
gPROMS Introductory User Guide

Process Systems Enterprise Ltd.

Bridge Studios
107a Hammersmith Bridge Road

London W6 9DA
United Kingdom

Tel : +44 (0)20 8563 0888
Fax : +44 (0)20 8563 0999

Release 2.3.1— June 2004

c© 1997–2004 Process Systems Enterprise Limited.

ModelEnterprise and gPROMS are trademarks of Process Systems Enter-
prise Limited. All other registered and pending trademarks mentioned in
this material are considered the sole property of their respective owners. All
rights reserved.
No part of this material may be copied, distributed, published, retransmit-
ted or modified in any way without the prior written consent of Process
Systems Enterprise Limited. This document is the property of Process Sys-
tems Enterprise Ltd., and must not be reproduced in any manner without
prior written permission.

Disclaimer

gPROMS provides an environment for modelling the behaviour of complex sys-
tems. While gPROMS provides valuable insights into the behaviour of the system
being modelled, this is not a substitute for understanding the real system and
any dangers that it may present. Except as otherwise provided, all warranties,
representations, terms and conditions express and implied (including implied war-
ranties of satisfactory quality and fitness for a particular purpose) are expressly
excluded to the fullest extent permitted by law. gPROMS provides a framework
for applications which may be used for supervising a process control system and
initiating operations automatically. gPROMS is not intended for environments
which require fail-safe characteristics from the supervisor system. Process Sys-
tems Enterprise Limited (”PSE”) specifically disclaims any express or implied
warranty of fitness for environments requiring a fail-safe supervisor. Nothing in
this disclaimer shall limit PSE’s liability for death or personal injury caused by
its negligence.

The license management portion of this product is based on:
SentinelLM c©1996–1997 Rainbow Technologies, Inc.

All rights reserved.

FLEXlm c©2001 GLOBEtrotter Software, Inc. A Macrovision Company.
All rights reserved.

SentinelLM is a trademark of Rainbow Technologies, Inc.

FLEXlm is a trademark of GLOBEtrotter Software, Inc.

Code from LAPACK and BLAS is used in gPROMS.
We would like to thank the authors

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. Sorensen
for making the code publicly available.

The gPROMS Model Builder interface uses the following packages:
ANTLR (http://www.antlr.org).

Xerces and Xalan (http://xml.apache.org/) from the Apache XML Project.

Components from NetBeans (http://www.netbeans.org).

To support the multiple shooting implementation for
dynamic optimisation, gPROMS makes use of HQP, a solver

for non-linearly constrained, large-scale optimization problems.

HQP is free software. The programs and libraries in HQP are
distributed under the GNU Lesser General Public License (LGPL)
as published by the Free Software Foundation. The source code

for HQP is available at http://www.sourceforge.net/projects/hqp.

We would like to thank HQP’s author, Ruediger Franke of ABB, for
his help in developing the interface from gPROMS to HQP.

To support Mixed Integer Optimisation, gPROMS makes use of a server
which uses GLPK (http://www.gnu.org/software/glpk/glpk.html),

the GNU Linear Programming Kit. The source code for the server,
including the GLPK, is included in the gPROMS distribution,
under the terms of the GNU General Public License (GPL).

To support the Distributed Computing facility,
gPROMS makes use of omniORB2, an Object Request Broker (ORB)
which implements specification 2.3 of the Common Object Request

Broker Architecture (CORBA).

omniORB2 is copyright AT&T Laboratories, Cambridge.
It is free software. The programs in omniORB2 are distributed

under the GNU General Public Licence as published by
the Free Software Foundation. The libraries in omniORB2 are
distributed under the GNU Library General Public Licence.

gPROMS Introductory User Guide

Contents

1 Introduction 11

1.1 What is gPROMS? . 12

1.2 gPROMS advantages . 12

1.2.1 Clear, concise language . 12

1.2.2 Modelling power . 12

1.2.3 Modelling of process discontinuities 13

1.2.4 Modelling of operating procedures 13

1.2.5 Hierarchical modelling structure 14

1.2.6 Dynamic optimisation . 14

1.2.7 Parameter estimation . 14

1.2.8 Project management . 15

1.2.9 Open architecture . 15

1.3 Outline of this User Guide . 16

2 An Overview of gPROMS 17

2.1 Starting gPROMS . 19

2.1.1 Using gPROMS on MS Windows platforms 19

2.1.2 Using gPROMS on Unix platforms 19

2.2 Developing a simple gPROMS model . 22

2.2.1 Introduction . 22

2.2.2 New gPROMS Project . 23

2.2.3 Describing physical behaviour - MODELs 26

4

gPROMS Introductory User Guide

2.2.4 Declaring variable types . 32

2.2.5 Describing simulation activities - PROCESSes 35

2.2.6 Syntax checking . 40

2.3 Running a gPROMS simulation activity 42

2.3.1 Cases . 42

2.3.2 Executing a simulation . 42

2.3.3 Execution diagnostics . 43

2.4 Displaying gPROMS output . 48

2.4.1 On MS Windows workstations 48

2.4.2 On UNIX workstations . 51

3 Arrays and Intrinsic Functions 53

3.1 Declaring arrays of parameters and variables in MODELs 55

3.1.1 Arrays of parameters . 55

3.1.2 Arrays of variables . 56

3.1.3 Rules for array declarations . 56

3.2 Using arrays of parameters and variables in expressions 58

3.2.1 General rules for referring to gPROMS arrays 58

3.2.2 Array expressions . 58

3.3 Using arrays in equations . 61

3.3.1 Array equations . 61

3.3.2 The FOR construct . 62

3.4 Intrinsic gPROMS functions . 63

3.4.1 Vector intrinsic functions . 63

3.4.2 Scalar intrinsic functions . 64

4 Conditional Equations 67

4.1 State-Transition Networks . 69

4.2 The CASE conditional construct . 74

4.2.1 An example of the use of CASE construct 74

Contents 5

gPROMS Introductory User Guide

4.2.2 General considerations in the use of CASE constructs 75

4.2.3 Initial values of SELECTOR variables 76

4.3 The IF conditional construct . 77

5 Distributed Models 79

5.1 Declaring DISTRIBUTION DOMAINs . 81

5.2 Declaring distributed VARIABLEs . 83

5.3 Defining distributed EQUATIONs . 85

5.3.1 Distributed expressions . 85

5.3.2 The PARTIAL operator . 87

5.3.3 The INTEGRAL operator . 88

5.3.4 Explicit and implicit definition of distributed equations 90

5.3.5 BOUNDARY Conditions . 91

5.4 Specifying discretisation methods for distribution domains 93

6 Composite Models 95

6.1 Hierarchical sub-model decomposition 97

6.2 Declaring higher-level MODELs . 99

6.2.1 Instances of lower-level models: the UNIT concept 99

6.2.2 Arrays of UNITs . 100

6.2.3 The WITHIN construct . 101

6.3 Specifying connections as EQUATIONs . 104

6.4 Specifying connections using STREAMs . 107

6.4.1 The STREAM concept . 107

6.4.2 Stream type declarations . 108

6.4.3 Connecting models via STREAMs 108

6.5 Parameter value propagation . 112

6.5.1 Explicit parameter assignment 112

6.5.2 Automatic parameter propagation 113

7 Simple Operating Procedures 115

Contents 6

gPROMS Introductory User Guide

7.1 Elementary tasks . 117

7.1.1 The RESET elementary task . 117

7.1.2 The SWITCH elementary task . 118

7.1.3 The REPLACE elementary task . 119

7.1.4 The REINITIAL elementary task 119

7.1.5 The CONTINUE elementary task 120

7.2 Specifying the relative timing of multiple tasks 123

7.2.1 Sequential execution—SEQUENCE 123

7.2.2 Concurrent execution—PARALLEL 123

7.2.3 Conditional execution—IF . 124

7.2.4 Iterative execution—WHILE . 124

7.3 More elementary tasks . 130

7.3.1 The STOP and MESSAGE elementary tasks 130

7.3.2 The MONITOR elementary task . 130

7.3.3 The RESETRESULTS elementary task 132

7.3.4 The SAVE and RESTORE elementary tasks 132

8 Complex Operating Procedures 135

8.1 TASKs . 136

8.1.1 The VARIABLE and SCHEDULE sections 136

8.1.2 The PARAMETER section . 138

8.2 Hierarchical sub-task decomposition . 142

9 Stochastic Simulation in gPROMS 145

9.1 Assigning random numbers to PARAMETERs and VARIABLEs 147

9.2 Plotting results of multiple stochastic simulations 149

9.2.1 Combining multiple simulations 149

9.2.2 Plotting probability density functions 150

9.3 Example . 155

10 Controlling the Execution of Model-based Activities 165

Contents 7

gPROMS Introductory User Guide

10.1 The PRESET section . 167

10.2 The SOLUTIONPARAMETERS section . 169

10.2.1 Controlling result generation and destination 169

10.2.2 Choosing mathematical solvers for model-based activities 170

10.2.3 Configuring the mathematical solvers 171

10.2.4 Specifying solver-type algorithmic parameters 172

10.2.5 Specifying default linear and nonlinear equation solvers 174

10.3 Standard solvers for linear algebraic equations 176

10.3.1 The MA28 solver . 176

10.3.2 The MA48 solver . 177

10.4 Standard solvers for nonlinear algebraic equations 179

10.4.1 The BDNLSOL solver . 179

10.4.2 The NLSOL solver . 181

10.4.3 The SPARSE solver . 184

10.5 Standard solvers for differential-algebraic equations 188

10.5.1 The DASOLV solver . 189

10.5.2 The SRADAU solver . 192

10.6 Standard solvers for optimisation . 195

10.6.1 The CVP SS solver . 197

10.6.2 The OAERAP solver . 197

10.6.3 The SRQPD solver . 199

10.6.4 The CVP MS solver . 202

10.7 Standard solvers for parameter estimation 206

10.7.1 The MXLKHD solver . 206

A Model Analysis and Diagnosis 209

A.1 Introduction . 210

A.2 Well-posed models and degrees-of-freedom 211

A.2.1 Case I: over-specified systems . 211

A.2.2 Case II: under-specified systems 212

Contents 8

gPROMS Introductory User Guide

A.3 High-index DAE systems . 215

A.4 Inconsistent initial conditions . 218

B gRMS Output Channel 221

B.1 gRMS processes . 223

B.2 Plotting 2D graphs . 224

B.2.1 Adding lines to a plot . 224

B.2.2 Formatting lines . 225

B.2.3 Formatting 2D plots . 226

B.3 Plotting 3D graphs . 232

B.3.1 Adding a surface to a plot . 232

B.3.2 Formatting surfaces . 232

B.3.3 Formatting 3D plots . 232

B.4 Printing gRMS plots . 234

B.5 Viewing and exporting data . 236

B.5.1 2D plots . 236

B.5.2 3D plots . 236

B.6 Exporting images . 237

B.7 Templates . 238

B.7.1 Line templates . 238

B.7.2 Plot templates . 238

B.8 Advanced use of gRMS . 243

B.8.1 Preventing gRMS from starting automatically with gPROMS . . 243

B.8.2 Starting gRMS independently from gPROMS 243

B.8.3 Running gPROMS and gRMS on different machines 243

B.8.4 Multiple gPROMS runs communicating with a single gRMS . . . 244

B.8.5 gRMS resources under UNIX . 244

C Microsoft Excel Output Channel 248

C.1 Introduction . 249

Contents 9

gPROMS Introductory User Guide

C.2 Enabling the Microsoft Excel Output Channel 250

C.3 Format of the Microsoft Excel output 251

C.4 Using the graph generation macro . 252

D gPLOT Output Channel 253

Contents 10

gPROMS Introductory User Guide

Chapter 1

Introduction

Contents

1.1 What is gPROMS? . 12

1.2 gPROMS advantages . 12

1.2.1 Clear, concise language . 12

1.2.2 Modelling power . 12

1.2.3 Modelling of process discontinuities 13

1.2.4 Modelling of operating procedures 13

1.2.5 Hierarchical modelling structure 14

1.2.6 Dynamic optimisation . 14

1.2.7 Parameter estimation . 14

1.2.8 Project management . 15

1.2.9 Open architecture . 15

1.3 Outline of this User Guide . 16

11

gPROMS Introductory User Guide

1.1 What is gPROMS?

gPROMS is a general PROcess Modelling System with proven capabilities for the
simulation, optimisation and parameter estimation (both steady-state and dynamic) of
highly complex processes.

1.2 gPROMS advantages

1.2.1 Clear, concise language

gPROMS allows the user to write equations almost as they would appear on paper.
The clear, concise language allows the user to concentrate on getting the modelling
equations correct while not having to be concerned with the complexity of the solution
techniques. In addition, users can easily document comments in a manner that allows
models to be passed on to other users transparently, and enables complex models to be
quality assured.

1.2.2 Modelling power

gPROMS offers unparalleled modelling power for users. All solvers have been designed
specifically for large-scale systems and there are no limits regarding problem size other
than those imposed by the available machine memory. Dynamic simulations of models
with over 100 000 differential-algebraic equations have been performed.

The generality of gPROMS means that it has been used for a wide variety of appli-
cations in petrochemicals, food, pharmaceuticals, speciality chemicals and automation.
Furthermore, it has the potential to be used for any process that can be described by a
mathematical model.

gPROMS is supplied with libraries of common process models that can be freely ex-
tended and customised to ensure applicability to customer’s exact requirements.

gPROMS was the first general modelling system to allow the direct mathematical de-
scription of distributed unit operations where properties vary in one or more spatial
dimensions. This frees the engineer from trying to construct crude approximations of
such operations as series of well-mixed volumes and from being involved in complex
mathematical manipulations of the process model. Since gPROMS has had these fa-
cilities for solving systems of integral, partial and ordinary differential and algebraic
equations for many years, it has a long, proven track record in the simulation and
optimisation of complex industrial processes including packed absorption/adsorption
columns, chromatographic and membrane separators. Moreover, gPROMS has also
been used to directly model solid-phase operations involving particle size distributions
or distributions with respect to other properties such as molecular weight (e.g. batch and
continuous crystallisation processes, grinding operations and polymerisation processes).

1.1. What is gPROMS? 12

gPROMS Introductory User Guide

Finally, because gPROMS represents processes as sets of equations that can be solved in
a number of modes – steady state simulation, dynamic simulation, steady-state optimi-
sation, dynamic optimisation, steady-state parameter estimation, dynamic parameter
estimation – it allows a single underlying model of a process to be evolved from concept
to engineering design and operation. This minimises re-work and gives the possibility
of multiple payback from the initial modelling effort.

1.2.3 Modelling of process discontinuities

The physical and chemical behaviour of most processes is inherently discontinuous.
Changes take place abruptly and frequently due to phase transitions, flow regime transi-
tions, geometrical limitations, and so on. gPROMS is unique amongst commercial simu-
lators in its facilities for describing processes with discontinuities. Reversible-symmetric,
reversible-asymmetric, and irreversible discontinuities can all be routinely handled. This
has significant consequences for solution robustness and speed, and allows the simple
handling of situations that often present a considerable obstacle to solution in other
simulators. The algorithms within gPROMS were developed through years of high-
level mathematical research, and automatically detect discontinuities, lock on to them,
and then re-initialise rapidly.

1.2.4 Modelling of operating procedures

The detailed modelling of the operating procedures of a process is as important as de-
scribing the physics and chemistry of the various unit operations in it. From conception,
gPROMS was designed to view processes as a combination of equipment models and
their operating procedures, rather than the narrow view of first-generation simulation
tools. gPROMS adopts a dual description for processes in terms of MODELs (which de-
scribe the physical, chemical and biological behaviour of the process) and TASKs (which
operate on MODELs and describe the operating procedure that is used to run the process).
The gPROMS TASK language is general and flexible and allows the description of highly
complex operating procedures, each comprising a number of steps to be executed in
sequence, in parallel, conditionally or iteratively.

This capability is of crucial importance when dealing with batch processes, where the
description of the physical and chemical operations is only half the story (usually the
less interesting half!); the other half being the description of the operating policy that
is used to run the plant.

It is also extremely helpful for continuous processes that often exhibit transient be-
haviour either due to a transition between different operating points (e.g. grade transi-
tions in polymerisation reactors) or due to abnormal conditions (e.g. equipment failures
in safety studies).

gPROMS offers a major expansion in the scope of processes that can be modelled and
optimised. These include integrated batch/semi-continuous plants, chromatographic

1.2. gPROMS advantages 13

gPROMS Introductory User Guide

processes, and periodic separation and reaction/separation processes.

The TASK language also allows the automatic generation of state-space models from
nonlinear dynamic models in gPROMS, which is useful, for example, in control design
applications.

1.2.5 Hierarchical modelling structure

gPROMS has an “object-oriented” approach to modelling that applies to both process
models and operating procedures. In this way, a user can easily construct models of
complex flowsheets and procedures by decomposing them into sub-models that call on
other sub-models and can even inherit values of parameters. There is no limit on the
number of levels in this modelling hierarchy.

1.2.6 Dynamic optimisation

Rigourous optimisation of equipment design, operating procedures, and so on, is the
single most important benefit of using process modelling. In tools other than gPROMS
this is commonly achieved by the user tweaking parameters and doing numerous, trial-
and-error simulations while checking that process constraints are satisfied and measuring
some performance measure. With this kind of ad hoc approach, there is no guarantee
that a user will find any solution that satisfies all the constraints while the probability
that he/she will find a mathematically optimal solution is virtually nil.

gPROMS was the first modelling system to have formal, mathematical algorithms for
automatically optimising large-scale, dynamic processes (both lumped and distributed).
As with its ability to model distributed systems, gPROMS has had this pioneering
technology for at least five years longer than competitors and so has a proven track
record with the most difficult of industrial problems.

gPROMS optimisation capabilities include taking into account integer or discrete deci-
sions using Mixed Integer Optimisation (MIO). MIO can be applied to both steady-state
and dynamic gPROMS models. These may also involve discontinuous equations such
as those described by gPROMS IF and CASE equations.

Systems involving 40 000 time-varying quantities have been successfully optimised to
date. Examples include optimal start-up and shut-down procedures; optimal design and
operation of multi-phase batch/semi-batch reactors; optimal grade switching policies for
continuous polymerisation reactors; optimal tuning of PID controllers; and nonlinear
model predictive control.

1.2.7 Parameter estimation

In another industry first, gPROMS was the first general process modelling system with
facilities for estimating model parameters through optimisation from both steady-state

1.2. gPROMS advantages 14

gPROMS Introductory User Guide

and dynamic experimental data. Parameter estimation is a key tool for model validation
and gPROMS has been used for many years for this purpose in a broad variety of
industrial applications.

gPROMS has a number of advanced features including the ability to estimate an un-
limited number of parameters and to use data from multiple steady-state and dynamic
experiments. It also gives the user complete flexibility in that they can specify differ-
ent variance models for different variables in different experiments. Moreover, it has a
built-in interface to MS Excel that allows the user to automatically test the statistical
significance of results, generate plots overlaying model data and experimental data, plot
confidence ellipsoids, and so on. With this enhanced statistical analysis, gPROMS has
a marked technical edge over competitor products.

