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Abstract-The effectiveness factor problem for heat and mass transfer with chemical reaction in a catalyst pellet is 
solved with a new technique especially suited to situations corresponding to high Thiele modulus when the solution is 
confined to a thin boundary region near the catalyst surface. The method of orthogonal collocation on finite elements 
combines the rapid convergence of the orthogonal collocation method with the convenience associated with finite 
difTerence methods of locating grid points or elements where the solution is important or has large gradients. The 
efficiency of the method results from block z-------------------decompositions employed in the iterative schemes devised. The 
method is applied to two problems to illustrate the rate of convergence, the efficiency (as expressed by error versus 
computation time curves), and the use of the residual for optimum location of the finite elements. Comparisons are 
also made to usual orthogonal collocation and finite difference methods. 

INTRODUCTION 

Consider the diffusion of heat and mass into a catalyst 
pellet where chemical reaction takes place. The 
mathematical problem describing this situation is a 
two-point nonlinear boundary value problem which has 
interested chemical engineers for two reasons: (1) models 
of chemical reactors (especially transient models) may 
require the solution of the problem hundreds or thousands 
of times, and (2) the problem provides a testing ground for 
new methods, since the character of the solution can be 
changed completely by changes in the Thiele modulus and 
the nonlinearity can be affected dramatically by the 
choice of parameters in the reaction rate expression. In an 
effectiveness factor problem in which diffusion is very 
fast (small Thiele modulus), the concentration of each 
species is everywhere close to its boundary value. As the 
Thiele modulus increases, the concentration profiles 
develop a boundary layer near the pellet surface, and the 
concentration in the interior of the pellet is at chemical 
equilibrium. 

The orthogonal collocation method is useful for solving 
effectiveness factor problems[l-31, even for quite large 
Thiele modulii, far into the range of validity of the 
asymptotic solution. For example, for isothermal pellets 
with an effectiveness factor greater than 0.2, a two-term 
orthogonal collocation solution (N = 2) gave 1% accuracy 
in predicting the effectiveness factor[3]. Indeed, the high 
accuracy is one of the prime advantages of the orthogonal 
collocation method Ferguson and Finlayson[4] showed in 
one example that the error in the solution decreased in 
proportion to ( 1/iV)“72N, where N was the number of 
interior collocation (or grid) points. As N changes from 5 
to 6 the error decreases by a, factor of over 100. 

For large Thiele moduli, however, when the solution 
has a steep gradient near the pellet surface, the orthogonal 
collocation method becomes unwieldy because a large 
number of collocation points is needed in order to have 
any at all in the boundary layer. For problems of this type 
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finite difference methods are possible because a large 
number of grid points can be used, and calculations can be 
done efficiently due to the &i-diagonal matrix which 
results. It is for problems of this type that we develop the 
method of orthogonal collocation on finite elements in an 
effort to combine the small truncation error associated 
with the orthogonal collocation method with the ability of 
the finite difference method to locate grid (or collocation) 
points where needed. 

In orthogonal collocation on finite elements we divide 
the domain into small subdomains, which we call finite 
elements. For the problems discussed below this is just 
dividing the line 0 I x 5 1 into elements of width Ax. We 
apply orthogonal collocation within elements and require 
that the function and its tirst derivative be continuous at 
the boundaries between elements. A first step in this 
direction was made by Paterson and Cresswell[S]. They 
postulated an effective reaction zone, the boundary layer, 
in which all the reaction took place and solved an 
approximated problem in the layer by low-order or- 
thogonal collocation. The layer width of this “outer 
element” entered the problem description as a function of 
the expansion coefficients. The remainder of the domain, 
the “inner element” does not enter their formulation and 
the concentration was identically zero there. For effec- 
tiveness factor problems with multiple solutions they 
achieved agreement within a few per cent of the exact 
solution for the full range of Thiele moduli. Orthogonal 
collocation on finite elements extends this concept to 
include the “inner element” and generalizes to include 
several subdomains or elements and an efficient method 
of solution of the resulting algebraic equations. Further- 
more the residual is used to guide the choice of the 
location of elements, which can be clustered in regions 
where the solution has steep gradients. 

The method may also be viewed as an extension to 
two-point boundary value problems of the application of 
orthogonal collocation to integrate ordinary differential 
equations as initial-value problems [6]. In that application 
the time domain is divided into steps At, and orthogonal 
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collocation is applied to integrate from tk to k+, = k t At, 
and continued stepwise to Cf. In an initial value.problem 
the solution is obtained for t from 0 to Q but the nonlinear 
algebraic equations involve terms only in one of the 
elements A-f for (k - 1) Ar 5 t 5 k A& and not for larger t. 
For a two-point boundary value problem, such as the 
effectiveness factor problem, x, the spatial position, takes 
the place of time, t, but the solution at x = 1 does 
influence the solution at smaller x. Thus the algebraic 
equations for an element Ax are coupled with those of all 
the other elements. 

