2 0.2%, which is the same 
magnitude as the reported accuracy of 
the data (7). It may therefore be con- 
cluded that for the methanol-toluene 
system Equation (20) correlates the 
data with a high degree of precision. 
Figure 4 shows the viscosity-composi- 
tion curves for the methanol-toluene 
system, The solid lines in Figure 4 
were calculated from Equation (20) 
by the use of the v12 and vn determined 
by the method of least squares. The 
circles represent the experimental data. 

TABLE 3. KINEMATIC VISCOSITIES OF 
BENZENE-TOLUENE MIXTURES AT 25.00"C. 

Mole 
fraction 
benzene 

O.oo00 
0.1159 
0.2032 
0.3445 
0.4476 
0.5677 
0.6394 
0.?741 
0.8772 
1 .oooo 

Xl 

Kinematic 
viscosity, 
centistoke 

Y 

0.6414 
0.6439 
0.6468 
0.6509 
0.6546 
0.6608 
0.6645 
0.6730 
0.6807 
0.6915 

Differentiation of Equation (22) re- 
sults in 

d lnv 
d ( l /T)  

AH*/R + (l/RT) -= 

dAH" 1 dAS" 
d( l /T)  R d( l /T)  

(32) ---- 

If the last two terms are negligible, 

d lnv 
---= AH*/R (32a) 
d ( U T )  

If both AH' and AS' are independent 
of temperature, lnv is a linear function 
of 1/T. Figure 5 shows logv,, logv,, 
Iogv,,, and logv,, as functions of 1/T. 
The fact that the lines are straight over 
the 40-odd degrees centigrade indi- 
cates that the enthalpies and entropies 
of activation for viscosity are inde- 
pendent of temperature over this range 
for the methanol-toluene system. 

For those systems for which lnv is 
not a linear function of the reciprocal 
tzmperature, Equation (32) must be 
used or else the liquid does not fit Ey- 
ring's basic model as exemplified by 
Equation ( 4 ) .  For those systems for 
which Inv is a linear function of the 
reciprocal temperature, Equation (32a) 
may be used to interpolate accurately 
the viscosity as a function of tempera- 
ture. Table 1 presents the enthalpies 
and entropies of activation for viscosity 
for the methanol-toluene system cal- 
culated by the use of Equations (22) 
and ( 3 2 ~ ) .  Table 2 gives all the kine- 
matic viscosities at the five tempera- 
tures listed. 

Eenrene-Toluene System 

Precise experimental data for the 
kinematic viscosity of benzene-toluene 
mixtures at 25.00"C. are given in 
Table 3. The precision with which 
Equation (20) fits the data with a 
maximum difference of 0.06% and an 
average difference of 0.02% is cer- 
tainly within the accuracy of the data. 
For the system at 25.00"C. V= and vn 
are 0.6616 and 0.6493 centistoke re- 
spectively. Figure 6 shows a line cal- 
culated from Equation (20) and gives 
the experimental data points (9) .  

Cyclohexone-Heptone System ' 

Kinematic viscosity data are given 
in Table 4 for the cyclohexane-heptane 
system at 37.8"C. The average per- 
centage difference is * 0.2%, and the 
maximum difference is 0.5%, which is 
the same magnitude as the experi- 
mental accuracy of the data. For this 
system at 37.8"C. V- and vn are 0.6272 
and 0.5782 centistoke respectively. 
Acetone-Water System 

One of the most nonideal systems in- 
sofar as viscosity-composition data are 
concerned is acetone-water. Figure 7 
shows the acetone-water viscosity ex- 

TABLE 4. KINEMATIC V I S C O S ~  OF 
CYCLOHEXANE-HEPTANE MIXTURES 

AT 37.8"C. (9)  

Mole 
fraction 

cyclohexane 

0.000 
0.092 
0.184 
0.402 
0.585 
0.690 
0.841 
0.960 
1.000 

x1 

Kinematic 
viscosity, 
centistoke 

V 

0.510 
0.527 
0.544 
0.595 
0.655 
0.702 
0.792 
0.904 
0.947 

perimental data ( l o ) ,  the data calcu- 
lated according to the cubic Equation 
(20),  and the data according to the 
quartic Equation (31).  In each case 
the unknown constants were deter- 
mined by the method of least squares. 
Equation (20) fits the data with an 
average deviation of 6.4%; the maxi- 
mum deviation is 15.8%. Equation 
(31),  however, has an average devia- 
tion of only 2.1% and a maximum de- 
viation of 4.8%. It is important to 
notice that it is in the low acetone con- 
centrations that both Equations (20) 
and (31) fit the poorest. 

DISCUSSION 

The accuracy with which Equation 
(20) fits the data for the first three 
systems presented is encouraging. For 
these three systems, at least, the model 
proposed seems adequate. More im- 
portant, however, is the indication that 
it is the free energy of activation that 
is the additive quantity in the viscosity 
of mixtures. Equation (31) was not 
used for - the data of the methanol- 
toluene, benzene-toluene, or cyclohex- 
ane-heptane systems. Mathematically 
this equation must fit the data at least 

"0 2 0 4 0 6 0 8 0 1 0 0  

MOLE PERCENTACETONE IN LlOUlD 

Fig. 7. Comparison of acetone-water mixtures 
with two theoretical models. . 
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Fig. 8. Interaction of an acetone molecule with 
water molecules. 

as well and probably better than Equa- 
tion (20). Since Equation (20) al- 
ready fits within the accuracy of the 
experimental data, nothing could be 
gained by applying the quartic equa- 
tion. 