1.2.8 Project management

The gPROMS ModelBuilder makes it easy for users to construct and manage “projects”
involving multiple process models, models of operating procedures, numerical simulation
experiments, optimisation information, experimental data and parameter estimation
files.

1.2.9 Open architecture

gPROMS has an unrivalled open software architecture that allows users to easily in-
corporate third-party software components within gPROMS and incorporate gPROMS
within third-party applications. Five different categories of interface are currently sup-
ported, each via a formally defined and well-tested communication protocol:

• The Foreign Object Interface (FOI). This allows part of the model to be described
by external software such as physical properties packages, legacy code for unit
operations etc., and CFD tools.

• The Foreign Process Interface (FPI). This allows executing gPROMS simulations
to exchange information with external software such as real-time control systems,
operator training packages and tailored front-ends for non- expert users.

• The Output Channel Interface (OCI). This allows external software to capture
and manipulate all results produced by gPROMS simulations. A good example
of this is the built-in interface that gives the user freedom to send and receive
data from a gPROMS model to and from MS Excel without having to write any
macros.

• The Open Solver Interface (OSI). This allows external mathematical solvers to be
interfaced to gPROMS.

1.2. gPROMS advantages 15

gPROMS Introductory User Guide

All of the above software components may reside and be executed on a different machine
(potentially of a different type and/or operating system) to that on which gPROMS is
executed. All communication is handled in a manner that is completely transparent to
the user via the gNET facility.

Finally, gPROMS is available on a wide range of platforms (including DIGITAL UNIX,
AIX, IRIX, Solaris, Linux and Windows NT/2000/XP). This allows users to upgrade
and change their hardware and operating systems without having to worry about
gPROMS compatibility.

1.3 Outline of this User Guide

This Introductory User Guide is designed to equip new users with all they need to
know about how to write models in gPROMS, run simulations and use gPROMS to
communicate with packages such as MS Excel, for which interfaces already exist. The
use of gPROMS for optimisation and parameter estimation is described in the gPROMS
Advanced User Guide which also provides details on how to use gPROMS with other
packages such as physical property packages.

Chapter 2 gives an introduction to the gPROMS language and the gPROMS Model-
Builder environment by guiding the user through a simple tutorial example. It also
explains how to run gPROMS and how to display graphical output.

Chapters 3 to 5 then discuss various features of gPROMS syntax. Chapter 3 deals with
arrays and built-in mathematical functions; Chapter 4 details how to model physical
discontinuities; while Chapter 5 explains how to set up models of integral, partial and
ordinary differential and algebraic equations in gPROMS.

Chapter 6 describes how complex models and flowsheets can be conveniently constructed
in gPROMS using a hierarchical modelling approach.

Chapters 7 and 8 discuss how to model simple and complex operating procedures in
gPROMS, respectively, again making use of the concept of hierarchical modelling.

Chapter 9 describes how to use gPROMS for conducting stochastic simulations.

Chapter 10 explains how you can control various aspects of model- based activities
carried out in gPROMS. This includes not only the simulation activities described in
this document, but also the optimisation and parameter estimation activities described
in chapters 2 and 3 respectively of the gPROMS Advanced User Guide.

Finally, the Appendices describe the model diagnostic facilities of gPROMS and give
more information on the various modes of generating and displaying results in gPROMS.

1.3. Outline of this User Guide 16

gPROMS Introductory User Guide

Chapter 2

An Overview of gPROMS

Contents

2.1 Starting gPROMS . 19

2.1.1 Using gPROMS on MS Windows platforms 19

2.1.2 Using gPROMS on Unix platforms 19

2.2 Developing a simple gPROMS model 22

2.2.1 Introduction . 22

2.2.2 New gPROMS Project . 23

2.2.3 Describing physical behaviour - MODELs 26

2.2.4 Declaring variable types . 32

2.2.5 Describing simulation activities - PROCESSes 35

2.2.6 Syntax checking . 40

2.3 Running a gPROMS simulation activity 42

2.3.1 Cases . 42

2.3.2 Executing a simulation . 42

2.3.3 Execution diagnostics . 43

2.4 Displaying gPROMS output 48

2.4.1 On MS Windows workstations 48

2.4.2 On UNIX workstations . 51

17

gPROMS Introductory User Guide

This chapter provides an overview of the main features of gPROMS.

We go through a tutorial that examines the process of modelling and performing a
dynamic simulation of a very simple unit operation. Our aim in the tutorial is to
introduce the reader to the gPROMS ModelBuilder environment and the basic ideas
behind the gPROMS language.

The detailed description of more advanced features of the language (e.g. the use of
arrays, structured and conditional equations, etc.) is postponed until later chapters.
A more comprehensive introduction to the gPROMS ModelBuilder environment is also
given later in this guide.

18

gPROMS Introductory User Guide

2.1 Starting gPROMS

2.1.1 Using gPROMS on MS Windows platforms

In order to create new models, run existing ones, and so on, the user must enter
the gPROMS ModelBuilder environment. In Windows this is usually done from the
Start menu: left click on the Start menu and select Programs, then Process Systems

Enterprise and, finally, gPROMS (figure 2.1)1

This will automatically launch the user interface, as shown in figure 2.2. Starting
gPROMS ModelBuilder will also start the gRMS application. gRMS stands for gPROMS
Results Management System and is discussed in section 2.4.1 when we will look at plot-
ting simulation results.

2.1.2 Using gPROMS on Unix platforms

This section describes how to set up your account to use gPROMS on computer systems
running under the UNIX operating system. Platforms that are currently supported
include Linux, SUN Solaris, DIGITAL UNIX, IBM AIX and SGI IRIX.

2.1.2.1 Setting up your account to use gPROMS

Before you can run gPROMS for the first time, you need to set up your account appro-
priately as described below. This procedure needs to be executed once only.

(a) If you are using the UNIX C Shell, then execute instruction (a1). If you are using
the UNIX Bourne Shell or Korn Shell, then execute instruction (a2).

(a1) UNIX C Shell

Modify your .cshrc file2 to include in your “path”3 the directory in which
gPROMS has been installed in your computer system.

For instance, if your system administrator has installed gPROMS in the
default directory, /usr/local/pse/gPROMS/bin, add the following lines at
the end of your .cshrc file:

setenv GPROMSHOME /usr/local/pse/gPROMS

if (-d $GPROMSHOME/bin && -x $GPROMSHOME/bin) then

set path=($path $GPROMSHOME/bin)

endif

1Alternately, gPROMS can be started by typing gPROMS at a command prompt
2This normally resides in the home directory of your account.
3This is the set of system and other directories that UNIX automatically searches on your behalf

when looking for a particular item of software – in this case, gPROMS.

2.1. Starting gPROMS 19

gPROMS Introductory User Guide

Figure 2.1: Starting gPROMS from the Start menu.

Figure 2.2: The gPROMS ModelBuilder interface.

2.1. Starting gPROMS 20

gPROMS Introductory User Guide

(a2) UNIX Bourne Shell or Korn Shell

Modify your .profile file4 to include in your “path” the directory in which
gPROMS has been installed in your computer system.

For instance, if your system administrator has installed gPROMS in the
default directory, /usr/local/pse/gPROMS/bin, add the following lines at
the end of your .profile file:

GPROMSHOME=/usr/local/pse/gPROMS

if test -d $GPROMSHOME/bin; then

PATH=${PATH}:${GPROMSHOME}/bin

fi

export GPROMSHOME PATH

This step may be unnecessary if gPROMS has been installed in a directory which
is already in your path.

(b) Ensure that any changes made at step (a) above become effective by logging out
of your account and logging in again.

2.1.2.2 Entering the gPROMS environment

In order to enter the gPROMS environment5, simply type:

gPROMS

If gPROMS is properly installed, the system will respond by bringing up the Model-
Builder interface, similar to that shown in figure 2.2. The gRMS (“gPROMS Results
Management System”) application should also be started (if not already open) - this is
discussed further in section 2.4.2.

4This normally resides in the home directory of your account.
5If you intend to run gPROMS on a remote UNIX workstation:

• from the workstation you are working on, type xhost +yyyyyy, where yyyyyy is the name of the
remote workstation; then

• log into the remote machine and issue the command setenv DISPLAY xxxxxx:0.0 where xxxxxx

is the name of the workstation on which you are currently working.

Note that you can obtain the name of a workstation by typing hostname.

2.1. Starting gPROMS 21

gPROMS Introductory User Guide

2.2 Developing a simple gPROMS model

2.2.1 Introduction

So far, we have described how to set up your account and how to enter the gPROMS
ModelBuilder environment on both UNIX and MS Windows workstations. We will now
look at how to create a dynamic model and run a simulation of a simple unit operation
using gPROMS.

The example system is a simple buffer tank with gravity-driven outflow (figure 2.3). It
is a good choice for illustrating the main features of the gPROMS language because
it comprises only one simple unit operation, for which a primitive model can be con-
structed. Primitive models are mathematical models that are completely specified in
terms of explicitly declared variables and equations. They usually correspond to simple
unit operations or parts thereof. As will be seen in later chapters, they form the building
blocks for the construction of higher-level, composite models of complex unit operations
or entire process flowsheets.

M F

F

out

in

Figure 2.3: Buffer tank with gravity-driven outflow.

The dynamic mathematical model of the buffer tank process takes the following form:

Mass balance
dM

dt
= Fin − Fout (2.1)

Relation between liquid level and holdup

ρAh = M (2.2)

Characterisation of the output flowrate

Fout = α
√

h (2.3)

2.2. Developing a simple gPROMS model 22

gPROMS Introductory User Guide

Here, M and h are the mass and level of liquid in the tank, and Fin and Fout are the inlet
and outlet flowrates respectively. ρ, A and α denote the density of the liquid material,
the cross-sectional area of the tank and the outlet valve constant, respectively. For the
purposes of this example, these last three quantities are assumed to be known constants.

2.2.2 New gPROMS Project

The first step that needs to be taken when modelling a new process is to create a new
gPROMS “Project”. This is achieved by left clicking on the Project menu on the task
bar of the gPROMS user interface, then left clicking on New, as shown in figure 2.4. This
will bring up a tree in the left-hand pane containing a number of entries (see figure 2.5):

• Variable Types

• Stream Types

• Models

• Tasks

• Processes

• Optimisations

• Estimations

• Experiments

• Saved Variable Sets

• Miscellaneous Files

Each of these entries represents a group of gPROMS Entities. We will learn more about
these in subsequent sections. In the meantime, you can rename the Project from its
default of “gPROMS Project 1” to a name of your choice by left-clicking on Project,
then Save As... and then altering the name in File Name (see figures 2.6a, b, c and
d). In the example shown, the Project is saved as “Tank.gPJ”.

Note that two new menus, Entity and Activities, appeared when you created the
Project. These two will only ever be visible when a Project is selected in the tree.

2.2. Developing a simple gPROMS model 23

gPROMS Introductory User Guide

Figure 2.4: Creating a new gPROMS Project.

Figure 2.5: A gPROMS Project tree.

2.2. Developing a simple gPROMS model 24

gPROMS Introductory User Guide

(a) (b)

(c) (d)

Figure 2.6: Renaming a gPROMS Project.

2.2. Developing a simple gPROMS model 25

gPROMS Introductory User Guide

2.2.3 Describing physical behaviour - MODELs

The first type of gPROMS Entity that we will look at is MODEL. This appears as the
third entry down in the gPROMS Project tree shown in figure 2.5.

In gPROMS, the declaration of primitive process models is done via MODELs. A gPROMS
Project should contain at least one MODEL. A MODEL contains a mathematical description
of the physical behaviour of a given system. It comprises a number of sections, each
containing a different type of information regarding the system being modelled.

In order to create a new MODEL:

1. Go to the Entity menu, which is the fourth menu from the left on the top pane,
and left-click on New Entity... (figure 2.7a). This will cause a dialog box to
appear.

2. Pull down the Entity Type menu and choose MODEL.

3. Fill in the Name field with a name of your choice (e.g. BufferTank) (see figure 2.7b
and c).

4. At this point the user has an option of including a gPROMS language template
by checking the “Use template” box. This template provides help on gPROMS
syntax. A brief description for the MODEL can also be added at this point.

5. When finished click OK (see figure 2.7b and c).

This will bring up an Entity editor window which has the name of the Project followed
by the name of the MODEL at the top left corner. Since a MODEL Entity has now been
created, the Project tree in the left-hand pane now shows a “key” symbol next to MODELs
(see figure 2.7d).

Steps 1 and 2 above can be combined in a short-cut method by right clicking on the
MODELs symbol in the left-hand pane and selecting New Entity.... This is shown in
figure 2.8. In fact, this alternative can be used for all types of Entity.

The MODEL Entity editor window has two “tabs”: a gPROMS language tab and a Prop-
erties tab. Further information on Entity editors can be found by reference to the
ModelBuilder User Guide.

2.2.3.1 The Properties tab

All Entity editors in gPROMS ModelBuilder have an Entity Properties tab.

The “Properties tab” shows the current description of the Entity - this is an arbitrary
text provided by the Entity developer(s) for future reference. It also contains various
read-only information that is maintained automatically by the ModelBuilder, such as
Entity creation and last modification information, including the user who performed
these actions, and their times and dates. This is shown in figure 2.9.

2.2. Developing a simple gPROMS model 26

gPROMS Introductory User Guide

(a) (b)

(c) (d)

Figure 2.7: Creating a new model

2.2.3.2 The gPROMS language tab

Almost all Entity editors in gPROMS ModelBuilder have a tab that displays and allows
the editing of the representation of the Entity in the gPROMS language. To support the
creation and modification of each Entity, ModelBuilder automatically employs syntax-
sensitive highlighting of the gPROMS language.

The MODEL that describes the buffer tank process is shown in figure 2.10. We suggest
that you type this MODEL in yourself before we go on to explain the various sections. As
you do so, notice how the bottom left-hand corner of the text editor gives you the line
number and column in the format line number:column.

The minimal information that needs to be specified in any MODEL is the following:

2.2. Developing a simple gPROMS model 27

gPROMS Introductory User Guide

Figure 2.8: An alternative way of creating a new MODEL

Figure 2.9: Entity Properties

2.2. Developing a simple gPROMS model 28

gPROMS Introductory User Guide

Figure 2.10: Buffer tank Model

• A set of constant parameters that characterise the system. These correspond
to quantities that will never be calculated by any simulation or other type of
calculation making use of this MODEL. Therefore, their values must always be
specified before the simulation begins and remain unchanged thereafter. They are
declared in the PARAMETER section.

• A set of variables that describe the time-dependent behaviour of the system. These
may be specified in later sections or left to be calculated by the simulation. They
are declared in the VARIABLE section.

• A set of equations involving the declared variables and parameters. These are used
to determine the time-dependent behaviour of the system. They are declared in
the EQUATION section.

2.2. Developing a simple gPROMS model 29

gPROMS Introductory User Guide

Overall, the structure of a simple MODEL declaration in the gPROMS language is the
following6:

PARAMETER

... Parameter declarations ...

VARIABLE

... Variable declarations ...

EQUATION

... Equation declarations ...

The next three sections take a more detailed look at the PARAMETER, VARIABLE and
EQUATION sections.

2.2.3.3 The PARAMETER section

The PARAMETER section is used to declare the parameters of a MODEL. As mentioned be-
fore, parameters are time-invariant quantities that will not, under any circumstances, be
the result of a calculation. Quantities such as physical constants (π, R, etc.), Arrhenius
coefficients and stoichiometric coefficients usually fall into this category. In the buffer
tank process, ρ, A and α were assumed constant and are thus declared as parameters
of the BufferTank MODEL:

PARAMETER

Rho AS REAL

CrossSectionalArea AS REAL

Alpha AS REAL

Each parameter has a unique name (identifier) by which it can be referenced (for ex-
ample, in expressions). Identifiers in the gPROMS language start with a letter (a-z
and A-Z) and may comprise letters, numbers (1-9) and underscores (). The gPROMS
language is not case sensitive, i.e. Temp and TEMP are considered to be identical.

Each parameter is also declared to be of a certain type (e.g. INTEGER or REAL). All three
parameters of the BufferTank MODEL are of type REAL.

Parameter declarations may optionally include the assignment of default values. For
instance:

6When describing gPROMS syntax, we adopt the convention that typewriter style CAPITALS denote
gPROMS keywords and mixed-case italics indicate information to be supplied by the user (e.g. the
names of parameters, variables, models, etc.). Sections of an actual gPROMS input file are shown
entirely in typewriter style, with keywords in capitals and user input in mixed case.

2.2. Developing a simple gPROMS model 30

gPROMS Introductory User Guide

PARAMETER

NoComp AS INTEGER

NoReactions AS INTEGER DEFAULT 1

Finally, note that the categorisation of certain quantities as parameters is sometimes
tenuous. Designating a quantity as a parameter has the advantage of reducing the to-
tal number of variables in a model. However, this quantity can no longer be treated
as an unknown in any future use of the model. Consider, for instance, the quantities
that characterise the size and geometry of a vessel. From the point of view of dynamic
simulation, these can be viewed as PARAMETERs. However, from the point of view of
steady-state design calculations performed with the same model, these quantities may
be considered unknowns under certain circumstances. It may, therefore, be better to
classify them as VARIABLEs (see below).

2.2.3.4 The VARIABLE section

The VARIABLE section is used to declare the variables of a MODEL. These represent
quantities that describe the time-dependent behaviour of a system. For instance, in the
example process, M , h, Fin and Fout are variables of the BufferTank MODEL:

VARIABLE

HoldUp AS Mass

FlowIn, FlowOut AS MassFlowrate

Height AS Length

Like parameters, variables are declared to be of certain type. However, variable types
are user-defined. The declaration of these variable types is discussed in section 2.2.4.

2.2.3.5 The EQUATION section

The EQUATION section is used to declare the equations that determine the time trajec-
tories of the variables already declared in the VARIABLE section.

The gPROMS language is purely declarative, i.e. the order in which the equations
are declared is of no importance. Simple equations are equalities between two real
expressions (figure 2.10). These expressions may comprise:

• Integer or real constants (e.g. 2, 3.14159, etc.).

• Parameters that have been declared in the PARAMETER section (e.g. Rho, Alpha,
PI, etc.).

2.2. Developing a simple gPROMS model 31

gPROMS Introductory User Guide

• Variables that have been declared in the VARIABLE section (e.g. HoldUp, Height,
FlowOut, etc.). The special symbol $ preceding a variable name denotes the
derivative with respect to time of that variable (e.g. $HoldUp etc.).

Similarly to most programming languages, expressions are formed by combining the
above operands with the arithmetic operators + (addition), - (subtraction), * (multipli-
cation), / (division) and ^ (exponentiation), as well as built-in intrinsic functions (e.g.
square root: SQRT()). The latter are described in greater detail in Chapter 3.

Intrinsic functions have the highest precedence priority, followed by the ^ operator and
then the division and multiplication operators. The addition and subtraction opera-
tors have the lowest precedence. Naturally, parentheses may be used to alter these
precedence rules as required.