The idea of piecewise polynomial trial functions has 
been used before[7], and especially by Varga and 
associates in the context of two-point boundary-value 
problems[8]. Usually these authors use a variational or 
Galerkin method in place of the collocation method. If the 
problem is nonlinear, this may lead to the necessity to use 
quadrature formulas to evaluate integrals, and if the 
quadrature must be evaluated at each iteration, or time 
step, as is often the case, lengthy computations result. 
This difficulty is eliminated by a collocation method since 
no quadratures are involved. We remark that it is much 
simpler to develop the computer codes if the equations 
are written in terms of the solution at the collocation 
points rather than the coefficients in the trial function. 
Thus all three methods discussed below-orthogonal 
collocation, orthogonal collocation on finite elements, and 
finite difference-are programmed in terms of the solution 
at the collocation or grid points. 

Below we describe the method of orthogonal colloca- 
tion on finite elements and compare its central features to 
other methods. An efficient algorithm is developed to 
solve effectiveness factor problems and the same method 
can be used for transient or multi-dimensional problems. 
Results are given for numerical experimentation on two 
problems involving combined heat and mass transfer with 
reaction in a catalyst. For one problem, for which we can 
derive error bounds on the solution, we examine the 
truncation error and curves of error versus computation 
time for three methods-orthogonal collocation, or- 
thogonal collocation on finite elements and finite differ- 
ence. For the other problem, which has a steep gradient of 
concentration near the boundary of the catalyst, we apply 
orthogonal collocation on finite elements and use the 
residual to place new elements where they are needed to 
achieve the best solution. 

DESCRIPTION OF METHOD 

Consider the diffusion and reaction of a species in an 
isothermal catalyst pellet, which is governed by the 
equations 

d’c a-ldc 
z+ 

yz=f(c), o<x < 1 

$(O)=O, +(l)=Bi,[c(l)-1] 

(1) 

(2) 

where a = 1, 2, 3 for planar, cylindrical and spherical 
geometry. We divide the domain 0~ x I 1 into NE 
elements by placing the dividing points at xl, I = 1,. . . , 
NE t 1, with x1 = 0.0 and xNEtl = 1.0 as shown in Fig. 1 

ELEMENT I ELEMENT 2 ELEMENT 3 

+= 
a - 

-P 

x 0 0.33 0.67 I.0 

c’c’ 
I 2 

c; c;c; c3cg c3 
I * 3 c3cs 49 

c:c: c: c:cg 

Cl% c3 C.&c, c7 C9C9ClO Cl, c&l3 

Fig. 1. Location of collocation points: 0, bounding points; x, 
continuity between elements; 0, interior collocation points within 

each element. 

for NE = 3. Within each element we define a new variable 
u’ = (x - xr)/Axl, Ax, = xl+1 - xl and place interior colloca- 
tion points at the roots to P.(u) = 0, where PN is a shifted 
Legendre polynomial defined on 0 I u I 1. For N = 3 the 
collocation points are shown in Fig. 1. Within the Ith 
element the variable u’ goes from zero to one. Applying 
the usual procedures of orthogonal collocation, 
Finlayson[2], we write the differential equation at the 
interior collocation points in terms of the value of the 
solution at the collocation points in the same element. For 
the jth interior collocation point on the fth element we 
have 

l=l,..., NE;j=2,..., N+l 

where we have used cil = c(ui’)= c(xr t ui’bs). The 
matrices B and A approximate the second and first 
derivatives and are given in detail in Table 5.5 of 
Finlayson [2]. To satisfy the boundary conditions we have 

(4) 

At the division between elements we do not collocate but 
require continuity of the function and its first derivative. 

CL+* = Cl’+’ (6) 

Detailed equations 

I=1 , . . . , NE - 1 (7) 

Collecting Eqs. (3~(7) determines the nonlinear system 
of equations which may be written in the form 

iic = P(C) (8) 

where the components of c are the unknown solution 
values at the interior collocation points and the element 
end points, 

C((N + 1) (I - 1) t i) = ci 

I=1 ,..., NE,i=l,..., N+l;i=N+2forl=NE. 

This expresses the matrix c/ as a vector c as indicated in 
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Fig. 1 and insures that Eq. (6) is satisfied. The matrix fi 
has the block diagonal structure shown in Fig. 2, with 
overlap only in one entry between adjacent blocks, and 
the row vector P has the structure shown. 