For those systems which do not fit 
Equation (20) well, as for example the 
acetone-water systems discussed here, 
a more general equation is necessary. 
Equation (20) is concerned only with 
the interactions of three molecules at 
a time. This is rather like a flatland 
description of a three-dimensional oc- 
currence. The four-body interactions 
are a more accurate representation of 
the physical facts for mixtures whose 
component molecules are approxi- 
mately the same size. The four-body 
model also enjoys the three-dimensional 
representation of the problem. Figure 
8, however, shows that even a four- 
body model is unrealistic for molecules 
differing in size as much as acetone 
and water. In Figure 8 the size ratio 
is 1.61, which is the cube root of the 
ratio of the molar volumes of acetone 
and water. The three water molecules 
circled with solid lines in this figure 
can hardly be descriptive of the inter- 
actions involved in the movement of 
an acetone molecule when three addi- 
tional water molecules, shown as 
dashed circles, do not fill all the avail- 
able space around the periphery of 
the acetone molecule. Again the illus- 
tration shows a two-dimensional repre- 
sentation. On a three-dimensional basis 
perhaps a dozen or more molecules are 
affected by the movement of a single 
acetone molecule. 

TABLE 5. SIZE RATIOS OF SYSTEMS STUDIED 

Volu- Volu- 
metric metric 

size ratio size 
System (molal) ratio 

Methanol-toluene W2.62 1/1.38 
Benzene-toluene m.20 m.06 
Cyclohexane-heptane 1/1.21 1/1.07 
Acetone-water 4.16/1 1.61/1 

, Where such interactions are all h- 
podant fraction of the total occur- 
reI1-,,,$- as in the Icw acetone concen- 
trations, one would expect that at least 
a seventh- or eighth-order equation 
would be necessary to describe viscns- 
ity-concentration data accurately 

For the acetone-water system it is 
also interesting to note that the quartic 
equation fits the data above 50 mole 
% fairly well. This might indicate that 
a fifth-order equation is satisfactory in 
this region, but an eighth-order equa- 
tion might be required for the low 
acetone concentrations. 

Not enough systems have been in- 
vestigated here to indicate when it is 
permissible to use the cubic equation 
and when a more complicated equation 
is called for. As a rough ide, how- 

in a 
mixture are close to the same size, a 
cubic or quartic equation should ade- 
quately describe the mixtures. If the 
size ratio of the molecules is more than 
1.5, one may expect to employ a higher 
order equation to describe the mix- 
tures accurately. Table 5 gives the size 
ratios for the systems treated here. 

The use of the kinematic viscosity 
in most of the equations presented here 
instead of the absolute viscosity has 
the obvious advantage of avoiding 
equations containing volume fractions, 
or volume changes on mixing, quanti- 
ties which are not always known. 

While it is true that many liquids 
do not follow Equation (3) or (4) 
well over the entire range of tempera- 
ture possible for the liquid, there is 
usually some temperature range for 
which viscosities may be described by 
the methods presented here. 

Many attempts have been made to 
relate AGO to chemical structure (12 ,  
1 4 )  for pure liquids. These attempts 
have been either unsuccessful or at 
best not entirely satisfactory. Predic- 
tion of A G ~ ’  and AG,’ (or the corre- 
sponding h H ” s  and A V s )  is not pos- 
sible at this time. 

It is granted that the approach pre- 
sented here is highly oversimplified, 
but the accuracy obtained for even the 
three systems discussed here is suffi- 
ciently good to make further examina- 
tion and development of the theory 
worthwhile. 

ever, if the component moecules p” 
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NOTATION 

A. B = empirical constants 
AGO = molal free energy of activation 

for viscosity, cal./g.mole 

R = gas constant, 1.987 cal./(g. 
mole) (OK.) 

T = absolute temperature 
N = Avogadro number, 6.023 x 

10“ molecules/g.mole 
h = Planck constant, 6.6240 x 

M = molecular weight, g./g.mole 
e = base of natural logarithms, 

V = molal volume, cc./g.mole 
XC 

erg.-sec./molecule 

2.71828 . . . 
= mole fraction of component i 

in the liquid 

Greek Letters 

p = absolute viscosity, poise or 
centipoise 

Y = kinematic viscosity, stoke or 
centistoke. All numerical val- 
ues given in this paper are in 
centistoke. 

p 
A = average intermolecular dis- 

tances between adjacent liquid 
molecules (Figure 1) 

e ( x )  = x181nq + 3x:x21n~, + 3 x ~ ’  
lnv, + xa81nva 

= liquid density, g. mass/cc. 

T(x) = - In [xi + X, MJMi] + 
3x,’xah [ (2  + MJMi)/3] + 
3~1~2% [ (1 + 2M2/M1)/3] + %a% MJMi 
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