Finally, note that comments can be added to clarify the contents of the MODEL where
needed. As shown in figure 2.10, gPROMS accepts two types of comments. One type
begins with # and extends to the end of the current line. The other type starts with {
and ends with } and may span multiple lines. Moreover, comments of this type may be
nested within one another.

2.2.4 Declaring variable types

We now turn our attention to another type of gPROMS Entity, namely Variable

Types. These appear under the first entry in the Project tree shown in figure 2.5.
As we have seen in section 2.2.3.4, each VARIABLE in a MODEL is declared to be of a
particular variable type. Variable types are user-defined. However, their declaration is
not part of the MODEL Entity itself. Instead, they are declared as new Entities so that
VARIABLEs from different MODELs can belong to the same type.

In order to create a new Variable Type:

1. Pull down the Entity menu from the top bar and click on New Entity. A dialog
box will appear.

2. Choose Variable Type for the Entity Type.

3. Fill in the Name field and click on OK.

The right-hand pane now contains a table with some default values and a “key” symbol
appears next to Variable Types in the Project tree in the left-hand pane. To help
the user navigate the various Variable Types, when a particular Variable Type is
selected in the Project tree, the corresponding row is automatically highlighted in the
Variable Types table.

Figure 2.11 shows the Variable Types for the buffer-tank process. Three variable types
(Mass, MassFlowrate and Length) are declared, in accordance with the types shown

2.2. Developing a simple gPROMS model 32

gPROMS Introductory User Guide

in figure 2.10. Notice how these are automatically listed in alphabetical order in both
panes of the editor.

It is also possible to add a new Variable Type by completing the entries in a blank row
that always appears at the bottom of the Variable Types table. When this happens,
a corresponding new Variable Type is created and a new blank row is automatically
appended to the table.

In gPROMS, all variables are real numbers. Variable types are refinements of the simple
real type and include the following information:

• A name, to which the type may be referred globally.

• A default value for variables of this type. This value will be used as an initial guess
for any iterative calculation involving variables of this type, unless it is overridden
for individual variables or a better guess is available from a previous calculation.

• Upper and lower bounds on the values of variables of this type. Any calculation
involving variables of this type must give results that lie within these bounds.
These bounds can be used to ensure that the results of a calculation are physically
meaningful; they can also be used to select the desired solution in situations
where multiple solutions may exist. Again, these bounds may be overridden for
individual variables of this type.

• An optional unit of measurement. Whenever variables of this type are reported,
their values will be accompanied by this unit of measurement.

Hence, in figure 2.11, the right-hand pane shows these four properties and the names
of all of the Variable Types. The values of the lower bounds, initial values and upper
bounds are checked for consistency (i.e. you cannot enter an initial value outside the
bounds or enter a lower bounds greater than the upper bound).

Also notice that the units of measurement are not enclosed in double quotes ("), which
are normally used to denote strings. This is because Model Builder knows that this
Entity must be a string. In general, when entering strings in MODEL and other Entities,
double quotes must be used to signify this.

2.2. Developing a simple gPROMS model 33

gPROMS Introductory User Guide

Figure 2.11: Variable Types for the BufferTank MODEL.

2.2. Developing a simple gPROMS model 34

gPROMS Introductory User Guide

2.2.5 Describing simulation activities - PROCESSes

So far, we have seen how the gPROMS language can be used to define the physical
behaviour of a system in terms of a MODEL that contains PARAMETER, VARIABLE and
EQUATION declarations. However, we have not actually specified what we want to do
with this model. Indeed, a model can usually be used to study the behaviour of the
system under many different circumstances. Each such specific situation is called a
simulation activity. We now proceed to describe how the information provided so far
can be used to specify simulation activities.

The gPROMS language makes a clear distinction between, on one hand, the model
which represents a generic class of systems and, on the other hand, the specific details
of one or more instances of this model employed by particular activities.

For instance, initial conditions are not defined within a MODEL. Instead, they remain
unspecified until an instance of a MODEL is used for a particular dynamic simulation
activity. In this way, a system can be simulated under different sets of initial conditions
without any alterations to its underlying MODEL7.

Moreover, as will be seen in later chapters, a simulation activity may involve multiple
instances of the same MODEL used to describe a number of equipment items of the same
type. The characteristics of each individual item may be different; they are specified by
providing appropriate information within the context of the simulation activity.

The coupling of MODELs with the particulars of a dynamic simulation activity is done
in a PROCESS. To create a new PROCESS, follow a similar procedure to that described
earlier for MODELs and VARIABLE TYPEs, i.e. pull down the Entity menu, click on New

Entity, choose PROCESS for the Entity Type, give it a name in the Name field and then
click on Create (or right click on the Processes symbol, select New Entity..., enter
the name and description and click OK). As with new MODEL Entities, new PROCESSes
can contain a template giving the syntax of the PROCESS section.

Note that a gPROMS Project may contain multiple PROCESSes, each corresponding
to a different simulation activity (e.g. simulation of plant startup, simulation of plant
shutdown, etc.). Each such PROCESS must be given a different name and these will be
automatically placed in alphabetical order in the gPROMS Project tree.

A PROCESS is partitioned into sections, each containing information required to define
the corresponding dynamic simulation activity:

UNIT

... Process equipment declarations ...

SET

7In fact, the same model can be used to perform a variety of other activities, other than dynamic
simulation (e.g. steady-state and dynamic optimisation, steady-state and dynamic parameter estimation,
etc.). This document only considers dynamic simulation; details of the other activities can be found in
the gPROMS Advanced User Guide.

2.2. Developing a simple gPROMS model 35

gPROMS Introductory User Guide

... Parameter value setting ...

ASSIGN

... Degrees of freedom assignment ...

INITIAL

... Initial conditions specifications ...

SOLUTIONPARAMETERS

... Model-based activities specifications ...

SCHEDULE

... Operating policy specifications ...

The entire PROCESS (named SimulateTank) for a dynamic simulation activity involving
the buffer tank process is shown in figure 2.12. Next, we take a more detailed look at
each of the sections of this PROCESS in sequence.

Figure 2.12: An example PROCESS for the buffer tank.

2.2. Developing a simple gPROMS model 36

gPROMS Introductory User Guide

2.2.5.1 The UNIT section

The first item of information required to set up a dynamic simulation activity is the
process equipment under investigation. This is declared in the UNIT section of a PROCESS.

Equipment items are declared as instances of MODELs. For example,

UNIT

T101 AS BufferTank

creates an instance of MODEL BufferTank, named T101. T101 is described by the vari-
ables declared within the BufferTank MODEL and its time-dependent behaviour is par-
tially determined by the corresponding equations.

2.2.5.2 The SET section

Before an instance of a MODEL can actually be used in a simulation, all its parameters
must be assigned appropriate values (unless they have been given default values). This
is done in the SET section of a PROCESS8.

For example,

SET

T101.Rho := 1000 ; # kg/m3

T101.CrossSectionalArea := 1 ; # m2

T101.Alpha := 10 ;

sets the parameters of T101 to appropriate values. Note that:

• in order to refer to parameter Rho of instance T101 of MODEL BufferTank, we use
the “pathname notation” T101.Rho;

• parameter values are set using the assignment operator (:=). In other words, the
arithmetic expression appearing on the right hand side is first evaluated; its value
is then given to the parameter appearing on the left hand side. This is another
general rule of the gPROMS language:

8The assignment of parameter values can also be performed within MODELs, using a SET section that
is completely equivalent to the one described here. However, it is generally advisable that parameters be
set at the PROCESS level. This practice maximises the reusability of the underlying MODELs and minimises
the probability of error. See section 6.5 for more details on this subject.

2.2. Developing a simple gPROMS model 37

gPROMS Introductory User Guide

A General Rule of the gPROMS Language

gPROMS always uses the symbol := to assign a value or expression appearing
on the right hand side to the single identifier appearing on the left hand side.
gPROMS always uses the symbol = to declare the equality of the two general
expressions appearing on either side of this symbol.

2.2.5.3 The ASSIGN section

The set of equations resulting from the instantiation of MODELs declared in the UNIT

section is typically under-determined. This simply means that there are more variables
than equations. The number of degrees of freedom in the simulation activity is given by:

Number of degrees of freedom (NDOF) = Number of variables - Number of equations.

For the simulation activity to be fully defined, NDOF variables must be specified as
either constant values or given functions of time. Variables specified in this way are the
input variables (or “inputs”) of this simulation activity. The remainder of the variables
are the unknown variables, the time variation of which will be determined by the solution
of the system equations. Clearly, the number of unknowns is equal to the number of
available equations - we therefore have a “square” system of equations.

The specification of input variables is provided in the ASSIGN section of the PROCESS.
For instance,

ASSIGN

T101.Fin := 20 ;

designates the inlet flowrate as an input and assigns it a constant value of 20. Again,
in order to emphasise the assignment form of these specifications, input specifications
use the assignment operator (:=).

2.2.5.4 The INITIAL section

Before dynamic simulation can commence, consistent values for the system variables at
t = 0 must be determined. To this end, a number of additional specifications are needed.
These augment the system of equations that describe the behaviour of the system and
result in a square system of equations at t = 0. The solution of the latter provides the
condition of the system at t = 0.

Traditionally, the term “initial condition” refers to a set of values for the differential
variables at t = 0. However, gPROMS follows a more general approach where the

2.2. Developing a simple gPROMS model 38

gPROMS Introductory User Guide

initial conditions are regarded as additional equations that hold at t = 0 and can take
any form. This, of course, allows for the traditional specification of “initial values”
for the differential variables or, indeed, for any appropriate subset of system variables;
however, it also makes possible the specification of much more general initial conditions
as equations of arbitrary complexity.

The INITIAL section is used to declare the initial condition information pertaining to a
dynamic simulation activity. For instance,

INITIAL

T101.Height = 2.1 ;

specifies an initial condition for the buffer tank system by stating that the height of liquid
in the tank at t = 0 is 2.1m. Note that, in contrast to the SET and ASSIGN sections,
the equality operator (=) is used here to emphasise the fact that initial conditions are
general equations.

An initial condition that is frequently employed for the dynamic simulation of process
systems is the assumption of steady-state, constraining the time derivatives of the dif-
ferential variables to zero. In gPROMS, this can be achieved by manually specifying all
derivatives to be zero; e.g.:

INITIAL

$T101.Holdup = 0 ;

However, this would be tedious for models with large numbers of differential variables,
so the keyword STEADY STATE may be utilised to specify this initial condition, as shown
below:

INITIAL

STEADY_STATE

In this latter case, no further specifications are required.

2.2.5.5 The SOLUTIONPARAMETERS section

The user also has the option to control various aspects of model-based activities carried
out in gPROMS such as solver settings and output specifications. The SOLUTIONPARAMETERS
section is used for this purpose. Detailed information regarding this topic will be covered
in more detail in Chapter 10.

For example,

SOLUTIONPARAMETERS

REPORTINGINTERVAL := 60;

2.2. Developing a simple gPROMS model 39

gPROMS Introductory User Guide

The REPORTINGINTERVAL is the interval at which result values will be collected during
the dynamic simulation (note that it does not effect the accuracy of the subsequent
integration in any way). For this example, an interval of 60 is a reasonable choice.

The user does not need give any settings in this section. In such a case the user will be
prompted to enter a REPORTINGINTERVAL in a dialog box.

2.2.5.6 The SCHEDULE section

The information that we have provided so far defines the condition of the system at the
start of the simulation, which by convention corresponds to the time t = 0. Of course,
during its operation (i.e. for t > 0), the system may be subjected to externally imposed
manipulations, such as deliberate control actions and/or disturbances - indeed, the main
motivation for performing a simulation is usually to understand how the system behaves
under these manipulations.

Information on the external manipulations that are to be simulated is provided in the
SCHEDULE section of the PROCESS. For the purposes of this chapter, we restrict our
attention to the simplest possible case, allowing the system to operate without any
external disturbance over a specified period of time. This is achieved via the:

CONTINUE FOR TimePeriod

construct in the SCHEDULE section of the PROCESS.

gPROMS can be used to simulate much more complex cases, including detailed operat-
ing procedures of entire plants. This is discussed in Chapters 7 and 8.

2.2.6 Syntax checking

gPROMS ModelBuilder will automatically check the syntax of the gPROMS language
in any of the Entities that you have written. In addition, gPROMS will check for
unidentified local variables (local semantic checking).

You can ask gPROMS to check the syntax by a number of different methods:

1. By saving the Project.

2. By clicking on the check syntax button just under Tools on the top toolbar.

3. By selecting Check Syntax from the Entity menu.

4. Right clicking on the Entity and selecting Check syntax.

5. By using the keyboard short-cut (F4).

If ModelBuilder finds an error, as shown in figure 2.13, a small box appears just under-
neath the text editor reporting the error. Double-clicking on the error message in the

2.2. Developing a simple gPROMS model 40

gPROMS Introductory User Guide

Syntax-sensitive
editor

List of syntactic or
semantic errors

“Cross” indicates
entity has errors
“Cross” indicates
entity has errors

Figure 2.13: Syntax and semantic checking

error dialog box and gPROMS will automatically go to the corresponding line number
to show where the syntax error is.

You will also see that the error is highlighted in the text editor window and that a red
cross appears through the icon for the Entity in the Project tree. Correcting this error
will then cause this cross and the error dialog box to disappear.

In addition to syntax checking, gPROMS Model Builder has a range of powerful features
aimed at improving your productivity. These include search-and-replace tools, Project
and Entity comparison capabilities, and the ability to develop library projects. For
further details on these and other features - please refer to the ModelBuilder User
Guide.

2.2. Developing a simple gPROMS model 41

gPROMS Introductory User Guide

2.3 Running a gPROMS simulation activity

Sections 2.2.3, 2.2.4 and 2.2.5 have presented different aspects of the description of a
gPROMS simulation activity in terms of the MODEL, VARIABLE TYPEs and PROCESS sec-
tions respectively. These are the groups in the gPROMS Project tree for which Entities
must be defined in order for a simulation to be executed. Entities do not necessarily need
to be defined for the other groups within the Project tree (Stream Types are described
in chapter 6, Saved Variable Sets in chapter 7, Tasks in chapter 8, Optimisations,
Parameter Estimations and Experiments are explained in the gPROMS Advanced
User Guide).

Once you have prepared the MODEL, VARIABLE TYPEs and PROCESS shown in figures 2.10,
2.11 and 2.12, you are ready to execute a simulation.

For each model based activity that you execute, such as a simulation, a new Case is
created9.

2.3.1 Cases

Briefly, a Case is a combined record of all the input information that defines a model-
based activity and the results generated by the execution of this activity, as well as
any diagnostic messages that may have been issued during its execution. The intention
is that a Case may serve as a permanent record of a particular model-based activity
that can be archived for future reference, thus providing auditability and traceability of
model-based decisions.

Cases are described in more detail in the ModelBuilder User Guide.

2.3.2 Executing a simulation

To execute a simulation first select the PROCESS and then choose one of the following
options:

1. Go to the Activities pull down menu and select Simulate... ;

2. Click on the “green play” button underneath the Tools pull down menu ;

3. Right click on this PROCESS and then left click on Simulate...;

4. Press the F5 or Alt-S keys on the keyboard.

Provided that there are no syntax errors and that all the entities that are referred to
have been defined, an execution control dialog appears as shown in figure 2.14. The

9However, it is possible, if desired, to configure ModelBuilder to delete previous cases automatically
before running a new simulation - refer to the ModelBuilder User Guide.

2.3. Running a gPROMS simulation activity 42

gPROMS Introductory User Guide

execution control dialog allows the user to configure various aspects of the Case - this
is discussed further in the ModelBuilder User Guide - such as the name and contents
of the case. It also allows the user whether the licence required by the model-based
activity should be retained at the end of the execution10

In this case, just select “OK” in the execution control dialog.

ModelBuilder creates the Case. Just like a Project, a Case appears as a sub-tree of
the ModelBuilder’s navigation tree (see figure 2.15). However, unlike most Projects
(also see the ModelBuilder User Guide), all entries in a Case are read-only, and this is
indicated by a lock symbol annotating each entry in the Case sub-tree.

2.3.3 Execution diagnostics

Once the necessary licence is obtained, ModelBuilder also creates an execution diagnos-
tics window which displays all the messages relating to the solution of the model-based
activity11.

At this point, the simulation should proceed as outlined below. Note that whenever
a PROCESS is executed, gPROMS analyses the mathematical models in the gPROMS
Project so as to assist the user in identifying structural problems and errors in the
modelling and/or the problem specification. Further details of these diagnostic features
can be found in Appendix A.

gPROMS (TM) - Version 2.2 for Windows XP Service Pack 1 Jan 7 2003

general PROcess Modelling System

Copyright (c) 1997-2003 Process Systems Enterprise Limited

gPROMS and ModelEnterprise are trademarks of Process Systems

Enterprise Limited. All rights reserved.

No part of this material may be copied, distributed, published,

retransmitted or modified in any way without the prior written

consent by Process Systems Enterprise Limited.

Translating file : Simulate_Tank...

gPROMS translation initialisation took 0 seconds.

.. MODEL BUFFERTANK

.. PROCESS SIMULATE_TANK

gPROMS translation took 0 seconds.

10Retaining the licence allows some interaction with the model at the end of the execution, see the
ModelBuilder User Guide. The licence can always be released manually at any time.

11The execution diagnostics window is associated with the CASE and can be referred back to even
when the simulation has finished.

2.3. Running a gPROMS simulation activity 43

gPROMS Introductory User Guide

Default name
for Case

Figure 2.14: The execution control dialog

Case
sub-tree

“Ribbon” symbol
indicates that

licence is currently
in use

Execution
diagnostics output

Menu for interacting with
executing activity

“Lock” symbol indicates
read-only Entities in

Case

Execution
diagnostics output

Figure 2.15: Cases and activity execution

2.3. Running a gPROMS simulation activity 44

gPROMS Introductory User Guide

The following processes are available:

SIMULATE_TANK

Executing process SIMULATE_TANK...

All 4 variables will be monitored during this simulation!

Building mathematical problem description took 0 seconds.

Loaded ’gRMS.dll’.

gRMS output channel: Using version 2.1.15 compiled on Jan 6 2003.

gRMS output channel: Connecting to host localhost, port 3345.

Loaded ’DASOLV.dll’.

Loaded ’NLSOL.dll’.

Loaded ’MA48.dll’.

Loaded ’MA48.dll’.

Loaded ’NLSOL.dll’.

Loaded ’MA48.dll’.