For computation, the diagonal blocks of e are stored in 
a three-dimensional array S( j, i, I), j, i = 1,. . . ,N + 2; 
I=1 , . . . ,NE. The elements of S and P are given by the 
following relations: 

I = 1, j = 1 (boundary condition) 

S(l,i, 1)= Ali i = l,.. . , N+2 

F(1) =0 

I = I+ NE - 1, j = N + 2 (continuity of derivative) 

I(Ari+~.i i=l,...,Ntl 

S(N t 2, i, /) = Ax, A~+~,~ -=Ali i =N+2 

1 = 2+ NE, j = 1 (continuity of derivative) 

1 S(N+2,Nt2,/-1) i=l 
S(1, i, I) = _$A,[ i=2,...,N+2 

I 

F((N t 1) (I - 1) + 1) = 0 

I= NE, j = N t 2 (boundary condition) 

S(N t 2, i, NE) = AN+I,I + Bi, AxNe SN+2,i 

F((N t 1)NE + 1) = Bi, AxNE 
i=l ,...,Nt2 

J=l-+NE,j=2,...,N+l(residual) 

SfI_i,i,O=Bji+& Ax,Aj, i=l,...,Nt2 
I 

F((N + 1) (I - 1) t j) = Ax:f(C((N + 1) (I - 1) + j)) 

S, is the Kronecker delta. Once these equations are set up 
we can deal entirely with the system [8]. 

I 
I 
I 
I 
I 
I 

I 
I 

I 

’ ,F= 

Fig. 2. Matrix structure for orthogonal collocation on finite 
elements. Cross-hatched areas, equations arising from boundary 
conditions; hatched areas, equations arising from continuity of 
first derivatives at boundaries of elements; clear areas, equations 
arising from residuals at interior collocation points of each 
element. The single column on the right hand side of fi arises 
when the Newton iteration is used for boundary-layer reactions 
(then @ = J Jacobian) since the residual at each point depends on 

The collocation method, using any trial function, is one 
of the methods of weighted residuals[2]. The residual is 
Eq. (1) with the approximate solution substituted into it. 
Of course the residual is zero at the collocation points, but 
it is generally nonzero at other positions, 0 IX 5 1. The 
residual can be evaluated after an approximate solution 
has been found, and this information will give valuable 
insight into the optimum location of elements for 
improving the solution. 

c(x = 1). Within each element, suppose we have found G’, 

Iterative solution of equations 
The algebraic system of Eq. (8) is solved by iteration 

using a Picard or successive substitution iterative method. 

fiCk+l= P(Ck). (9) 

The matrix fi is inverted using an ifi decomposition[9] 
applied in turn to each block shown in Fig. 1. Since the 
matrix does not depend on the solution, the inversion can 
be done once and for all. Then each iteration requires only 
inexpensive forward and backward substitution sweeps. 
There is no fill outside the biocks d;ring decomposition 
and the=triangular matrices L and U are stored directly 
over A4 during their calculation. Thus the storage 
requirements for the array are NE(N t2)* words, 
whereas a full system of this size would require 
(NE(N t 1) + 1)’ words. Then the important features of 
this implementation are its low storage requirements and 
its computational speed, even for calculations involving 
many elements. 

Standard iteration theory [ lo] can be used to show that 
the method converges provided 

P = (Ax,.$ fi-’ 
II III I 

$ max < 1. (11) 

Since the norm of the matrix inverse ]]~-‘]] is bounded for 
any Ax, if af/ac has a maximum (as is the case for the 
examples treated below) we can make P < 1 by choosing 
Ax small enough. For the second problem treated below, 
however, af/& = 1-l x 10’. Such a value would have 
required a prohibitively small Ax, so for that case the 
Newton Raphson method was used, in the form 

j(Ck+l - C”) = - d( Ck). (12) 

The block diagon$ algebraic system produces a block 
diagonal Jacobian J which requires decomposition within 
each iteration. A further complication in Problem II below 
is that the reaction rate at x depends on c(x) and c(1). 
The Jacobian structure is augmented by an entire vector 
in the last column of Fig. 2, corresponding to=terms 
involving #/&(I). During the decomposition of M, dual 
operations are performed on the final column in forming 
U, and this column vector is used in the back substitution. 
Except for the additional Jacobian calculation and ifi 
decomposition at each iteration, a similar efficiency in 
storage and computation is achieved when using the 
Newton-Raphson method. 

Use of residual 
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i=l , . . . , N t 2. We can write the trial function within 
the 1 th element as 

N+* 

c’(u) = c =, d/u’- 

and evaluate the expression at the collocation points. 

NC2 

c,’ = C’(Q) = x Qiidl, Qj, = uil-‘, j = 1,. . . ,N t 2 

Since 6’ = 0-l E’, knowing the solution at the collocation 
points, c/, gives the vector di’, and hence the solution 
c’(u) throughout the element. This method of interpola- 
tion suffices for low N(8-10 on a machine using 15 digits 
in single precision) and more refined techniques[ll] are 
suitable for large N (up to 80 have been used). Once the 
function c’(u) is known within the element, derivatives of 
c’ can be found, and thus the residual can be defined 
throughout the element, and thereby throughout the 
domain. If we call R(u) the residual in the 1 th element, 
then one indication of the accuracy of the solution is the 
mean-squared residual. 