Simulation will proceed with the following configuration:

DASolver := "DASOLV" [

"AbsolutePerturbationFactor" := 1e-007,

"AbsoluteTolerance" := 1e-005,

"Diag" := FALSE,

"EffectiveZero" := 1e-005,

"EventTolerance" := 1e-005,

"FDPerturbation" := 1e-006,

"FiniteDifferences" := FALSE,

"OutputLevel" := 0,

"RelativePerturbationFactor" := 0.0001,

"RelativeTolerance" := 1e-005,

"SenErr" := FALSE,

"InitialisationNLSolver" := "NLSOL" [

"ConvergenceTolerance" := 1e-005,

"EffectiveZero" := 1e-005,

"FDPerturbation" := 1e-005,

"MaxFuncs" := 1000000,

"MaxIterNoImprove" := 10,

"MaxIterations" := 1000,

"NStepReductions" := 10,

"OutputLevel" := 0,

"SLRFactor" := 50,

"SingPertFactor" := 0.01,

"UseBlockDecomposition" := TRUE,

"LASolver" := "MA48" [

"BLASLevel" := 32,

"ExpansionFactor" := 5,

"FullSwitchFactor" := 0.5,

"MinBlock" := 1,

"OutputLevel" := 0,

"PivotSearchDepth" := 3,

"PivotStabilityFactor" := 0.1

]

],

2.3. Running a gPROMS simulation activity 45

gPROMS Introductory User Guide

"LASolver" := "MA48" [

"BLASLevel" := 32,

"ExpansionFactor" := 5,

"FullSwitchFactor" := 0.5,

"MinBlock" := 1,

"OutputLevel" := 0,

"PivotSearchDepth" := 3,

"PivotStabilityFactor" := 0.1

],

"ReinitialisationNLSolver" := "NLSOL" [

"ConvergenceTolerance" := 1e-005,

"EffectiveZero" := 1e-005,

"FDPerturbation" := 1e-005,

"MaxFuncs" := 1000000,

"MaxIterNoImprove" := 10,

"MaxIterations" := 1000,

"NStepReductions" := 10,

"OutputLevel" := 0,

"SLRFactor" := 50,

"SingPertFactor" := 0.01,

"UseBlockDecomposition" := TRUE,

"LASolver" := "MA48" [

"BLASLevel" := 32,

"ExpansionFactor" := 5,

"FullSwitchFactor" := 0.5,

"MinBlock" := 1,

"OutputLevel" := 0,

"PivotSearchDepth" := 3,

"PivotStabilityFactor" := 0.1

]

]

]

Execution begins...

Variables

Known : 1

Unknown : 3

Differential : 1

Algebraic : 2

Model equations : 3

Initial conditions : 1

Checking consistency of model equations and ASSIGN specifications...

OK!

Checking index of differential-algebraic equations (DAEs)...

OK!

Checking consistency of initial conditions...

OK!

Initialisation calculation completed.

CONTINUE FOR 1800 executed at 0

Integrating from 0 to 100

Integrating from 100 to 200

Integrating from 200 to 300

2.3. Running a gPROMS simulation activity 46

gPROMS Introductory User Guide

Integrating from 300 to 400

Integrating from 400 to 500

Integrating from 500 to 600

Integrating from 600 to 700

Integrating from 700 to 800

Integrating from 800 to 900

Integrating from 900 to 1000

Integrating from 1000 to 1100

Integrating from 1100 to 1200

Integrating from 1200 to 1300

Integrating from 1300 to 1400

Integrating from 1400 to 1500

Integrating from 1500 to 1600

Integrating from 1600 to 1700

Integrating from 1700 to 1800

Integrating from 1800 to 1900

Time event occurs at 1800.000

Execution of SIMULATE_TANK completed successfully.

gPROMS simulation took 0 seconds.

Total CPU Time: 0.07

User CPU Time: 0.07

System CPU Time: 0

You may now modify the gPROMS Project if you wish, save it, and then execute the PROCESS

again.

2.3. Running a gPROMS simulation activity 47

gPROMS Introductory User Guide

2.4 Displaying gPROMS output

You are now in a position to plot some of the simulation results - this is done using the gRMS
(“gPROMS Results Management System”) application.

2.4.1 On MS Windows workstations

(a) Select the gRMS window and create a new 2D Plot. There are two ways to do this:

– either left click on the Graph menu and select New 2D Plot (figure 2.16(a));

– or left click on the “2D” button (figure 2.16(b)).

In either case, an empty 2D Plot window will be created.

(b) Add a line to the plot. Again, there are two ways to do this:

– either left click on the Line menu and select Add... (figure 2.17(a));

– or left click on the button with a curve icon (figure 2.17(b)).

In either case, this will bring up an Add Line Dialog window (figure 2.18(a)).

(c) Double click on SIMULATE TANK, then on T101. A list of variables for this unit will appear
(figure 2.18(b)). Alternatively, you could click on the “+” symbol to expand the tree.

(d) Double click on variable HOLDUP, or left click on it and press the Add button. A 2D Line

Properties Dialog for this variable will appear (figure 2.19). The line will be added to
the 2D Plot window in the background.

(e) Click OK on the 2D Line Properties Dialog and click Cancel on the Add Line Dialog

so that the graph can be seen clearly.

(f) To close the gRMS window, select the Graph menu and left click on Exit. You will be
prompted to save the process if you have not already done so. Click Yes to bring up a
save dialog before quitting, click No to quit without saving or click Cancel to continue
using gRMS. See Appendix B for more on saving processes and graphs.

You will notice that the gRMS window remains on the screen even if you exit gPROMS. Nor-
mally, there is only one gRMS window on any given machine at any given time. Therefore,
if you later re-enter gPROMS, the old gRMS window will be used. Similarly, a single gRMS
window will handle results from two or more gPROMS sessions running simultaneously.

If you execute a number of PROCESSes, you will notice that gRMS records the results from each
run under a separate “process” (see section B.1) even if two or more runs involve the execution
of the same PROCESS in the input file. This allows you to use gRMS to compare results obtained
from, say, different specifications of parameters, input variables or initial conditions by plotting
variable trajectories arising from different executions on the same PROCESS.

A more detailed description of the gRMS utility can be found in Appendix B.

2.4. Displaying gPROMS output 48

gPROMS Introductory User Guide

(a) Using the Graph menu. (b) Using the 2D Plot button

Figure 2.16: Adding a new 2D Plot window in gRMS (under Windows).

(a) Using the Line menu. (b) Using the add-line button

Figure 2.17: Adding a line to a plot in gRMS (under Windows).

2.4. Displaying gPROMS output 49

gPROMS Introductory User Guide

(a) When first opened (b) Expanded to show all variables

Figure 2.18: The Add Line Dialog.

Figure 2.19: 2D Line Properties Dialog.

2.4. Displaying gPROMS output 50

gPROMS Introductory User Guide

2.4.2 On UNIX workstations

(a) Go to the gRMS window and click on Graph.

(b) Select option New 2D Plot. A 2D plot window will appear (figure 2.20(a)).

(c) Click on Lines and choose Add. . . (figure 2.20(b)). An Add Line Dialog will appear
(figure 2.20(c)).

(d) Double click on SIMULATE TANK:*, then on T101.*. A list of variables for this unit will
appear (figures 2.20(d) and 2.20(e)).

(e) Double click on variable HOLDUP. A 2D Line Properties Dialog for this variable will
appear (figure 2.20(f)).

(f) Click OK on the 2D Line Properties Dialog and click Close on the Add Line Dialog.
A plot of variable HOLDUP against time will now appear in the plot window (figure 2.20(g)).

(g) To close the gRMS window, select the Graph menu and left click on Exit. Click on the
Yes button to quit without saving (see Appendix B for instructions on saving processes
and graphs).

You will notice that the gRMS window remains on the screen even if you close the gPROMS
execution window and the model building environment. Normally, there is only one gRMS
window on any given machine at any given time. Therefore, if you later re-enter gPROMS, the
old gRMS window will be used. Similarly, a single gRMS window will handle results from two
or more gPROMS sessions running simultaneously in different command windows.

If you execute a number of PROCESSes, you will notice that gRMS records the results from each
run under a separate “process” (see section B.1) even if two or more runs involve the execution
of the same PROCESS in the input file. This allows you to use gRMS to compare results obtained
from, say, different specifications of parameters, input variables or initial conditions by plotting
variable trajectories arising from different executions on the same PROCESS.

A more detailed description of the gRMS utility can be found in Appendix B.

2.4. Displaying gPROMS output 51

gPROMS Introductory User Guide

(a) (b)

(c) (d) (e)

(f) (g)

Figure 2.20: Using gRMS on UNIX to display simulation results.

2.4. Displaying gPROMS output 52

gPROMS Introductory User Guide

Chapter 3

Arrays and Intrinsic Functions

Contents

3.1 Declaring arrays of parameters and variables in MODELs . . . 55

3.1.1 Arrays of parameters . 55

3.1.2 Arrays of variables . 56

3.1.3 Rules for array declarations . 56

3.2 Using arrays of parameters and variables in expressions . . 58

3.2.1 General rules for referring to gPROMS arrays 58

3.2.2 Array expressions . 58

3.3 Using arrays in equations . 61

3.3.1 Array equations . 61

3.3.2 The FOR construct . 62

3.4 Intrinsic gPROMS functions 63

3.4.1 Vector intrinsic functions . 63

3.4.2 Scalar intrinsic functions . 64

53

gPROMS Introductory User Guide

In this chapter, we examine some of the more advanced mechanisms provided by the gPROMS
language for the declaration of complex equation structures in MODELs.

In many cases, a number of parameters, variables or equations that appear in a MODEL are closely
related. Examples include:

• the stoichiometric coefficients, νij , of a set of components i = 1, .., NoComp participating
in a set of reactions j = 1, .., NoReact;

• the concentrations, Ci, of components i = 1, .., NoComp in a multi-component system;

• the equations expressing the conservation of components i = 1, .., NoComp in a multi-
component system.

In such cases, we need effective mechanisms for declaring and handling these entities as a
group rather than individually. In a manner similar to most high-level programming languages,
gPROMS achieves this aim via the use of arrays.

The next section of this chapter discusses how arrays of parameters and variables can be declared
in MODELs. Section 3.2 explains how these arrays can be used to construct array expressions,
and then section 3.3 shows how the latter form the basis of the definintion of array equations in
MODELs.

The last section describes the intrinsic functions that are available in the gPROMS language,
and the relations between these and the array concepts introduced earlier.

54

gPROMS Introductory User Guide

3.1 Declaring arrays of parameters and variables in MODELs

3.1.1 Arrays of parameters

As we have seen in section 2.2.3.3, model parameters are declared in the PARAMETER section of
gPROMS MODELs to belong to the basic types INTEGER or REAL. Such parameters may be scalars
or arrays of one, two or more dimensions.

Consider, for instance, the PARAMETER section in a model of a liquid-phase continuous stirred
tank reactor (CSTR). This is shown in figure 3.1.

MODEL LiquidPhaseCSTR

PARAMETER

Number of components

NoComp AS INTEGER

Number of reactions

NoReact AS INTEGER

Component molar densities

Rho AS ARRAY(NoComp) OF REAL

Stoichiometric coefficient of component i in reaction j

Nu AS ARRAY(NoComp,NoReact) OF REAL DEFAULT 0

Order of component i in reaction j

Order AS ARRAY(NoComp,NoReact) OF REAL DEFAULT 0

Figure 3.1: PARAMETER section of a liquid-phase CSTR MODEL

Here, NoComp and NoReact denote the numbers of chemical components and chemical reactions
occurring in this system. Each of these is a simple (scalar) INTEGER parameter. On the other
hand, the densities of the pure components1 form a vector of real quantities declared as as an
array of length NoComp:

Rho AS ARRAY(NoComp) OF REAL

Similarly, Nu and Order are two-dimensional arrays of REAL parameters. The number of elements
in the first dimension is NoComp; the number of elements in the second dimension is NoReact.
We note that, if a DEFAULT value is specified for an array parameter (cf. section 2.2.3.3), this is
taken to refer to all elements of that array.

1For the purposes of this example, the pure component densities are assumed to be constant but
different to each other.

3.1. Declaring arrays of parameters and variables in MODELs 55

gPROMS Introductory User Guide

3.1.2 Arrays of variables

Arrays of MODEL variables are declared in a manner very similar to that used for parameters (cf.
section 3.1.1). For example, the VARIABLE section of the liquid-phase CSTR MODEL entity (cf.
figure 3.1) is shown in figure 3.2.

MODEL LiquidPhaseCSTR

PARAMETER

.

VARIABLE

Input and output molar flowrates

Flow_In, Flow_Out AS MolarFlowrate

Liquid phase volume

V AS Volume

Component molar holdups

HoldUp AS ARRAY(NoComp) OF Moles

Input and output component mole fractions

X_In, X_Out AS ARRAY(NoComp) OF MoleFraction

Component concentrations

C AS ARRAY(NoComp) OF Concentration

Reaction rates

Rate AS ARRAY(NoReact) OF ReactionRate

Figure 3.2: VARIABLE section of a liquid-phase CSTR MODEL

Arrays of parameters and variables may have any number of dimensions. The number of
elements in each dimension is specified in terms of an integer expression (e.g. HoldUp AS

ARRAY(NoComp+1) OF REAL is acceptable). The total number of elements in an array is the
product of the number of elements in each dimension.

3.1.3 Rules for array declarations

There are some general rules that govern all arrays2 in gPROMS:

2Including arrays of not only parameters and variables but also other entities such as streams and
units: see chapter 6.

3.1. Declaring arrays of parameters and variables in MODELs 56

gPROMS Introductory User Guide

General Rules for Array Declarations in gPROMS

• Arrays can have any number of dimensions.

• The size of each dimension can be a general integer expression involving a
combination of:

– integer constants;

– scalar integer MODEL parameters;

– individual elements of arrays of integer MODEL parameters (see section
3.2.1 below); and

– integer arithmetic operatorsa.

• The index of each dimension ranges from 1 to the size of dimension.

aThese include the usual arithmetic operators +, -, * and ,̂ as well as the integer division
operator DIV and the division remainder operator MOD.

3.1. Declaring arrays of parameters and variables in MODELs 57

gPROMS Introductory User Guide

3.2 Using arrays of parameters and variables in expres-

sions

Section 3.1 has described how arrays of parameters and variables can be declared in a MODEL.
We now turn to consider how these arrays can be used in arithmetic expressions such as those
appearing in MODEL equations.

First, we see how arrays may be referenced in arithmetic expressions. Then, we introduce the
concept of an array equation.

3.2.1 General rules for referring to gPROMS arrays

The contents of an array may be referenced in several different ways3. These are explained
below as well as being illustrated schematically in figure 3.3:

• Entire arrays can be referenced by using their names alone. For instance, Rho denotes the
entire array of component molar densities.

• Individual elements can be referenced by using the name of the array and an index to the
element in question enclosed in brackets. For one-dimensional arrays, this index should
be an integer expression. For instance, the second element of array Rho is Rho(2) while
the element of array HoldUp before the last is HoldUp(NoComp-1). For multi-dimensional
arrays, the index is a list of such expressions, one for each dimension. Thus, Nu(2,4)
refers to the element on the second row and fourth column of array Nu.

• A subset of the elements in one or more dimensions can be referenced through the use
of “slice” notation. For instance, Holdup(2:4) refers to the 2nd, 3rd and 4th elements of
array Holdup. Nu(2:4,3:5) refers to the slice of array HoldUp included between rows 2
to 4 and columns 3 to 5 (a 3 × 3 array in itself). Naturally, Nu(1:NoComp,1:NoReac) is
equivalent to Nu. Similarly, Nu(1:1,3:3) is equivalent to Nu(1,3).

• An entire dimension of an array can be referenced by leaving a blank. For instance,
Nu(2,) refers to the entire second row of array Nu, while Nu(,1:3) refers to columns 1 to
3. Naturally, Nu(,) is equivalent to Nu.

3.2.2 Array expressions

A powerful concept in gPROMS is that of array expressions. Consider, for example, the algebraic
expression:

x * y + w * z

If x, y, w and z are scalar variables, then the above also corresponds to a scalar. However, in
gPROMS, the expression x * y + w * z is valid even if x, y and z are arrays provided they
have the same dimensionality and size. For example, if we have the declarations:

3Although in thic chapter we are primarily interested in arrays of parameters and variables, the rules
provided here actually apply to arrays of any gPROMS entity, e.g. streams and units (cf. chapter 6).

3.2. Using arrays of parameters and variables in expressions 58

gPROMS Introductory User Guide

PARAMETER

n, m AS INTEGER

VARIABLE

x, y, z AS ARRAY (n,m) OF SomeQuantity

w AS SomeQuantity

then the expression x * y + w * z also represents a two-dimensional array of size n × m, the
(i, j)th element of which is equal to xijyij + wzij for i = 1, .., n and j = 1, .., m.

Although in the above examples, the gPROMS interpretation of the array expression coincided
with the standard mathematical one, this is not always the case. For example, the expressions
x ∗ y/z and w/x + zˆy are also valid in gPROMS, representing two-dimensional arrays of size
n × m, the (i, j)th elements of which are equal to

xijyij

zij
and w/xij + z

yij

ij respectively.

In general, consider an expression x⊗ y where x and y are scalar or array expressions, and ⊗ is
a binary arithmetic operator (+, -, *, /,ˆ). This is a valid gPROMS expression if and only if it
conforms to one of the four cases listed below:

Case x y Dinensionality Interpretation
of x ⊗ y of x ⊗ y

1. Scalar Scalar Scalar xy
2. Array Scalar Same as x xijk... ⊗ y
3. Scalar Array Same as y x ⊗ yijk...

4. Array Array Same as x and y xijk... ⊗ yijk...

Clearly, case 4 is valid only if both x and y have exactly the same dimensionality and size.

The above rules can be applied recursively to check the validity and to interpret expressions of
arbitrary complexity. At the lowest level, x and y will be (scalar) constants, scalar parameters
or variables, or arrays of parameters or variables, or slices of arrays of parameters or variables.
For example, it can be verified that the following is a valid two-dimensional expression of size 3
× 2 :

3.23 / x(1:3, 4:5) * z(5:7, 1:2) + w(10:12, 2:3) + 4.13

3.2. Using arrays of parameters and variables in expressions 59

gPROMS Introductory User Guide

A(3,2)

A(3:4,2:5)

A(2,)

A(2:2,1:5)

A

A(,)

A(1:5,1:5)

Figure 3.3: Referencing with arrays

3.2. Using arrays of parameters and variables in expressions 60

gPROMS Introductory User Guide

3.3 Using arrays in equations

Elements of arrays (both parameters and variables) can be used in equations as if they were
individual parameters or variables. For example, the equation that defines the concentration of
component 2 in the liquid-phase CSTR can be written as follows:

HoldUp(2) = C(2) * V ;

However, arrays can be used more effectively to declare several equations simultaneously. This
can be done in two different ways:

• implicitly, via the use of array expressions (cf. section 3.2.2),

• explicitly, via the FOR construct.

In the following two sections, we examine each of these mechanisms in detail.