112 
R:(u)(uAx, tx,)“-‘du 1 . 0 

Ferguson and Finlayson[4] have shown for some prob- 
lems that the point-wise error in the solution is bounded 
by the mean-squared residual. They applied the theorem 
to orthogonal collocation solutions, and the theorem holds 
provided R(x) is piecewise continuous, as it is in the 
method of orthogonal collocation on finite elements. 

For second-order finite difference calculations the same 
idea can be used. By taking any three adjacent grid points 
a quadratic polynomial can be defined to pass through the 
solution at the grid points. The quadratic polynomial then 
permits definition of the residual between the grid points 
in a manner which is consistent with the difference 
formula at the center grid point. Thus the mean-squared 
residual can be calculated for a finite difference solution, 
and an error bound thereby derived. 

Location of elements 

Douglas and DuPont [13] have studied a collocation 
method on finite elements for parabolic differential 
equations. They showed that the spatial discretization 
error was proportional to h’, where h = l/NE, when cubic 
functions were used in each element (N = 2) and the 
collocation points were the Gaussian quadrature points, 
u = 0.21132. . . , O-78867. . . . These are, of course, the 
collocation points for orthogonal collocation using N = 2 
(cubic polynomial). They also mention that the error is 
proportional to h* if the collocation points are distributed 
uniformly on the element. Thus the seemingly trivial 
change of using certain collocation points dramatically 
reduces the truncation error. These results apply to the 
global error in the solution, i.e. at any point in the domain, 
not just the collocation points. 

Since we want the residual to be small everywhere, DeBoor and Swartz[14] have proven a far more 
after a given calculation we can examine the residual reaching result. They consider higher degree polynomials, 
everywhere to determine where it is large and insert and use as collocation points in the element the zeroes of 
additional elements there. In this way as the number of Legendre polynomials (this is what is done in orthogonal 
elements is increased the solution should converge faster collocation). We specialize DeBoor and Swartz’s results 
than for a uniform spacing of the elements because the here for the case of a second order equation and let N be 
elements are placed where needed. This is done in the number of interior collocation points in each element 
Problem II below. There the criterion was based on the so that the degree of the polynomial on an element is 
residual integrated over each element. However, the Nt 1. DeBoor and Swartz prove that the global 
largest residual usually occurred at the end point of the truncation error is proportional to h N+2, where the global 
element (see Fig. 10 below) since a continuity condition is error is the error at any point in the domain. Their next 
imposed there rather than setting a residual to zero. Thus result is more important: the error in the function and its 
in other calculations it would probably suffice to calculate tirst derivative at the end of each element is proportional 
the residual at the end points of the element and use that to h? For N = 2 the global error agrees with Douglas and 
residual to determine the location of additional elements. DuPont and the global error converges with the same rate 
This is a more convenient method, since no interpolation as the error at an element end-point. For larger N we 

using Eq. (12) and no integrations are involved. The 
residual is evaluated as in Eq. (3) for j = 1 or N t 2. 

An alternative to this means for locating elements is a 
modification of the procedure developed by Pearson [ 121 
for finite difference calculations. After a calculation with a 
given grid placement, consider the set of concentrations at 
the end points of each element, 

{C(m)}={C(i)]i =(Ntl)m tl,m =l,..., NE-l}. 

The value of ]C(m) - C(m t l)( is compared to 

S* = 0.01 [max C(m) -min C(m)]. 
m m 

If IC(m)- C(m + 1)/>6*, additional elements are in- 
serted between x,,, and x,,, t Ax,,,. The number of elements 
inserted is [C(m)-C(m t l)]NP/S*, rounded to an 
integer value. Now let {x,,,} denote the new set of 
positions between the elements. The location of x,,, are 
smoothed (to avoid abrupt changes in Ax, in successive 
elements) by using the algorithm 

in turn, beginning with m = 1, 2,. . . , where {XL} are the 
final locations of positions between elements. 

Truncation error 
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obtain an improved truncation error in the function and its 
derivative at the element end-point. For N as low as 3,4 
and 5 we obtain 0(h6, h*, h”, etc.). The work of DeBoor 
and Swartz also proves the method converges since the 
error can be made as small as desired by adding more 
elements. The proofs apply to equations of the form 
D*y = f(y), so they are not strictly applicable to the 
problems solved below (for spherical geometry), but the 
numerical results confirm the predictions nevertheless. 
Douglas[lS] proves similar results for linear, time 
dependent problems. 