3.3.1 Array equations

In section 3.2.2, we have seen how array expressions can be formed by combining arrays of
parameters or variables, or elements or slices of these. By analogy, gPROMS allows the definition
of array equations of the form:

Expression E = Expression F ;

that are valid provided they conform to one of the following four cases:

Case E F Dimensionality Interpretation
of E = F of E = F

1. Scalar Scalar Scalar E = F
2. Array Scalar Same as x Eijk... = F
3. Scalar Array Same as y E = Fijk...

4. Array Array Same as x and y Eijk... = Fijk...

Thus, in view of the variable definitions shown in figure 3.2, the following is a valid equation:

HoldUp = C * V ;

gPROMS automatically expands such equations into an set of equations. For example, if NoComp
= 5, the above will expand to:

HoldUp(1) = C(1) * V ;

HoldUp(2) = C(2) * V ;

...

HoldUp(5) = C(5) * V ;

3.3. Using arrays in equations 61

gPROMS Introductory User Guide

3.3.2 The FOR construct

In section 3.3.1, we have seen how array equations can be written in an implicit manner by
exploiting the array expression capability of gPROMS. An alternative is to write array equations
explicitly using a FOR construct that is similar to that provided by most high-level programming
languages.

Thus, consider the equation describing the conservation of component i in a multi-component
buffer tank. This can be written mathematically as:

dMi

dt
= F inxin

i − F outxi, i = 1, .., NoComp

In gPROMS, this can be written in two completely equivalent ways, namely implicitly, in the
form (cf. section 3.3.1):

$M = Fin*Xin - Fout*X ;

or explicitly, in the form:

FOR i := 1 TO NoComp DO

$M(i) = Fin*Xin(i) - Fout*X(i) ;

END

The above are completely equivalent: which one you use depends entirely on your preference.
However, situations do exist in which the required equations cannot be described via implicit
declaration, and the use of explicit FOR constructs is essential. We will consider such situations
in section 3.4.2.

The counter of a FOR construct (e.g. i in the above example) is an integer quantity that may be
referenced only by equations enclosed within the construct. The range of this counter must be
specified in terms of any arithmetic expressions involving integer constants, integer parameters
and/or integer arithmetic operators. Moreover, a step increment may be specified. For instance,

FOR i := NoComp+1 TO 2*NoComp STEP 2 DO

...

END

will start by assign i a values of NoComp+1 and then will increment it by 2 until it exceeds
2*NoComp. If no increment is specified, its value defaults to 1.

A FOR construct may enclose an arbitrary number of equations of any type – including other
FOR constructs. This allows nesting of FOR constructs to arbitrary depth; in such cases:

• each FOR construct must use a different name for its counter variable;

• any expression that appears within each FOR construct (including those defining its range
and increment) may involve the counters of any enclosing FOR constructs.

3.3. Using arrays in equations 62

gPROMS Introductory User Guide

3.4 Intrinsic gPROMS functions

Intrinsic gPROMS functions are used in equations to perform mathematical operations that
would be difficult or even impossible to declare using normal language operators.

The gPROMS language contains two categories of intrinsic functions, as described below.

3.4.1 Vector intrinsic functions

All vector intrinsic functions have the following characteristics:

• they take a single argument representing a scalar or array expression;

• they return a result of dimensionality and size identical to those of their argument.

Table3.1 lists all vector functions that are recognised by gPROMS.

Identifier Function

ACOS The arccosine (in radians) of the argument
ASIN The arcsine (in radians) of the argument
ATAN The arctangent (in radians) of the argument
ABS The absolute value of the argument
COS The cosine of the argument (in radians)
COSH The hyperbolic cosine of the argument
EXP The exponential of the argument
INT The largest integer that does not exceed the argument
LOG The natural logarithm of the argument
LOG10 The logarithm to base 10 of the argument
SGN The sign of the argument
SIN The sine of the argument (in radians)
SINH The hyperbolic sine of the argument
SQRT The square root of the argument
TAN The tangent of the argument (in radians)
TANH The hyperbolic tangent of the argument

Table 3.1: Intrinsic vector functions

The result of each of the above functions is obtained by applying the corresponding operation
to each element of the argument. For example, consider the declarations:

PARAMETER

n, m AS INTEGER

VARIABLE

x, y, z AS ARRAY (n,m) OF SomeQuantity

w AS SomeQuantity

3.4. Intrinsic gPROMS functions 63

gPROMS Introductory User Guide

Then, x ∗ SQRT (y + w)/SIN(z) is a valid expression (cf. section 3.2.2) representing an n × m
array, the (i, j)th element of which is equal to:

xij
√

yij + w

sin zij

for i = 1, .., n and j = 1, .., m.

3.4.2 Scalar intrinsic functions

All scalar intrinsic functions have the following characteristics:

• they take an arbitrary number of arguments, each representing a scalar or array expression;

• they return a scalar result.

Table3.2 lists all scalar functions that are recognised by gPROMS.

Identifier Function

SIGMA The sum of all elements of all arguments
PRODUCT The product of all elements of all arguments
MIN The smallest of all elements of all arguments
MAX The largest of all elements of all arguments

Table 3.2: Intrinsic scalar functions

The use of scalar intrinsic functions provides a powerful mechanism for writing complex mathe-
matical expressions in gPROMS. However, some care is necessary in their use with array equa-
tions written using automatic expansion (cf. section 3.3.1). Consider, for instance, a mixing
tank receiving a number of multi-component input streams. The conservation equation for
component i can be written mathematically as:

dMi

dt
=

NoInput
∑

k=1

F in
k xin

k,i − Foutxi, i = 1, .., NoComp

In gPROMS, this can be written as:

FOR i := 1 TO NoComp DO

$M(i) = SIGMA(Fin*Xin(1:NoInput,i)) - Fout*X(i) ;

END

Note that the “alternative” formulation using automatic expansions:

$M = SIGMA(Fin*Xin) - Fout*X ;

is actually incorrect since:

3.4. Intrinsic gPROMS functions 64

gPROMS Introductory User Guide

• the expression Fin*Xin violates the conformance rules set out in section 3.2.2 for array
expressions;

• the expression SIGMA(Fin*Xin) is a scalar, not a vector of length NoComp.

A complete model for the mixing tank, illustrating many of the important points made in this
chapter, is shown in figure 3.4.

MODEL MixingTank

PARAMETER

NoComp, NoInput AS INTEGER

CrossSectionalArea AS REAL

Rho AS ARRAY(NoComp) OF REAL

ValvePosition AS REAL

VARIABLE

Fin AS ARRAY(NoInput) OF Flowrate

Xin AS ARRAY(NoInput,NoComp) OF MassFraction

Fout AS Flowrate

X AS ARRAY(NoComp) OF MassFraction

M AS ARRAY(NoComp) OF Mass

TotalHoldup AS Mass

TotalVolume AS Volume

Height AS Length

EQUATION

Mass balance

FOR i := 1 TO NoComp DO

$M(i) = SIGMA(Fin*Xin(,i)) - Fout*X(i) ;

END

Mass fractions

TotalHoldup = SIGMA(M) ;

M = X * TotalHoldup ;

Calculation of liquid level from holdup

TotalVolume = SIGMA(M/Density) ;

TotalVolume = CrossSectionalArea * Height ;

Fout = ValvePosition * SQRT (Height) ;

Figure 3.4: Multi-component mixing tank MODEL entity

As an additional example, figure 3.5 illustrates the use of nested FOR constructs to implement
the matrix-matrix multiplication operation between matrices A (n×m) and B (m×q), resulting
in a matrix C (n × q).

3.4. Intrinsic gPROMS functions 65

gPROMS Introductory User Guide

MODEL MatrixMultiplication

PARAMETER

n, m, q AS INTEGER

VARIABLE

A AS ARRAY (n, m) OF SomeQuantity

B AS ARRAY (m, q) OF SomeQuantity

C AS ARRAY (n, q) OF SomeQuantity

EQUATION

FOR i := 1 TO n DO

FOR j := 1 TO q DO

C(i,j) = SIGMA(A(i,)*B(,j))

END

END

Figure 3.5: Matrix multiplication MODEL entity

3.4. Intrinsic gPROMS functions 66

gPROMS Introductory User Guide

Chapter 4

Conditional Equations

Contents

4.1 State-Transition Networks . 69

4.2 The CASE conditional construct 74

4.2.1 An example of the use of CASE construct 74

4.2.2 General considerations in the use of CASE constructs 75

4.2.3 Initial values of SELECTOR variables 76

4.3 The IF conditional construct 77

67

gPROMS Introductory User Guide

In section 2.2.3.5, we saw how to define simple equations in gPROMS MODELs. Later, in section
3.3, we introduced the concept of array equations. All the equations that we have encountered
so far are continuous in the sense that they involve the same expressions irrespective of the
values of the variables that occur in them.

The physical behaviour of many process operations, however, are described in terms of discon-
tinuous equations, the form of which depends on the current variable values and, in certain cases
(e.g. involving hysteresis effects), also some aspects of the past history of the system.

This chapter describes the powerful facilities provided by gPROMS for the modelling of discon-
tinuous physics. The next section introduces the concept of State-Transition Networks (STNs)
that forms the basis of this modelling mechanisms. Section 4.2 presents the CASE construct
which provides a direct description of general STNs in the gPROMS language. Finally, section
4.3 presents the IF construct which can be used to describe a special form of STNs that occur
very frequently in practical applications.

We note that, in this chapter, we are interested in discontinuities that arise because of the
intrinsic physical behaviour of the system and not as a result of external discrete actions imposed
on the system by its environment or its operatots (e.g. the opening and closing of manual valves,
the action of discrete controllers at the end of each sampling interval). The description of
discontinuities of this latter kind in gPROMS will be considered in chapters 7 and 8.

68

gPROMS Introductory User Guide

Figure 4.1: Vessel with overflow weir

4.1 State-Transition Networks

Discontinuities in the description of the physical behaviour of process systems may arise in
different ways such as:

• transitions from laminar to turbulent flow;

• reversal of the direction of flow;

• appearance and disappearance of thermodynamic phases;

• equipment failure;

and many others.

State-Transition Networks (STNs) provide a general way of describing discontinuous systems.
This concept is best introduced via an example. Consider the vessel depicted in figure 4.1. It
is similar to the buffer tank of figure 2.3, the only difference being the presence of an overflow
weir. When the level of liquid in the vessel, h, is below the height of the weir, hw, no outflow is
observed. When, on the other hand, the liquid level exceeds the weir height, the rate of outflow
is assumed to be proportional to h − hw.

The mathematical model of the transient behaviour of this system can be written as follows:

Mass balance
dM

dt
= Fin − Fout (4.1)

Calculation of liquid level in the tank

M = ρAh (4.2)

Characterisation of the output flowrate

Fout =

{

0, if h ≤ hw

α(h − hw), if h > hw
(4.3)

We note that two different sets of equations are needed to describe the behaviour of this system
depending on whether the level of the liquid is above or below the weir. Thus, the system may

4.1. State-Transition Networks 69

gPROMS Introductory User Guide

w

wh > h

FlowNoFlow

h < h

F= 0outF out (h - h)wα=

Figure 4.2: STN representation of vessel with overflow weir

exist in two distinct states, Flow and NoFlow, that correspond respectively to whether or not
liquid flows over the weir. At any particular time, the system is in exactly one of these states.
However, transitions from one state to the other will occur instantaneously if certain conditions
are met. For example, if, while the system in in state NoFlow, the height of the liquid exceeds
that of the weir, the system will instantaneously jump to state Flow. Conversely, if, while the
system in in state Flow, the height of the liquid drops below that of the weir, the system will
instantaneously jump to state NoFlow.

The above situation can be represented graphically in terms of an STN as shown in figure 4.2.
The two circles (or ellipses) denote the two possible system states; for convenience, the form of
the discontinuous equation 4.3 in each of these states is also shown within these circles. On the
other hand, equations 4.1 and 4.2 do not appear in this figure as their form is independent of
the state the system is in. The transitions between the two states are also shown in figure 4.2 as
arrows connecting the corresponding circles. Again for convenience, each arrow is labelled with
the logical condition that triggers the corresponding transition.

The STN of figure 4.2 represents a reversible, symmetric discontinuity because:

• the system may jump from either of the two states to the other and,

• the logical condition for one the two transitions is the exact negation of that for the other.

An example of a different type of discontinuity is shown in figure 4.3. Here, a vessel is fitted
with a bursting disc. The disc can either be intact (with no gas flow from the vessel) or burst
(with gas venting from the disc to the flare stack). This gives rise to two distinct system states
(Intact and Burst). As in the previous example, some of the equations that describe the
system take a different form in each of these states while some others remain unchanged.

A transition from Intact to Burst occurs when the pressure in the vessel rises above the
set pressure and the disc shatters. The resulting outflow of gas will then cause an reduction
of the pressure which, eventually, may drop below its set value. However, the system cannot
return to its Intact state once the disc has shattered1. Consequently, this is an example of an
irreversible discontinuity.

A final example is that of a vessel fitted with a safety relief valve (see figure 4.4). The valve
can be either open or closed, which again gives rise to two system states (Open and Closed).
A transition from the Closed to the Open state occurs when the pressure in the vessel rises

1Unless, of course, it is repaired as a result of an external action – see section 7.1.2).

4.1. State-Transition Networks 70

gPROMS Introductory User Guide

above the set pressure, while a transition from the Open to the Closed state occurs when
the pressure falls below a (lower) reseat pressure. This is a reversible, asymmetric discontinuity
because, although there are possible transitions in both directions, the two transition conditions
are not the exact negation of each other.

We note that, in all three examples, only a subset of the model equations are directly related
to the discontinuity and change from one state to another. The rest of the equations remain
unchanged regardless of the state the system is in.

Summarising, a discontinuity in the physical behaviour of a system gives rise to a number of
possible system states. Naturally, at any given time, the system can be in exactly one of these
states. Some of the equations that determine the behaviour of the system hold irrespective of
the system state. However, some others take a different form in each state. Transitions between
the different states take place when certain logical conditions are satisfied.

A system may exhibit more than one physical discontinuity described by multiple STNs and/or
more than two states within the same STN. For instance, a more detailed model of the weir
vessel would seek to characterise the nature of the fluid flow in the outlet pipe. This would give
rise to three system states, i.e. Laminar, Turbulent and Choked.

A complex STN for a hypothetical system is depicted in figure 4.5. Here, the system exhibits
two separate physical discontinuities involving three and two possible states respectively.

• Equations 1, 2 and 3 remain unaffected by the discontinuities and are valid throughout.

• Equation 4 is affected by the first discontinuity and is written as 4a, 4b or 4c, depending
on the state of the system.

• Equations 5 and 6 are affected by the second discontinuity and are written as 5a, 5b and
6a, 6b in each of the two states respectively.

4.1. State-Transition Networks 71

gPROMS Introductory User Guide

���������	�
���
����
���������������

Figure 4.3: Vessel with bursting disc

���! �"$#&% ')(&#&*

+-,.+�/10�2

+435+�6�01/7078�2

Figure 4.4: Vessel with safety relief valve

4.1. State-Transition Networks 72

gPROMS Introductory User Guide

9�:<;=:�>

?A@

?CB?AD

E @ :GF @ E B :<F B

Figure 4.5: Hypothetical system model

4.1. State-Transition Networks 73

gPROMS Introductory User Guide

4.2 The CASE conditional construct

The CASE construct permits the description of general STNs of the type discussed in the previous
section within a MODEL.

4.2.1 An example of the use of CASE construct

Figure 4.6 illustrates the use of the CASE construct in a MODEL of a vessel with a bursting disc
(cf. figure 4.3).

MODEL VesselWithDisc

PARAMETER

R AS REAL DEFAULT 8.314 # J/K.mol

VesselVolume AS REAL

BurstPressure AS REAL

AtmPressure AS REAL

DiscConstant AS REAL

VARIABLE

FlowIn, FlowOut AS MolarFlowrate

ReliefFlow AS MolarFlowrate

HoldUp AS Moles

T AS Temperature

Pressure AS Pressure

SELECTOR

DiscFlag AS (Intact, Burst) DEFAULT Intact

EQUATION

Mass balance

$HoldUp = FlowIn - FlowOut - ReliefFlow ;

Ideal gas law

Pressure * VesselVolume = Holdup * R * T ;

CASE DiscFlag OF

WHEN Intact : ReliefFlow = 0 ;

SWITCH TO Burst IF Pressure > BurstPressure ;

WHEN Burst : ReliefFlow = DiscConstant * SQRT(R*T) ;

END # Case

Energy balance

. .

Figure 4.6: MODEL entity for a vessel equipped with a bursting disc

4.2. The CASE conditional construct 74

gPROMS Introductory User Guide

We note that this MODEL presents two features that we encounter for the first time:

1. A SELECTOR section is used for the declaration of the system states that arise from the
discontinuity:

SELECTOR

DiscFlag AS (Intact, Burst) DEFAULT Intact

declares an enumerated (“selector”) variable, DiscFlag that can take only two values,
namely Intact or Burst, with the former being the default value at the start of the
simulation (see below). The default specification is optional and may be omitted.

2. The MODEL equations include the CASE equation:

CASE DiscFlag OF

WHEN Intact : ReliefFlow = 0 ;

SWITCH TO Burst IF Pressure > BurstPressure ;

WHEN Burst : ReliefFlow = DiscConstant * SQRT(R*T) ;

END # Case

that defines

• the equation(s) that hold in each state, and

• the logical condition(s) that trigger transitions between states.

More precisely, the above CASE construct states that:

• When the system is in the Intact state, the relief flow is zero. The system remains in
this state as long as the pressure in the vessel is lower than the bursting pressure of the
disc. When it exceeds that limit, a transition to the Burst state is initiated.

• When the system is in the Burst state, the relief flow is calculated from a sonic flow
relationship2. As this is an irreversible discontinuity, there is no transition going back to
the Intact state.

4.2.2 General considerations in the use of CASE constructs

In general, a CASE equation comprises two or more clauses, one for each possible value of the
corresponding SELECTOR variable. Each of the clauses comprises a list of equations, followed by
an optional list of SWITCH statements that define transitions from the current clause to other
clauses of the CASE equation. The list of equations may include any combination of simple, array
and even conditional equations3. The latter feature allows nesting of conditional equations to
arbitrary depth.

It is important, however, to observe the following restrictions:

2The form of the equation presented here is only for illustration purposes. A more detailed form
would take account of various other effects, including the transition from sonic to sub-sonic flow as the
pressure in the vessel decreases.

3Including not only CASE constructs but also IF constructs – see section 4.3.

4.2. The CASE conditional construct 75

gPROMS Introductory User Guide

Restrictions on the Form of CASE Constructs

• The number of equations in each clause of a CASE construct must be the same.

• Each SELECTOR variable may be used in only one CASE construct.

The reason for the first restriction is obvious if one considers that the number of variables in
the MODEL remains unaffected by the occurrence of transitions. Consequently, any change in the
number of equations would lead to an over- or under-specified problem. The second restriction
is imposed to avoid inconsistencies that might arise from different CASE attempting to force the
same SELECTOR variable to switch to different values at the same time.

4.2.3 Initial values of SELECTOR variables

Another important consideration concerning the use of CASE equations is that, in order for a
simulation experiment to commence, the initial (i.e. at time t = 0) value of the corresponding
SELECTOR variable has to be specified. Thus, in our example the user must specify whether
or not the disc is initially intact or not. This information cannot be inferred automatically by
gPROMS: the mere fact that the initial system pressure is below the bursting value does not
necessarily mean that the disc is intact – it may well have burst as a result of earlier operation!