NUMERICALEXPERIENCE 

We apply the method of orthogonal collocation on finite 
elements to two problems, one for a small Thiele modulus 
which gives a smoothly varying, almost parabolic, 
solution and the other for a highly non-isothermal 
problem with a large Thiele modulus which leads to a 
boundary layer solution, with the solution varying from 
nearly zero at x = 0997 to its boundary value at x = 1.0. 

Problem I 
We solve Eqs. (l-2) with a = 3 (spherical domain), 

Bi, +m so that the boundary condition is c(1) = 1, and 
with 

f(c) = 9*c exp ty(l - l/T)1 

T=1+p-pc 

corresponding to an irreversible, first order, non- 
isothermal reaction in a spherical catalyst pellet. Parame- 
ter values are 4 = 0.5, y = 18, /3 = 0.3, which lead to a 
unique solution with effectiveness factor TJ = 1.086. The 
concentration profile is shown in Fig. 3, although the 
problem was actually solved in terms of the temperature 
variable. The initial guess for all iterations was T(x) = 1. 
This problem was solved using orthogonal collocation by 
Ferguson and Finlayson [4] because error bounds could be 
derived for it. The theorems proved by Ferguson and 

0.9960.9991.0 

Fig. 3. Concentration profiles in catalyst pellets. 0, Problem 1; 0, 

Finlayson give 

error in T(x) I 0.69 RS 

dT 
EF = error in z (1) 5 0.69 RS. 

The fact that the numerical values are the same is only 
coincidence. Thus we can solve the problem using any 
method, compute the mean-squared residual RS, and then 
calculate the maximum error in the solution, even though 
the exact solution is now known. 

The problem was solved using orthogonal collocation 
and double precision arithmetic on a CDC 6400 (thus 
retaining 30 digits in the calculations). Double precision 
was required to guarantee the numerical results truly 
represent the high accuracy of the method. The most 
important feature of the solution is the effectiveness 
factor, or flux at the catalyst boundary which is 
determined by d T/dx at x = 1. The error bounds for this 
quantity are shown in Fig. 4. The most accurate solution, 
for N = 8, is proved to have an error less than lo-l4 and 
gives at x = 1 the solution dT/dx = -0.02716089570333. 
Actually the solution for N = 6 and N = 8 were the same 
to at least 0( lo-“), the maximum number of digits printed 
out. If we use the solution for N = 8, proved accurate to 
10-14, as the exact solution, we can determine the actual 
error for N = 1 --, 5, which is plotted in Fig. 4. The error 
bound is very conservative, being up to 10” times larger 
than the actual error for very accurate solutions. The 
actual error approaches a straight line as N increases, 
showing that the error is proportional to (l/N)‘~‘? 
Ferguson and Finlayson[4] report the error as propor- 

N log N 

-I--+--- 

Fig. 4. Error in boundary flux for Problem I. 0, Orthogonal 
collocation; q , equi-spaced collocation; x, finite difference; _, 

actual error; --, error bound. Problem 11. 
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tional to (1/N)1’72N due to an incorrect choice of 
collocation points for a cylindrical instead of spherical 
domain. Figure 4 also illustrates the importance of the 
location of collocation points. If equi-distant collocation 
points are used the error is considerably larger, up to 10’ 
times as big for the most accurate solutions. All the 
collocation results show very rapid convergence in N, 
which is characteristic of the method. 

Also shown in Fig. 4 are finite difference results. The 
solution was found using central difference expressions 
for first and second derivatives, and incorporating false 
boundaries to achieve O(h*) truncation error at the 
boundaries. The iteration was similar to that illustrated in 
Eq. (9), except the matrix fi was tri-diagonal. Only single 
precision arithmetic was used on the CDC 6400 for these 
calculations. The error in the finite difference results goes 
as h’, but with extrapolation techniques [ 161 can be made 
O(h’) as shown in other figures. The rate of convergence 
of finite difference results is much slower than orthogonal 
collocation, so that a much larger N is needed in the finite 
difference methods. 

Results from orthogonal collocation on finite elements 
are shown in Fig. 5. Plotted here are the actual error in the 
temperature flux at the catalyst boundary versus the 
number of elements, NE. For Problem I each element has 
the same size. These calculations were done using single 
precision arithmetic, and round off errors begin to affect 
the results with N = 7 and 9. The residual as well as actual 
error begins to rise as N is increased above 5. Even for 
N = 5 round off error prevented getting solutions with 
large enough NE to obtain the slope of the curve. The 
truncation error results of DeBoor and Swartz show that 
the error EF should be proportional to h? For N = 2 the 

log NE 
0.4 0.6 0.8 

-6- 

IA? 

s 
-8- 

-lO- 

-12 

-14 

I -161 

I- 

Fig. 5. Error in boundary heat flux for Problem I as a function of 
the number of elements. Orthogonal collocation on finite 

elements: 0, N = 2; A, N = 3; 0, N = 5; finite difference x. 

slope of 4.05 agrees well with the theoretical slope of 4 
while for N = 3 the slope of 6.4 is close to 6. The finite 
difference results show the error going as O(h’), or with 
extrapolation as 0(/r’), but the curve is still above the 
corresponding result for orthogonal collocation on finite 
elements, N=2, which also gives 0(h4) error. This 
demonstrates the reduction in error by going from finite 
difference to orthogonal collocation on finite elements, 
while keeping the same grid spacing. In comparing the two 
methods the reader must keep in mind that the tolerance 
on the solution (to stop the iterations) was lo-’ for the 
finite difference results, requiring 7 iterations, and lo-‘* 
for orthogonal collocation on finite elements, requiring 13 
iterations. For collocation solutions no more accurate 
than lo-‘, the computation time is needlessly long to reach 
a tolerance of lo-‘*. 

Figure 6 plots the error in center temperature as it 
depends on the number of elements. Since the center 
(x = 0) is the end of one element, the error should be 
O(hZN), as is found. Using these values we can extrapolate 
the finite element results by applying 

where E, is the result when using NEi elements. Solution 
of these two equations gives b and E, the best estimate of 
the flux. Such an extrapolation can decrease the error by 
factors ranging from 30 to 100. 

W 

H 

log NE 

0.2 0.4 0.6 0.8 
’ 2 ‘6 ’ 6 ‘7 : 

-2- 

-4- 

-6- 

-8- 

-IO- 

-12- 

.14- 

-16- I L 

I;( 1 

Fig. 6. Error in center temperature, T(x = O), for Problem I as a 
function of the number of elements in orthogonal collocation on 
finite elements: 0, N = 2; A, N = 3, q , N = 5. Filled symbols 
obtained by extrapolation and NE refers to the largest NE used in 

the extrapolation. 
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Finally the error in flux versus the computation time 
(CPU) on the CDC 6400 is shown in Fig. 7. Provided the 
number of grid points is the same for all methods, the 
finite difference method is fastest, since computation 
involves solution of a tri-diagonal system. Orthogonal 
collocation on finite elements is more time consuming, 
because a block diagonal system must be solved. Finally, 
orthogonal collocation is the slowest (for the same N) 
since a dense matrix results, with nearly every element 
non-zero. Of course the accuracy as a function of N has 
the reverse behavior: orthogonal collocation is most 
accurate for the same N, etc. Consequently the real 
comparison of the methods depends on efficiency: 
accuracy achieved per computation time. We recall that 
the orthogonal collocation calculations used double 
precision arithmetic and the Newton-Raphson method 
(requiring 4 iterations to obtain the solution to full 
precision). The finite difference and orthogonal colloca- 
tion on finite element methods used an iterarive scheme, 
Eq. (8), that had to decompose the matrix M only once. 
For this class of problems and calculations to 7 significant 
digits, computation times are approximately 10 times 
larger if the Newton-Raphson method is used. Since the 
orthogonal collocation recognizes the symmetry in x = 0, 
only an even expansion is necessary. On the other hand, 
orthogonal collocation on finite elements uses a general 
polynomial approximant on each element. 

The most efficient solution, in terms of the smallest 
error for a given amount of computation, is the one found 
with orthogonal collocation, and the advantage over other 
methods increases as the allowed error decreases. For 
very high accuracy the orthogonal collocation method is 

CdMPUTATION TIME kpu)(secl 
0.1 0.2 
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Fig. 7. Error in boundary flux for Problem I as a function of 
computation time. 0, Orthogonal collocation; Orthogonal Collo- 
cation on finite elements: 6, N = 2; A, N = 3; 0, k = 5; 6lled 
symbols obtained by extrapolation, with CPU time being the total 
time; x, Finite difference; 0, extrapolated to. obtain Ax' 

truncation error. 

certainly preferred. The next best method is orthogonal 
collocation on finite elements with the highest N being 
preferred. The finite difference method is the least 
efficient, giving the largest error for a given computation 
time. The extrapolated finite difference results are slightly 
better than the unextrapolated results for orthogonal 
collocation on finite elements with N = 2 (cubic trial 
functions). If these latter results are extrapolated, too, 
then they regain their advantage. The improvement 
through extrapolation is not as dramatic for the higher 
order methods, and for N = 3 appears to give no 
advantage in efficiency at all. Compared to the extrapo- 
lated finite difference results, the orthogonal collocation 
method is about 2 times as fast at an accuracy of 0.3%, 2.9 
times at O-l%, and 3.5 times at 0.01%. Compared to the 
unextrapolated finite difference results, the orthogonal 
collocation method is 3.5, 5.5 and 11 times as fast for 
errors of 0.3,O.l and O*Ol%, respectively. Solutions with 
larger errors cannot be compared since the first approxi- 
mation by orthogonal collocation gives an accuracy of 
0.3%. 