If a default value has been specified for the SELECTOR variable in the MODEL, then this will be
used as its initial value for the simulation. More generally, this value can be set or overridden for
individual simulation experiments. This is done in the SELECTOR section of the PROCESS section
(cf. section 2.2.5). For instance:

UNIT T101 AS VesselWithDisc

...

SELECTOR

T101.DiscFlag := T101.Burst ; # Disc is initially burst

INITIAL

T101.Pressure - T101.BurstPressure = -1E5 ;

...

Thus, in this example, we specify the disc as being burst despite the fact that the initial pressure
of the system is specified to be 1 bar below the bursting pressure. From the syntactical point
of view, it is important to note the use of the full pathname T101.Burst to denote the value of
the SELECTOR variable. A specification of the form:

UNIT T101 AS VesselWithDisc

...

SELECTOR

T101.DiscFlag := Burst ; # Disc is initially burst

would be meaningless as the identifier Burst is not known directly to the PROCESS section – it
is defined only within the context of MODEL VesselWithDisc of which T101 is an instance.

4.2. The CASE conditional construct 76

gPROMS Introductory User Guide

4.3 The IF conditional construct

As we have seen in section 4.2, CASE constructs provide a general way in which STNs of arbi-
trary complexity can be described in the gPROMS language. However, reversible and symmetric
discontinuities are by the far the most commonly encountered discontinuities in industrial pro-
cessing systems. Although such discontinuities can be declared using CASE constructs, gPROMS
provides the alternative IF conditional construct specifically as a convenient shorthand for the
declaration of this common type of discontinuity.

MODEL VesselWithWeir

PARAMETER

Rho AS REAL

MolecularWeight AS REAL

CrossSectionalArea AS REAL

WeirHeight AS REAL

WeirLength AS REAL

VARIABLE

HoldUp AS Mass

FlowIn, FlowOut AS MassFlowrate

Height AS Length

EQUATION

Mass balance

$HoldUp = FlowIn - FlowOut ;

Calculation of liquid level from holdup

Holdup = CrossSectionalArea * Height * Rho ;

IF Height > WeirHeight THEN

Francis formula for flow over a weir

FlowOut = 1.84 * (Rho/MolecularWeight)

* WeirLength * ABS(Height-WeirHeight)^1.5 ;

ELSE

FlowOut = 0 ;

END # If

Figure 4.7: MODEL entity for a vessel equipped with an overflow weir

Figure 4.7 demonstrates the use of an IF equation in the declaration of a MODEL for a vessel
fitted with an overflow weir (cf. figure 4.1).

4.3. The IF conditional construct 77

gPROMS Introductory User Guide

IF Height > WeirHeight THEN

Francis formula for flow over a weir

FlowOut = 1.84 * (Rho/MolecularWeight)

* WeirLength * ABS(Height-WeirHeight)^1.5 ;

ELSE

FlowOut = 0 ;

END # If

A logical condition (in this case, Liquid Level > Weir Height) is used to choose between two
clauses, each comprising a list of equations. If the logical condition is satisfied, the equations
declared in the first clause are included in the system model, otherwise the equations of the
second clause are included. As with CASE equations, the number of equations in each clause
must be the same.

As IF equations are a special case of CASE equations, there is always a CASE equation that
achieves the same result. For instance, the IF equation for the overflow weir is equivalent to the
following CASE equation:

SELECTOR

WeirFlag AS (Above, Below)

...

EQUATION

...

CASE WeirFlag OF

WHEN Above : FlowOut = 1.84 * (Rho/MolecularWeight)

* WeirLength * ABS(Height-WeirHeight)^1.5 ;

SWITCH TO Below IF Height < WeirHeight ;

WHEN Below : FlowOut = 0 ;

SWITCH TO Above IF Height > WeirHeight ;

END # Case

...

A subtle difference between IF and CASE equations is that, in IF equations, the initially active
state of the system cannot be specified explicitly by the user (cf. section 4.2.3). Instead, it is de-
termined automatically by the initialisation calculation, which ensures that the consistent initial
values obtained satisfy both the logical condition and the equations in this state. However, the
solution of non-linear systems involving such conditional equations is far from trivial. Moreover,
it is possible that a valid solutions exists in either clause of an IF equation; in such cases, the
solution found will depend on the initial guesses and the numerical method employed during the
initialisation procedure. In view of these factors, it may sometimes be preferable to use a CASE

equation instead, especially if the initial state of the system is known a priori.

4.3. The IF conditional construct 78

gPROMS Introductory User Guide

Chapter 5

Distributed Models

Contents

5.1 Declaring DISTRIBUTION DOMAINs 81

5.2 Declaring distributed VARIABLEs 83

5.3 Defining distributed EQUATIONs 85

5.3.1 Distributed expressions . 85

5.3.2 The PARTIAL operator . 87

5.3.3 The INTEGRAL operator . 88

5.3.4 Explicit and implicit definition of distributed equations 90

5.3.5 BOUNDARY Conditions . 91

5.4 Specifying discretisation methods for distribution domains 93

79

gPROMS Introductory User Guide

A significant number of unit operations in chemical or biochemical processes take place in
distributed systems in which properties vary with respect to one or more spatial dimensions as
well as time. For instance, a tubular reactor is described in terms of parameters and variables
that, in addition to time, depend on the axial and radial position within the reactor (e.g. T (z, r, t)
etc.). Other common examples of distributed unit operations include packed bed absorption,
adsorption and distillation columns and chromatographic columns.

In other unit operations, material properties are characterised by probability density functions
instead of single scalar values. Examples include crystallisation units and polymerisation re-
actors, in which the size of the crystals and the length of the polymer chains respectively are
described in terms of distribution functions. The form of the latter may also vary with both
time and spatial position.

In fact, most complex processes involve a combination of distributed and lumped unit operations.
The equations that determine the behaviour of such unit operations are typically systems of
integral, partial differential, ordinary differential and algebraic equations (IPDAEs).

This chapter discusses the mechanisms provided by the gPROMS language for the declaration
of MODELs that describe distributed unit operations.

The system shown in figure 5.1 will be used to illustrate the relevant features. It is a tubular
reactor used to carry out a liquid-phase exothermic chemical reaction. The intensive properties
of the fluid in the tube vary with both axial and radial position as well as with time. The
reactor is surrounded by a well-mixed cooling jacket. Thus, the intensive properties of the
cooling medium are assumed to be uniform throughout the jacket but may still vary with time.

z

r

Figure 5.1: Tubular flow reactor

80

gPROMS Introductory User Guide

5.1 Declaring DISTRIBUTION DOMAINs

The temperature in the reactor of figure 5.1 varies with time, axial and radial position (T (z, r, t)).
As was mentioned in Chapter 2, all variables that are declared within a MODEL are automatically
assumed to be functions of time. However, variations over other distribution domains (in this
case the axial and radial domains, z and r respectively) have to be specified explicitly.

Distribution domains are declared in the DISTRIBUTION DOMAIN section of a MODEL. Figure 5.2
shows how two such domains called Axial and Radial are declared in a MODEL of a tubular
reactor. The extents of both domains are specified in terms of two model parameters, namely
ReactorLength and ReactorRadius, respectively.

MODEL TubularReactor

PARAMETER

Number of components

NoComp AS INTEGER

Geometrical parameters

ReactorRadius,

ReactorLength AS REAL

Transport properties

Axial and radial mass diffusivities

Dz, Dr AS REAL

Axial and radial thermal conductivities

Kz, Kr AS REAL

Reaction

Stoichiometric coefficients

Nu AS ARRAY(NoComp) OF INTEGER

...

DISTRIBUTION_DOMAIN

Axial AS [0 : ReactorLength]

Radial AS [0 : ReactorRadius]

...

Figure 5.2: PARAMETER and DISTRIBUTION DOMAIN sections for a MODEL of a tubular
reactor

In general, the lower and upper bounds of the range of each distribution domain can be specified
in terms of real expressions involving real constants and/or real parameters. Thus, the following
are also valid distribution domain declarations:

5.1. Declaring DISTRIBUTION DOMAINs 81

gPROMS Introductory User Guide

Normalised axial and radial domains

DISTRIBUTION_DOMAIN

z AS [0 : 1]

r AS [0 : 1]

Axial domain encompassing the second half of the reactor

DISTRIBUTION_DOMAIN

HalfAxial AS [ReactorLength/2 : ReactorLength]

5.1. Declaring DISTRIBUTION DOMAINs 82

gPROMS Introductory User Guide

5.2 Declaring distributed VARIABLEs

A MODEL may involve variables with different degrees of distribution. For instance, in the tubular
reactor example, the temperature of the fluid and the concentrations of the various chemical
components within the tube are indeed functions of both the radial and axial positions. However,
the wall temperature is a function only of axial position, while the temperature in the cooling
jacket does not vary with spatial position at all1.

MODEL TubularReactor

PARAMETER

...

DISTRIBUTION_DOMAIN

...

VARIABLE

Reactor temperature

T AS DISTRIBUTION(Axial,Radial) OF Temperature

Concentrations

C AS DISTRIBUTION(NoComp,Axial,Radial) OF Concentration

Feed composition

Cin AS ARRAY(NoComp) OF Concentration

Cooling jacket temperature

Tc AS Temperature

...

Figure 5.3: VARIABLE section for a MODEL of a tubular reactor

• Variable T, which represents the temperature in the reactor, is declared as a DISTRIBUTION

over the two continuous domains, Axial and Radial.

• Variable C, representing the concentrations of the various components in the reactor,
is clearly an array of variables distributed over both the radial and axial domains. In
gPROMS, an array of distributions is represented by adding one or more extra domains
to a DISTRIBUTION. These domains are discrete in nature and they do not need to be
declared explicitly in the DISTRIBUTION DOMAIN section — a simple integer expression in
the VARIABLE declaration suffices.

For example, the concentration variable C ranges from 1 to NoComp, the number of com-
ponents in the system), as well as over the two continuous domains, Axial and Radial.

• Variable Cin, representing the concentrations of the various components in the feed, is
distributed over the discrete domain of components only. Although this could be written

1Of course, all of these variables are also functions of time, as is always the case with VARIABLEs in
gPROMS.

5.2. Declaring distributed VARIABLEs 83

gPROMS Introductory User Guide

as:

Cin AS DISTRIBUTION(NoComp) OF Concentration

here we prefer to use the ARRAY concept as it is more natural.

• Variable Tc, representing the temperature in the cooling jacket, is solely a function of
time.

In essence, then, DISTRIBUTION is a generalisation of the ARRAY concept that allows a VARIABLE

to vary over both continuous and discrete domains. Conversely, ARRAYs is a special case of a
DISTRIBUTION that is used to declare variables that are distributed over discrete domains only.
Although DISTRIBUTIONs can also be used for that purpose, the ARRAY construct is retained for
compatibility with other programming languages.

Note that it is not permitted to declare a variable that is distributed over two domains of the
same type. For instance, a temperature field over a square domain cannot be declared as:

T AS DISTRIBUTION(XDomain,XDomain) OF Temperature

The reason for this restriction is that a more complex syntax would then be required in order to
distinguish between partial derivatives of the variable T with respect to the first and the second
independent variables (see section 5.3.2).

This does not actually lead to any real restriction in functionality: variable T could easily be
declared as:

T AS DISTRIBUTION(XDomain,YDomain) OF Temperature

where XDomain and YDomain are declared to be identical:

DISTRIBUTION_DOMAIN

XDomain, YDomain AS [0.0 : Length]

This also has the advantage of allowing different discretisation methods to be applied to each of
the two domains (see section 5.4).

5.2. Declaring distributed VARIABLEs 84

gPROMS Introductory User Guide

5.3 Defining distributed EQUATIONs

As with lumped models, the variables in MODELs are related through sets of equations that are
declared in the EQUATION section. The following sections discuss these declarations, examining
in detail a number of issues that are unique to distributed systems.

5.3.1 Distributed expressions

In sections 3.2.2 and 3.4, we saw how array expressions can be constructed by combining array
variables using arithmetic operators and functions. In a very analogous manner, distributed
expressions may be built from distributed variables. For example, consider the following decla-
rations within a MODEL of a tubular reactor:

MODEL TubularReactor

PARAMETER

Geometrical parameters

ReactorRadius,

ReactorLength AS REAL

Heat transfer parameters

U, S AS REAL

...

DISTRIBUTION_DOMAIN

Axial AS [0 : ReactorLength]

Radial AS [0 : ReactorRadius]

VARIABLES

Vz, Vr AS DISTRIBUTION (Axial, Radial) OF Velocity

T AS DISTRIBUTION (Axial, Radial) OF Temperature

Twall AS DISTRIBUTION (Axial) OF Temperature

Tc AS Temperature

In this case, Vz * T is a valid expression that is distributed over the entire Axial and Radial

domains. Similarly,

U * S * (T(,ReactorRadius) - Tc)

is also a valid expression distributed over the entire Axial domain.

In some cases, it may be desired to define an expression over part of a particular domain. This
can be achieved by using slices of distributions, very similar to the slice concept for arrays (cf.
section 3.2.1). For example, the expression:

Vz(0:ReactorLength/2,) * T(0:ReactorLength/2,)

5.3. Defining distributed EQUATIONs 85

gPROMS Introductory User Guide

is distributed over the first half of the Axial domain and the entire Radial domain.

The mathematical modelling of distributed systems often requires a rather subtle distinction
between the entire domain including its boundaries, and the domain excluding all or part of its
boundaries. In standard mathematical terminology, these two kinds of domain are referred to
as “closed” and “open” respectively. One major reason for introducing this distinction is that
some of the equations (e.g. conservation laws) may hold only in the interior of a domain while
being replaced by appropriate boundary conditions (cf. section 5.3.5) on the domain boundaries.

To allow the modellers to make the above distinction, gPROMS employs the notation shown in
table 5.1.

Mathematical notation Interpretation gPROMS notation

[a, b] z ∈ [a, b] ⇔ a ≤ z ≤ b a : b

(a, b] z ∈ (a, b] ⇔ a < z ≤ b a|+ : b

[a, b) z ∈ [a, b) ⇔ a ≤ z < b a : b|-

(a, b) z ∈ (a, b) ⇔ a < z < b a|+ : b|-

Table 5.1: Closed and open domain notation

Thus, the variable slice Vz(0|+:ReactorLength, 0|+:ReactorRadius|-) denotes the values
Vz(z, r) for the values of z and r satisfying 0 < z ≤ ReactorLength and 0 < r < ReactorRadius.

We conclude by formally defining the validity of expressions involving distributed variables.
Consider an expression x ⊗ y where x and y are scalar or distributed expressions, and ⊗ is a
binary arithmetic operator (+, -, *, /,)̂. Then this is a valid gPROMS expression if and only if
it conforms to one of the four cases listed below:

Case x y Dimensionality Interpretation
of x ⊗ y of x ⊗ y

1. Scalar Scalar Scalar xy
2. Array Scalar Same as x x(...) ⊗ y
3. Scalar Distribution Same as y x ⊗ y(...)
4. Distribution Distribution Same as x and y x(...) ⊗ y(...)

Clearly, case 4 is valid only if both x and y are distributed over exactly the same domains, also
taking account of whether each of these is open or closed. For example, the following is a valid
expression:

Vz(0|+:ReactorLength,ReactorRadius|-) * Twall(0|+:ReactorLength)

that is distributed over the Axial domain which is open on (i.e. does not include) the left
boundary (z = 0) but closed on (i.e. includes) the right boundary (z =ReactorLength). On the
other hand, the expression:

Vz(0|+:ReactorLength,ReactorRadius) * T(0:ReactorLength,ReactorRadius)

5.3. Defining distributed EQUATIONs 86

gPROMS Introductory User Guide

is invalid because the first operand Vz is distributed over a domain that is open on the left and
closed on the right, while the second operand T is distributed over a domain that is closed on
both ends.

5.3.2 The PARTIAL operator

Partial differentiation of a distributed variable or expression with respect to a domain over which
it is distributed is achieved with the PARTIAL operator. Its syntax is of the form:

PARTIAL (Expression, DistributionDomain)

where Expression is a general expression and DistributionDomain is one of the distribution
domains in the system. Normally, at least one of the variables involved in the differentiated
expression will be distributed over the specified domain, otherwise the result of the differentiation
will be zero. PARTIAL operators may also be nested.

The result of a PARTIAL operator is generally a distributed expression that has exactly the same
degree of distribution as the Expression being differentiated.

5.3.2.1 First order partial derivatives

Considering the example presented in section 5.3.1, the following are examples of valid first order
partial derivative expressions:

∂T

∂z
, z ∈ [0, L], r ∈ [0, R] PARTIAL(T,Axial)

∂(VzT)

∂r
, z ∈ (0, L], r = R PARTIAL(Vz(0|+:L, ReactorRadius)*

T(0|+:L,ReactorRadius),Radial)

∂

∂r

(

kr

∂T

∂r

)

, z = 0, r ∈ (0, R) PARTIAL(Kr(0,0|+:ReactorRadius|-)*

PARTIAL(T(0,0|+:ReactorRadius|-),Radial),Radial)

Note that the partial differentiation operator with respect to time is denoted by symbol $ rather
than the operator PARTIAL. Thus:

∂T

∂t
$T

There are two reasons for this:

• The use of $ is consistent with the time derivative operator in lumped systems (cf. section
2.2.3.5).

• The numerical solution methods in gPROMS treat the time domain quite differently to
the explicitly declared distribution domains (see section 5.4).

5.3. Defining distributed EQUATIONs 87

gPROMS Introductory User Guide

5.3.2.2 Higher order partial derivatives

PARTIAL operators may be nested to express higher order derivatives as follows:

PARTIAL(Expression,PARTIAL(Expression,DistributionDomain),DistributionDomain)

Alternatively, the following abbreviated form may be used:

PARTIAL (Expression, DistributionDomain, DistributionDomain)

Here differentiation first takes place with respect to the first domain, then with respect to the
second etc. For example:

∂2T

∂z2
, z ∈ (0, L), r ∈ (0, R)

PARTIAL(T(0|+:ReactorLength|-,0|+:ReactorRadius|-,Axial,Axial)

5.3.3 The INTEGRAL operator

Integrals occur frequently in equations arising in a number of branches of physics and engineering.
In process engineering applications, they often occur in population balance models describing,
for instance, crystal size distributions, activity distributions of recycled catalyst particles, and
the age and size distribution of microbiological cultures. They also appear when average values
of distributed variables need be calculated.

Integration of a distributed variable with respect to a domain is achieved with the INTEGRAL

operator. Its syntax is of the form:

INTEGRAL (IntegralRange ; Expression)

where Expression is a general expression involving variables that are distributed over one or
more distribution domains and IntegralRange represents the range of integration.

The result of a INTEGRAL operator is generally an expression that is distributed over one less
domain than the Expression being integrated.

The above are best illustrated by example (see below).

5.3.3.1 Single integrals

The following are examples of single integrals:

∫ 1

0

e−z2

dx INTEGRAL(z := 0:1 ; EXP(-z^2))

∫ L

0

(T (z, r) − Tc) dz r ∈ (0, R) INTEGRAL(z := 0:ReactorLength ;

T(z,0|+:ReactorRadius|-)-Tc)

5.3. Defining distributed EQUATIONs 88

gPROMS Introductory User Guide

Note that an integration variable (e.g. z in the above examples) is introduced to define the range
of integration. The integrand is generally an expression that may involve the MODEL variables
and/or the integration variable.

Also note that, in the first example above, the result of the INTEGRAL is just a scalar quantity.
On the other hand, the second example results in an expression that is distributed over the open
domain (0, R).

5.3.3.2 Multiple integrals

Multiple integrals can be defined via a shorthand notation.

For example, the mean temperature in the entire tubular reactor is given by:

T =
2

LR2

∫ L

0

∫ R

0

rT (z, r) dr dz

which, in gPROMS, can be written as:

2 / (ReactorLength* ReactorRadius^2) *

INTEGRAL(z := 0:ReactorLength , r := 0:ReactorRadius ; r*Temp(z,r))

5.3.3.3 Relationship between the INTEGRAL and SIGMA Operators

Since the DISTRIBUTION concept is a generalisation of ARRAY (cf. section 5.2), the INTEGRAL

operator can also be used for the integration of a given expression over a discrete domain. Thus,
INTEGRAL can be viewed as a generalisation of the SIGMA intrinsic function introduced in section
3.4.2 for carrying out discrete domain summations.

For instance, the molar fractions of the reactants at the tubular reactor entrance are defined as:

xi =
ci

∑

k ck

This equation can be represented in terms of either the SIGMA function or the INTEGRAL function,
as shown below:

Using SIGMA function

X(,0) = C(,0) / SIGMA(C(,0)) ;

Using INTEGRAL operator

X(,0) = C(,0) / INTEGRAL(i := 1:NoComp ; C(i,0)) ;

However, the INTEGRAL operator is more general than the SIGMA function; whereas SIGMA always
results in a scalar by summing all dimensions of its argument, INTEGRAL can have a more
narrowly specified summation domain. For instance, consider a two-dimensional array variable
A(5,10). Then

5.3. Defining distributed EQUATIONs 89

gPROMS Introductory User Guide

SIGMA (A(2:4,))

is the scalar
∑4

i=2

∑10
j=1 Aij , whereas

INTEGRAL (i := 2:4 ; A(i,))

is a vector of length 10, the jth element of which is
∑4

i=2 Aij .

5.3.4 Explicit and implicit definition of distributed equations

Having introduced the concept of distributed expressions (cf. section 5.3.1) and the PARTIAL

and INTEGRAL operators (cf. sections 5.3.2 and 5.3.3), the definition of distributed equations is
fairly straightforward.

As in the case of array equations, there are two different ways of writing distributed equations
in gPROMS. The first exploits the concept of distributed expressions (cf. section 5.3.1) to define
equations in an implicit manner. For example, the following equation sets the temperature
throughout the interior of the reactor to a uniform value of 298 K:

T(0|+:ReactorLength|-,0|+:ReactorRadius|-) = 0 ;

This compact form of the equation will be automatically expanded by gPROMS (cf. section
3.3.1).

An alternative way of writing the same equation is in an explicit form by making use of FOR

constructs (cf. section 3.3.2):

FOR z := 0|+ TO ReactorLength|- DO

FOR r := 0|+ TO ReactorRadius|- DO

T(z,r) := 298 ;

END

END

The two forms are completely equivalent, from the points of view of both the definition of the
equation and its numerical solution. Thus, which one you use depends on your preferences. How-
ever, the definition of some distributed equations require the extra flexibility afforded by the use
of the FOR construct. One such case involves equations which involve the independent variables
directly. Another case arises with equations involving SIGMA and/or INTEGRAL operators that
need to be applied only to some of the domains of their arguments.

For example, consider the chemical species conservation equations within the tubular reactor.
These are of the form:

∂Ci

∂t
= −υ

∂Ci

∂z
+ Dz

∂2Ci

∂z2
+

Dr

r

∂

∂r

(

r
∂Ci

∂r

)

+
NR
∑

j=1

νijrj , i = 1..NC, z ∈ (0, L), r ∈ (0, R),

These can be written in gPROMS as follows:

5.3. Defining distributed EQUATIONs 90

gPROMS Introductory User Guide

FOR i := 1 TO NoComp DO

FOR z := 0|+ TO ReactorLength|- DO

FOR r := 0|+ TO ReactorRadius|- DO

$Concentration(i,z,r) =

- Velocity * PARTIAL(C(i,z,r),Axial)

+ Dz * PARTIAL(C(i,z,r),Axial,Axial)

+ (Dr/r) * PARTIAL(r*PARTIAL(C(i,z,r),Radial),Radial)

+ SIGMA(Nu(i,)*r(,z,r)) ;

END

END

END

Note how the range of application of each FOR construct is defined so as to ensure that the
equation is enforced only at the interior of the domain of interest.

As a second example consider the energy conservation equation for the cooling jacket. This
leads to a lumped equation that is related to the reactor energy balance through an integral
term describing the heat flux over the entire length of the reactor:

ρcCp,cVc
dTc

dt
= fcCp,c(Tc,in − Tc) + US

∫ L

0

(T (z, R) − Tc) dz.

This can be written in gPROMS as follows:

Rhoc * Cpc * Vc * $Tc = Fc * Cpc * (TcIn - Tc)

+ U * S * INTEGRAL(z := 0:ReactorLength ; T(z,ReactorRadius)-Tc) ;

5.3.5 BOUNDARY Conditions

In contrast to initial conditions, which may differ from one simulation experiment to the next,
boundary conditions are part of the description of the physical system behaviour itself. In
gPROMS, they are therefore specified within MODELs.

Boundary conditions can be viewed simply as additional equations relating the MODEL variables;
consequently, they may be included in the EQUATION section, together with all other model
equations. However, for the sake of clarity, the user is encouraged to include the boundary
conditions in a separate section, under the keyword BOUNDARY.

For instance, the boundary condition for heat transfer at the tubular reactor wall,

−kr

∂T

∂r

∣

∣

∣

∣

r=R

= Uh(T − Twall) , z ∈ (0, L),

can be written as follows:

BOUNDARY

...

5.3. Defining distributed EQUATIONs 91

gPROMS Introductory User Guide

Heat transfer relation at tube wall

FOR z := 0|+ TO ReactorLength|- DO

- Kr * PARTIAL(T(z,ReactorRadius),Radial) =

Uh * (T(z,ReactorRadius) - Twall(z)) ;

END

...

EQUATION

In any case, gPROMS currently treats the BOUNDARY and EQUATION sections in exactly the same
way for the purposes of numerical solution.

5.3. Defining distributed EQUATIONs 92

gPROMS Introductory User Guide

5.4 Specifying discretisation methods for distribution do-

mains

The solution of systems of IPDAEs is generally a difficult problem. Changing the value of a
parameter or one of the boundary conditions may lead to completely different behaviour from
that originally anticipated. Furthermore, although some numerical methods can accurately solve
a given system, other numerical methods may be totally unable to do so.

The systems of IPDAEs defined within gPROMS MODELs are normally solved using the method-
of-lines family of numerical methods. This involves discretisation of the distributed equations
with respect to all spatial domains, which reduces the problem to the solution of a set of DAEs.

A number of different techniques fall within the method-of-lines family of methods, depending
on the discretisation scheme used for discretising the spatial domains. Ideally, this discretisation
scheme should be selected automatically—or, indeed, a single discretisation method that can
deal efficiently with all forms of equations and boundary conditions would be desirable. However,
this is not technically feasible at the moment and therefore gPROMS relies on the user to specify
the preferred discretisation method.

Three specifications are necessary to completely determine most discretisation methods:

• Type of spatial discretisation method. The proper choice of the discretisation method
is often the critical decision for solving a system of IPDAEs. As we mentioned earlier,
because no method is reliable for all problems, the incorrect choice of method may lead
to physically unrealistic solutions, or even fail to obtain any results.

• Order of approximation. The order of approximation for partial derivatives and integrals
in finite difference methods, and the degree of polynomials used in finite element methods
has a great influence on the accuracy of the solution. This is especially true if coarse grids
or only a small number of elements are used.

• Number of discretisation intervals/elements. The number of discretisation intervals in
finite difference methods and the number of elements in finite element methods are also
of great significance in determining the solution trajectory. A coarse grid or a small
number of elements for a steep gradient problem may result in an unacceptably inaccurate
solution. On the other hand, too fine a grid or too many elements will increase the required
computational efforts drastically, leading to an inefficient solution procedure.

The gPROMS language allows users to specify all three characteristics. DISTRIBUTION DOMAINs
are treated as parameters and can be SET to the desired discretisation method, order and
granularity of approximation. Table 5.2 lists the currently available numerical methods, their
corresponding keywords in the language and the currently supported orders of approximation
for each.

An excerpt from a PROCESS involving an instance R101 of the TubularReactor MODEL is shown
in figure 5.4. The Axial domain within this instance is to be discretised using centered finite
differences of second order over a uniform grid of 150 intervals. On the other hand, the Radial

domain is to be handled using third order orthogonal collocation over four finite elements.

Note that the specification of discretisation methods is done separately for each distribution
domain in each instance of the corresponding MODEL, thus allowing maximal flexibility in this
respect.

5.4. Specifying discretisation methods for distribution domains 93

gPROMS Introductory User Guide

Numerical method Keyword Order(s) Partial Integrals
derivatives

Centered finite difference method CFDM 2, 4, 6 X X

Backward finite difference method BFDM 1, 2 X X

Forward finite difference method FFDM 1, 2 X X

Orthogonal collocation OCFEM 2, 3, 4 X X

on finite elements method
Gaussian quadratures 5 X

Table 5.2: Numerical methods for distributed systems in gPROMS

PROCESS StartUpSimulation

UNIT

R101 IS TubularReactor

...

SET

R101.Axial := [CFDM, 2, 150] ;

R101.Radial := [OCFEM, 3, 4] ;

...

Figure 5.4: SETting the discretisation methods, orders and granularities

Also, similarly to other parameters, although it is possible to specify numerical solution method
information within the MODELs themselves, in the interests of model reusability and generality,
is is often better to associate these with the specific instances of MODELs that are included in
PROCESSes.

5.4. Specifying discretisation methods for distribution domains 94

gPROMS Introductory User Guide

Chapter 6

Composite Models

Contents

6.1 Hierarchical sub-model decomposition 97

6.2 Declaring higher-level MODELs 99

6.2.1 Instances of lower-level models: the UNIT concept 99

6.2.2 Arrays of UNITs . 100

6.2.3 The WITHIN construct . 101

6.3 Specifying connections as EQUATIONs 104

6.4 Specifying connections using STREAMs 107

6.4.1 The STREAM concept . 107

6.4.2 Stream type declarations . 108

6.4.3 Connecting models via STREAMs 108

6.5 Parameter value propagation 112

6.5.1 Explicit parameter assignment 112

6.5.2 Automatic parameter propagation 113

95

gPROMS Introductory User Guide

The MODELs that we have considered so far have been simple, comprising relatively small numbers
of parameters, variables and equations. In practical terms, this implies that all of these could
be declared within a single MODEL entity.

However, many processing systems are much more complex than that, and their models involve
many thousands or even tens of thousands of variables and equations. Although in principle all
of these could be written in a single MODEL, in practice such an undertaking would be extremely
tedious and error-prone.

This chapter deals with the tools that the gPROMS language provides for managing this kind
of complexity. Section 6.1 discusses the idea of hierarchical sub-model decomposition. Sections
6.2 to 6.4 then describe the gPROMS language constructs that support this strategy.

96

gPROMS Introductory User Guide

6.1 Hierarchical sub-model decomposition

Consider the task of developing a model for the hypothetical process shown in figure 6.1. One
approach would be to construct a single, primitive MODEL that would contain the declarations of
all parameters, variable and equations for the entire flowsheet. This is, of course, a conceptually
simple task that can be accomplished entirely using the ideas that we have already introduced.
However, in practice, it may be very inefficient and error-prone. An alternative approach is,
therefore, required.

Indeed, closer examination reveals that the flowsheet can be decomposed into three intercon-
nected sections representing the pre-treatment, reaction and separation sections respectively.
The development of models for each of these sections can initially be considered in isolation.
Once these models are developed and tested, we can connect instances of each one of them in
an appropriate way to construct the flowsheet model.

In fact, we can apply the above decomposition idea to the development of the models for the
individual sections. The separation section may, for example, consist of a train of three distil-
lation columns. It is clearly more efficient to develop a generic model of a distillation column,
and then connect three instances of this model to form a model of the separation section. And
then, at the next level, a distillation column model can also be decomposed into instances of
models for the reboiler, condenser, stripping and rectification sections.

At this point, we may well decide that the reboiler and condenser models are simple enough
that they do not need to be decomposed further but can simply be defined directly in terms of
explicitly declared variables and equations. We call these “primitive” models. On the other hand,
there is considerable advantage in decomposing the models of the stripping and rectification
section into sets of instances of a tray model connected in a regular structure.

The procedure outlined above is called hierarchical sub-model decomposition. Its net result is
that the model for a complex process is constructed progressively in a number of hierarchical
levels. This is much easier than constructing a very large primitive model for the entire flowsheet
because at each level in the hierarchy one can concentrate on only a small fraction of the
modelling task. As a result, the models are easier to construct and less likely to contain errors.

Moreover, this strategy promotes model reusability. Suitably parameterised models of common
process components, such as pumps, valves, or even complex structures such as distillation
columns, can be used several times. The models of these components will thus have to be
constructed and tested once only. Once this is done, instances of these models may be used to
form more complex models without having to repeat the effort involved.

The gPROMS language encourages hierarchical sub-model decomposition by offering mecha-
nisms that support:

• the declaration of high-level MODELs that contain instances of lower-level MODELs (see sec-
tion 6.2);

• the connection of the above instances to represent flows of material, energy and informa-
tion between them (cf. sections 6.3 and 6.4).

An important practical issue that arises in the use of models involving multiple hierarchical
levels is that of the ease of specification of PARAMETER values. In many practical applications,
the same parameters occur in many different model instances within the hierarchy. Clearly, a

6.1. Hierarchical sub-model decomposition 97

gPROMS Introductory User Guide

mechanism for avoiding the need for multiple specifications of the values for these parameters
is highly desirable. gPROMS provides such a mechanism which is discussed in section 6.5.

REACTION
SECTION

PRETREAT

SE
PA

R
A

T
IO

N
SE

C
T

IO
N

Plant

Separation
Section

Column

C
O

L
U

M
N

C
O

L
U

M
N

C
O

L
U

M
N

L
IN

K
E

D
T

R
A

Y
S

L
IN

K
E

D
T

R
A

Y
S

FEED

CONDENSER

REBOILER

Linked
Trays

TRAY

TRAY

TRAY

Tray

Figure 6.1: Hierarchical sub-model decomposition

6.1. Hierarchical sub-model decomposition 98

gPROMS Introductory User Guide

6.2 Declaring higher-level MODELs

All models in gPROMS are described by MODEL entities, and this applies both to primitive
ones and higher-level ones. The main difference is that the latter may contain instances of
other models; however, just like primitive models, they can also contain their own parameters,
variables and equations.

In this section, we see how instances of lower-level MODELs may be inserted into higher-level ones.

6.2.1 Instances of lower-level models: the UNIT concept

In gPROMS, an instance of a MODEL is called a UNIT. Consequently, if we wish to insert one or
more instances of one or more MODELs within another (higher-level) MODEL, we have to introduce
a UNIT section within the latter.

Consider, for instance, the declaration of a distillation column model that is outlined in figure
6.2.

Figure 6.2: Distillation Column MODEL

The PARAMETER and VARIABLE sections of this model are very similar to those of simple models
that we have seen earlier. In the former, two integer parameters (NoTrays and FeedPosition)

6.2. Declaring higher-level MODELs 99

gPROMS Introductory User Guide

are declared. These represent the number of trays in the column and the position of the feed tray
respectively. The latter declares a single variable (ColumnEnergyRequirement) that represents
the energy requirement of the entire column.

The new aspect that we wish to focus on is the UNIT section. This specifies that the MODEL also
comprises a number of instances of other models, namely:

• Condenser. This is an instance of MODEL TotalCondenser.

• Reboiler. This is an instance of MODEL PartialReboiler.

• TopSection, BottomSection. These are both instances of MODEL LinkedTrays.

• Feed. This is an instance of MODEL FeedTray.

Each of the lower-level MODELs may either be primitive or include a UNIT section themselves. For
instance, TotalCondenser, PartialReboiler and FeedTray are likely to be primitive MODELs.
In contrast, LinkedTrays is most probably a composite MODEL. In any case, there is no limitation
with respect to the number of levels in this hierarchical decomposition.

Finally, the EQUATION section introduces an equation that determines the net energy requirement
for the entire column:

Reboiler.HeatingLoad - Condenser.CoolingLoad = ColumnEnergyRequirement ;

The equation involves three variables. One of these (ColumnEnergyRequirement) belongs di-
rectly to the DistillationColumnMODEL having been declared explicitly in its VARIABLE section.
The other two variables (Reboiler.HeatingLoad and Condenser.CoolingLoad) belong to the
UNITs Reboiler and Condenser , respectively1

The above equation illustrates a general property of higher-level models. This is their ability
to refer to entities (e.g. parameters and variables) that are declared within the UNITs that they
contain—as well, of course, as their own entities. Furthermore, as we have seen, this reference
is done using a “pathname” construct. The latter can be arbitrarily long. For example, suppose
that the TotalCondenser model is not primitive but comprises instances of several lower-level
models; then the following may be a valid pathname:

Condenser.RefluxDrum.LevelController.Gain

referring to the gain of the controller used to control the liquid level in the reflux drum of the
condenser.

With the introduction of hierarchical models, it is clear that a gPROMS project may contain
more than one MODEL entity. This is illustrated in the ProcessPlant project in figure 6.2.

6.2.2 Arrays of UNITs

As with variables and parameters, arrays of units may also be defined. Figure 6.3 illustrates a
potential use of this feature in the definition of a MODEL for a series of distillation column trays.

1Of course, for this to be correct, MODELs PartialReboiler and TotalCondenser must contain vari-
ables Reboiler.HeatingLoad and Condenser.CoolingLoad respectively.

6.2. Declaring higher-level MODELs 100

gPROMS Introductory User Guide

Here, the higher-level MODEL LinkedTrays contains an array, called Stage, of instances of MODEL
Tray. The parameters and variables within these instances can be referenced by combining the
pathname and array notations. For instance, an equation within the LinkedTrays model may
refer to the variable:

Stage(1).LiquidHoldup

Also, an equation within the DistillationColumn model of figure 6.2 may employ the variable:

TopSection.Stage(TopSection.NoTrays DIV 2).T

referring to the temperature at the middle tray of the top section of the column. Note that
there is no confusion arising from the fact that the identifier NoTray appears in both the
DistillationColumn and the LinkedTrays models.