In terms of the total number of grid points, for an 
accuracy of 0.3% the unextrapolated finite difference 
method needed 10 times as many interior grid points as 
the collocation method needed interior collocation points; 
at 0.1% the factor is 14 while at 0.01% it is 35. The 
corresponding numbers for the extrapolated finite differ- 
ence results are 3.5, 4 and 6. The method of orthogonal 
collocation on finite elements for N = 2 requires 4.5 times 
as many elements and 3 times as many total collocation 
points as for N = 3, for an accuracy of lo-’ in the error in 
flux. Clearly then the number of elements needed is 
reduced by going to higher degree polynomials, and the 
total number of collocation points (for a given accuracy) 
is reduced as well. Even fewer collocation points are 
needed in orthogonal collocation. Such a reduction in total 
number of grid points is particularly important in 
multi-dimensional calculations. These considerations may 
be valid for all problems with smooth solutions, but they 
are not valid when the solution exhibits a boundary layer 
structure. 

Problem II 
Consider the same type of problem-first-order irrever- 

sible, non-isothermal reaction in a spherical catalyst 
(a = 3)-but with more realistic boundary conditions and 
parameters. The Biot number for mass transfer (modified 
Sherwood number) is taken as 250 in Eq. (2) while the Biot 
number for heat transfer is taken as 5. A smaller, more 
realistic ,3 = 0.02 is taken, with y = 20, and 4 = 1444, 
which give a steep concentration gradient as shown in Fig. 
3. The complete q vs 4 curve for these parameters is in 
Fig. 4 of [3]. Here the reaction rate expression is 

f(c) = 4’~ exp [r(l - l/T)1 

with S = Bi,,,/Bi = 50. For this problem the iteration 
scheme, Eq. (8), did not converge due to the large 
Lipschitz constant so the Newton-Raphson method was 
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used. We used as the initial guess in all solutions the 
one-term orthogonal collocation solution derived using 
Paterson and Cresswell’s method [5] described in the 
introduction. The Newton-Raphson scheme also con- 
verged for the initial guess c(x) = 0. 

Error bounds cannot be derived for this solution due to 
the large reaction rate and the very large Lipschitz 
constant. We use as the exact solution the value 
of 77 corresponding to N = 5 and NE = 15, 77 = 
3G51065174126. The results for lower-degree polyno- 
mials converge to this answer to within lO-9 and the rate 
of convergence for N = 5 as NE is increased suggests 
that the NE = 15 answer should be the most precise. 

We did calculations only for orthogonal collocation on 
finite elements, to evaluate the capability of this technique 
for this type of boundary layer problem. The calculations 
proceeded as follows. The initial guess was found using 
Paterson and Cresswell’s method [5]. This gives the layer 
location at 0.997. For each degree of polynomial (N + I), 
the finite element calculations began with NE = 5, with 
the boundaries between elements at 0.5, 0.997, 0.998, 
0999. After this solution was obtained the residual was 
examined. Five new elements were added within those 
previous elements having the largest integrated residual. 
If the residual for one element was more than ten times as 
large as the next highest residual, two elements were 
added there, but only five new elements were added each 
time. This procedure resulted in a non-uniform distribu- 
tion of collocation points, but as NE increased the 
residual forced a more gradual transition in element sizes. 
This is shown in Fig. 8 for N = 3. The location of grid 
points was done manually by interaction with the 
computer for this pilot investigation, and prior to 
developing a strategy for automated mesh refinement. 
Each calculation started from the same initial guess, i.e. 
the solution for NE = 15 was not used to begin the 
calculations for NE = 20. If one is interested in solving 
the problem, rather than in displaying the features of the 
method, one would use the last solution as the first guess 
for the next value of NE to decrease the number of 
iterations, and hence the computation time. 

In Fig. 9 are plotted the error in 77 vs NE for 
polynomialS with N = 2, 3 and 5, respectively, in each 
element. Shown there is the combined effect of the 
truncation error, which depends on N, and the effect of 
the optimum location of the elements. Consider first the 
solid curves, which correspond to element location by the 
residual. For N = 2, the slope of the line is - 4.4, just 
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Fig. 8. Location of elements for Problem II, N = 3. X, end points 
of existing elements; ., new elements; calculation proceeds from 

top to bottom. 
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Fig. 9. Error in effectiveness factor as a function of the number of 
elements for Problem II. (0, N = 2; A, N = 3; Cl, N = 5; _, 
residual used to locate elements; ---, concentration solution used 

to locate elements). 

slightly larger than the - 4.0 for uniform distribution. Of 
course a uniform distribution of elements would require a 
much larger number of elements for the same accuracy. 
Indeed, 50 uniformly spaced elements gave errors larger 
than 0.1 for all N. For N = 3 the improvement due to the 
optimum location of elements is more dramatic, giving a 
slope of - 12 instead of the theoretical value of - 6 for 
uniform spacing. For N = 5 the slope is - 20 (admittedly 
based on only two points since the next point is used as 
the exact solution), compared to a theoretical value of 
- 10 for a uniform grid. Clearly the use of the residual to 
locate the element positions greatly improves the rate of 
convergence. The hump in the curve for N = 3 is caused 
by a placement of elements far from the boundary, but as 
NE increases the additional elements are placed near the 
boundary and the error decreases rapidly. 

When the solution is used to locate the elements, giving 
the dotted curves in Fig. 9, the error initially increases, 
because the element nearest x = I.0 is enlarged, but 
thereafter the error decreases. The error eventually stops 
decreasing, showing that adding more elements is not 
advantageous. Compared to the residual location of the 
elements, both schemes are feasible, but the residual 
location gives slightly better results, at the expense of 
increased computation time. 

The mean square residual also decreases as N increases 
for a fixed location of elements or as the number of 
elements increases for fixed N. Even though the mean 
square residual cannot be proved to be related to the 
pointwise error for this problem, it can serve as an 
indicator. For N = 2 the value of RS went from 1500 for 
NE = 5 to 2.7 for NE = 40. For N = 3 the corresponding 
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Although the method of orthogonal collocation on hnite 
elements is applied above to the one-dimensional effec- 
tiveness factor problem, it can also be applied to 
multi-dimensional and transient problems. The important 
feature is the efficient LU-decomposition of the block 
diagonal matrices, For transient effectiveness factor 
problems, or plug flow reactors, a Crank-Nicolson-type 
method leads to the same block diagonal structure 
provided one iterates on one variable at a time. Such 
applications are discussed elsewhere [ 171. 

Fig. 10. Pointwise residual in last element. CONCLUSION 

values were 1200 to 0.12, while for N = 5 they were 930 
for NE = $0.25 for NE = 10 and 0,010 for NE = 15. The 
value of the residual also suggests that the solution for 
NE = 15, N = 5 is the most accurate one. The residuals 
do not decrease as fast as the error, in agreement with Fig. 
4. The pointwise residual is plotted in Fig. 10. It goes to 
zero at the collocation points and decreases as NE 
increases. The irregularity for N = 7 is probably due to 
the influence of cancellation error in single precision 
computations. 

The method of orthogonal collocation on finite elements 
is outlined. An ED-decomposition is a convenient method 
to solve the problem which generates block diagonal 
matrices. The residual from a previous calculation can be 
used to locate additional elements to reduce the error. The 
truncation error of the function and first derivative at the 
element end points is O(k’“) where k = I/NE, NE is the 
number of elements and N + 1 is the degree of polynomial 
in each elemerjA 

Figure 11 gives a comparison of the error in effective- 
ness factor as it depends on computation time. At large 

Numerical studies on one typical problem indicate the 
method is efficient in generating an accurate solution in 
small amounts of computation time, and the efficiency 
increases as N increases. For one effectiveness factor 
problem, corresponding to a small Thiele modulus, the 
method of orthogonal collocation on finite elements is 
more efficient than a finite difference method and less 
efficient than orthogonal collocation, using one polyno- 
mial over the whole domain. For another effectiveness 
factor problem, with a boundary layer type of solution, 
the global orthogonal collocation method is unsatisfac- 
tory. Orthogonal collocation on finite elements is very 
suitable, yielding accurate answers, and the location of 
elements by examination of the residual improves the 
method by reducing the error in the solution. 
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Fig. Il. Error in effectiveness factor as a function of computation 
time for Problem II (Caption as in Fig. 9). The dotted portion of 
the N = 3 curve is based on an interpolation of computation for 12 
iterations (the number used by nearly all the other calculations). 
More iterations were actually used and the computations stopped 
at the iteration limit due to inappropriate choices of convergence 

criteria. 

errors any of the methods can be used with equal 
efficiency, whereas for small errors the highest N feasible 
should be used. 

Extension to partial differential equations 
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b Constant in extrapolation equation 
Bii Orthogonal collocation matrix representing second 

derivative 
Bi Biot number for heat transfer 

Bi,,, Biot number for mass transfer (modified Sherwood 

E 
d 
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EF 
Ei 
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Concentration 
Concentration vector at collocation points 
Coefficient in polynomial expansion 
Iteration tolerance on solution 
Error in flux at x = 1 
Error in i th calculation 

NOTATION 

1,2,3 for planar, cylindrical, and spherical geometry 
Orthogonal collocation matrix representing first 

derivative 
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