6.2.3 The WITHIN construct

As the number of intermediate hierarchical levels increases, so does the length of the path-
names required to reference parameters and variables at or close to the bottom of the hierarchy.
Pathnames of the form:

SeparationSection.Column(2).TopSection.Stage(1).T

are quite common when dealing with complex processes. Writing equations like that becomes
increasingly tedious, especially if a large part of the pathname is common to many of the
parameters or variables referenced by an equation. The WITHIN construct helps relieve some of
this burden.

A WITHIN construct encloses a list of equations and defines a prefix to be used for all parameters
and variables referenced by the enclosed equations. For instance:

Suppose, for instance, that MODEL Tray has a variable Q that determines the heat loss from the
tray to the environment. However, it contains no equation that actually determines this heat

MODEL LinkedTrays

PARAMETER

Number of trays

NoTrays AS INTEGER

UNIT

Stage AS ARRAY(NoTrays) OF Tray

...

Figure 6.3: MODEL for a series of linked trays

6.2. Declaring higher-level MODELs 101

gPROMS Introductory User Guide

loss. Consider now using this tray model within the top and bottom sections of a column. We
wish to specify a simple heat transfer equation for determining the heat loss in the top section;
however, the bottom section is well insulated. One way we can achieve this is as follows:

MODEL DistillationColumn

PARAMETER

TAmbient AS REAL

UA AS REAL

NoTrays AS INTEGER

UNIT

TopSection, BottomSection AS LinkedTrays

EQUATION

WITHIN TopSection DO

FOR k := 1 TO NoTrays DO

WITHIN Stage(k) DO

Q = UA * (T - TAmbient) ;

END # Within Stage(k)

END # For k

END # Within TopSection

WITHIN BottomSection DO

FOR k := 1 TO NoTrays DO

WITHIN Stage(k) DO

Q = 0 ;

END # Within Stage (k)

END # For k

END # Within BottomSection

In trying to interpret the equation:

Q = UA * (T - TAmbient) ;

gPROMS will need to identify (“resolve”) the symbols Q, UA, T and TAmbient. It starts doing
this by searching the MODEL corresponding to the UNIT mentioned in the innermost WITHIN

statement. In this case, this is MODEL Tray which does, indeed, contain variables Q and T.
However, symbols UA and TAmbient still remain unresolved. Therefore, gPROMS considers the
next enclosing WITHIN statement; this indicates that it should search MODEL LinkedTrays (of
which TopSection is an instance). However, this model does not contain the missing identifiers.
So gPROMS now has to consider MODEL DistillationColumn itself—which does indeed allow
it to resolve UA and TAmbient.

It is interesting to note that both the DistillationColumn and the LinkedTrays models con-
tain the parameter NoTrays. However, this does not result in any ambiguity in resolving this
parameter when it appears in each of the two FOR constructs: gPROMS always tries to resolve
symbols by searching the innermost WITHIN first. Thus, NoTrays in:

WITHIN TopSection DO

6.2. Declaring higher-level MODELs 102

gPROMS Introductory User Guide

FOR k := 1 TO NoTrays DO

.

END

END # within TopSection

clearly refers to TopSection.NoTrays and not to parameter NoTrays in DistillationColumn.

6.2. Declaring higher-level MODELs 103

gPROMS Introductory User Guide

6.3 Specifying connections as EQUATIONs

So far, we have seen how we can introduce MODEL instances within higher-level MODELs. In
most practically useful applications, these instances have to be connected with each other to
complete the definition of the higher-level model. This section and the next one are concerned
with mechanisms for effecting such connections.

In mathematical terms, connections between instances of mathematical models can be viewed
simply as equality constraints between subsets of their variables2.

Consider, for example, the MixingTank and Pump MODELs shown in figures 6.4 and 6.5 respec-
tively. MODEL MixingTankWithPump (figure 6.6) connects instances of these two to form a higher-
level model of a mixing tank equipped with a product pump.

MixingTankWithPump defines an additional variable, namely FlowAccumulation, to represent
the rate of material accumulation in the combined system. Then, the equations:

StorageTank.Fout = ProductPump.Fin ;

StorageTank.X = ProductPump.Xin ;

connect the sub-models while:

FlowAccumulation = StorageTank.Fin - ProductPump.Fout ;

is an additional equation that calculates FlowAccumulation.

While this way of specifying connections is both perfectly valid and conceptually simple, it is
not particularly elegant. Even for this small example that involves only one connection, two
equations must be specified in order to state that the flows and compositions in the two model
instances should be equal to each other.

As the amount of information (e.g. intensive properties) that needs to be exchanged between
model instances increases, the number of connecting equations will increase accordingly, and the
task of specifying connectivity starts becoming rather unwieldy. Therefore, gPROMS provides a
more efficient mechanism for achieving the same task. This makes use of the concept of STREAMs
as described in the next section.

2It is possible to consider connections involving more general relations between subsets of variables
of different model instances. However, gPROMS does not allow this. Instead, such connections may
themselves be described as MODELs (e.g. of a pipe).

6.3. Specifying connections as EQUATIONs 104

gPROMS Introductory User Guide

MODEL MixingTank

PARAMETER

NoComp, NoInput AS INTEGER

CrossSectionalArea AS REAL

Density AS ARRAY(NoComp) OF REAL

VARIABLE

Fin AS ARRAY(NoInput) OF MassFlowrate

Xin AS ARRAY(NoInput,NoComp) OF MassFraction

Fout AS MassFlowrate

X AS ARRAY(NoComp) OF MassFraction

HoldUp AS ARRAY(NoComp) OF Mass

TotalHoldup AS Mass

TotalVolume AS Volume

Height AS Length

EQUATION

Mass balance

FOR i := 1 TO NoComp DO

$HoldUp(i) = SIGMA(Fin*Xin(,i)) - Fout*X(i) ;

END

Mass fractions

TotalHoldup = SIGMA(HoldUp) ;

Holdup = X * TotalHoldup ;

Calculation of liquid level from holdup

TotalVolume = SIGMA(Holdup/Density) ;

TotalVolume = CrossSectionalArea * Height ;

Figure 6.4: Multi-component mixing tank

MODEL Pump

PARAMETER

NoComp AS INTEGER

PumpFlow AS REAL

VARIABLE

Fin, Fout AS MassFlowrate

Xin, Xout AS ARRAY(NoComp) OF MassFraction

SELECTOR

PumpStatus AS (PumpOn,PumpOff) DEFAULT PumpOn

EQUATION

Mass balance

Fout = Fin ;

Xout = Xin ;

Pump operation

CASE PumpStatus OF

WHEN PumpOn : Fout = PumpFlow ;

WHEN PumpOff : Fout = 0.0 ;

END

Figure 6.5: On/off positive displacement pump

6.3. Specifying connections as EQUATIONs 105

gPROMS Introductory User Guide

MODEL MixingTankWithPump

VARIABLE

FlowAccumulation AS MassFlowrate

UNIT

StorageTank AS MixingTank

ProductPump AS Pump

EQUATION

Connection in terms of variables

StorageTank.Fout = ProductPump.Fin ;

StorageTank.X = ProductPump.Xin ;

Calculate overall rate of material accumulation

FlowAccumulation = StorageTank.Fin - ProductPump.Fout ;

Figure 6.6: Multicomponent mixing tank with pump

6.3. Specifying connections as EQUATIONs 106

gPROMS Introductory User Guide

6.4 Specifying connections using STREAMs

6.4.1 The STREAM concept

As illustrated in figure 6.2, the second entry down in a gPROMS project tree within the Mod-
elBuilder environment is Stream Types.

In gPROMS MODELs, STREAMs are simply subsets (not necessarily disjoint) of the set of variables
in the MODEL. They provide a convenient mechanism for specifying complex connections between
different components of a physical system.

STREAMs are declared in the STREAM section of a MODEL. The declaration comprises:

1. An identifier (name) by which the stream will be referenced.

2. A list of the variables that the stream contains. These may be

• single variables, arrays or slices of arrays declared in the VARIABLE section of the
MODEL;

• variables or streams declared in instances of lower-level models contained directly or
indirectly within the MODEL.

3. A stream type. The declaration of stream types is discussed in section 6.4.2.

For instance, a potential STREAM section for the Pump MODEL of figure 6.5 is shown in figure 6.7.
Here, two streams are defined, namely Inlet and Outlet. The first comprises the inlet flow
and composition variables of the MODEL in question—a single variable of type MassFlowrate

and an array of type MassFraction respectively. The second comprises the corresponding
outlet variables. Both streams are of type FXStream. Detailed descriptions of Stream Types

declarations will be discussed in section 6.4.2.

STREAM

Inlet : Fin, Xin AS FXStream

Outlet : Fout, Xout AS FXStream

Figure 6.7: STREAM section for Pump MODEL

Arrays of streams can be declared in the same fashion. Figure 6.8 shows a potential STREAM
section for the MixingTank MODEL of figure 6.4. Inlet is an ARRAY(NoInput) of streams of type
FXStream. Each of the variables contained in Inlet is also an array, the first dimension of which
must be the same as that of Inlet. In this case, Fin is an ARRAY(NoInput) OF MassFlowrate,
while Xin is an ARRAY(NoInput,NoComp) OF MassFraction.

STREAM

Inlet : Fin, Xin AS ARRAY(NoInput) OF FXStream

Outlet : Fout, Xout AS FXStream

Figure 6.8: STREAM section for MixingTank MODEL

6.4. Specifying connections using STREAMs 107

gPROMS Introductory User Guide

6.4.2 Stream type declarations

Stream type declarations contain the following information:

1. An identifier (name) by which the stream type may be referenced globally.

2. An ordered list of variable types.

Stream types are defined in a similar manner to other entities (cf. section 2.2.3). Thus, in order
to define a new stream type:

1. Pull-down the Entity menu from the top bar of the ModelBuilder environment and click
on New Entity. A dialog box will appear.

2. Choose STREAM TYPE for the Entity Type.

3. Fill in the Name field (e.g. FXStream) and click on OK.

Stream types can be defined either using the “gPROMS language” tab or using the “Variable
types” tab (see figure 6.9).

It is recommended that the “Variable types” tab is used, this provides a drop down list containing
all currently defined Variable Types. The user may either select one of the existing Variable
types, or enter a name for a new one that is still undefined at this stage. Pressing the “Add”
button introduces the variable type in the Stream types’s list immediately below the Variable
type that is currently highlighted. “Raise” and “Lower” buttons are provided for the user to
modify the position of any Variable type in this list at any point.

The “Variable types” and “gPROMS language” tabs in the stream editor remain synchronised
and consistent at all times. Thus, any change effected by the user in either of these two tabs is
immediately reflected in the other.

The declaration of stream type FXStream (which we have already seen being used in figures
6.7 and 6.8) is shown in figure 6.9. Stream type FXStream contains flowrate and composition
information (in that order).

This declaration implies that any stream of type FXStream appearing in a MODEL must contain
a variable of type MassFlowrate, followed by a variable of type MassFraction. However, the
stream type declaration imposes no restrictions on the dimensionality of these variables. Thus,
the second variable of a stream of type FXStream in a MODEL may be a single mass fraction,
or an array of mass fractions of any number of dimensions and any size of each dimension, or,
indeed, a distribution of mass fractions.

Nevertheless, the number and types of variables in a MODEL stream must match those in the
stream type declaration. This is indeed the case for streams Inlet and Outlet in figure 6.7
which are of type FXStream and both contain a variable of type MassFlowrate (Fin and Fout

respectively) and an array of variables of type MassFraction (Xin and Xout respectively).

6.4.3 Connecting models via STREAMs

Once defined, streams can be used to declare connections between model instances in much more
compact and less error prone manner than by using equations to relate individual variables (as
we had been doing in section 6.3).

6.4. Specifying connections using STREAMs 108

gPROMS Introductory User Guide

Figure 6.9: StreamType Entity Editor

Consider again the MixingTankWithPump MODEL of figure 6.6. Assuming that the STREAM sections
in figures 6.7 and 6.8 are inserted in the MixingTank and Pump MODELs of figures 6.5 and 6.4
respectively, the higher-level MODEL can take the form shown in figure 6.10.

Note, in particular, the stream connection equation3:

StorageTank.Outlet = ProductPump.Inlet ;

For this equation to be valid:

• the two streams involved must belong to the same type (e.g. FXStream in this case);

• the corresponding variables in each stream must have the same dimensionality and size4.

Assuming a stream connection equation is valid, it is then automatically expanded by gPROMS
to enforce equality of the corresponding variables in each stream.

3gPROMS also supports the equivalent syntax StorageTank.Outlet IS ProductPump.Inlet ;.
4As we saw in section 6.4.2, the fact that a stream belongs to a certain type does not constrain the

actual dimensionality or size of the variables in it.

6.4. Specifying connections using STREAMs 109

gPROMS Introductory User Guide

Also note that MODEL MixingTankwithPump now defines its own streams, namely Inlet and
Outlet.

STREAM

Inlet IS StorageTank.Inlet

Outlet IS ProductPump.Outlet

The above statement is, therefore, a shorthand to specify that the inlet stream of the tank/pump
configuration is simply the inlet stream of the tank while its outlet stream is simply the outlet
stream of the pump.

STREAM

Inlet : StorageTank.Fin, StorageTank.Xin AS FXStream

Outlet : ProductPump.Fout, ProductPump.Xout AS FXStream

Another example is shown in figure 6.11. Here, a model for a MixingTankFarm is formed by
connecting several instances of multi-component mixing tanks in series.

The Inlet and Outlet streams are used to connect the sub-models, the output of each vessel
being the first input of its successor in the series. The Feed and Product streams of the
MixingTankFarm are declared to be the Inlet streams of the first tank and the Outlet stream
of the last respectively.

6.4. Specifying connections using STREAMs 110

gPROMS Introductory User Guide

MODEL MixingTankWithPump

VARIABLE

FlowAccumulation AS MassFlowrate

UNIT

StorageTank AS MixingTank

ProductPump AS Pump

STREAM

Inlet IS StorageTank.Inlet

Outlet IS ProductPump.Outlet

EQUATION

Connection in terms of streams

StorageTank.Outlet = ProductPump.Inlet ;

Calculate overall rate of material accumulation

FlowAccumulation = StorageTank.Fin - ProductPump.Fout ;

Figure 6.10: Multicomponent mixing tank with pump

MODEL MixingTankFarm

PARAMETER

NoTank AS INTEGER

UNIT

StorageTank AS ARRAY(NoTank) OF MixingTank

STREAM

Feed IS StorageTank(1).Inlet

Product IS StorageTank(NoTank).Outlet

EQUATION

FOR i := 1 TO NoTank - 1 DO

StorageTank(i+1).Inlet(1) IS StorageTank(i).Outlet ;

END

Figure 6.11: Several mixing tanks connected in series

6.4. Specifying connections using STREAMs 111

gPROMS Introductory User Guide

6.5 Parameter value propagation

For a MODEL involving many hierarchical levels, it is important to be able to unambiguously set
the values of the parameters occurring both in the MODEL itself and in instances of other MODELs
contained within it, either directly or indirectly.

It is also important to be able to propagate such values from higher- to lower-level models. For
example, a parameter that corresponds to the number of components (e.g. NoComp) may well
be present in the higher-level model of a distillation column and in all of its constituent model
instances. Ideally, we would like to be able to set the value of this parameter at the highest level
only and rely on an automatic mechanism to propagate it through the hierarchy towards the
lower levels. This not only saves effort in specifying the model but also reduces the possibility
of errors arising due to inconsistent specifications, especially during model development (e.g.
specifying NoComp=5 in some parts of the column and NoComp=4 in others).

The two sections that follow describe the two mechanisms that gPROMS provides for dealing
with these problems.

6.5.1 Explicit parameter assignment

We have already seen (cf. section 2.2.5.2) that the value for a parameter may be specified
explicitly in the SET section of a PROCESS. In fact, MODELs also have a similar SET section that
can be used for the same purpose.

Consider, for instance, the following situation:

• MODEL X declares a parameter S to be of type REAL.

• MODEL Y contains a unit XX which is an instance of X.

• MODEL Z contains a unit YY which is an instance of Y.

• PROCESS P contains a unit ZZ which is an instance of Z.

Then, the value of parameter S can be explicitly set in at most one of the following ways:

1. In X:

SET

S := 1.5 ;

2. In Y:

SET

XX.S := 1.5 ;

3. In Z:

SET

YY.XX.S := 1.5 ;

4. In P:

6.5. Parameter value propagation 112

gPROMS Introductory User Guide

SET

ZZ.YY.XX.S := 1.5 ;

The existence of these different possibilities raises some important issues regarding model re-
usability and ease of use. In particular, note that:

• If a parameter is explicitly SET in a MODEL, it will have that value in all instances of
that MODEL. For example, if we use option 2 above, XX.S will have a value of 1.5 in all
subsequent instances of MODEL Y anywhere in the problem.

• A parameter may be given an explicit value as described above at most once. In other
words, if we use option 3 above, we cannot override this value by using option 4 later.

It is usually advisable that parameters be explicitly set at the PROCESS level. This practice
maximises the reusability of the underlying MODELs and minimises the probability of error.

6.5.2 Automatic parameter propagation

If a parameter appearing in an instance of a MODEL is not SET explicitly, gPROMS will auto-
matically search hierarchically the higher-level MODELs containing it for a parameter of the same
name and type which has been given an explicit value. If this is found, the parameter in the
lower-level MODEL will adopt the value assigned to the parameter with the same name in the
higher-level MODEL.

Another way of looking at this is that an explicit SET specification for a parameter in a higher-
level MODEL X propagates downwards and covers all parameters of the same name and type in
any lower-level MODELs, instances of which are contained in X. This establishes an automatic
parameter propagation mechanism.

For instance, consider the hierarchy of MODELs X, Y and Z mentioned in section 6.5.1 and suppose
that all of them contain a declaration of an integer parameter NoComp. We then have various
possibilities:

1. Set parameter in P:

SET

ZZ.NoComp := 5 ;

Although nothing is said explicitly about parameters ZZ.YY.NoComp and
ZZ.YY.XX.NoComp, the automatic parameter propagation will ensure that these also take
the value of 5.

2. Set parameter in P:

SET

ZZ.NoComp := 5 ;

but also in Y:

SET

NoComp := 3 ;

6.5. Parameter value propagation 113

gPROMS Introductory User Guide

This is equivalent to

ZZ.NoComp = 5 ;

ZZ.YY.NoComp = 3 ;

ZZ.YY.XX.NoComp = 3

Note that the value of the parameter in YY is set explicitly and automatically propa-
gates downwards, setting the value of the parameter in XX. Therefore, when gPROMS
automatically propagates the assignment in P, it cannot override the existing value.

We also recall that the specification of discretisation methods for distribution domains (cf.
section 5.4) is treated exactly as that for parameters – hence, it also undergoes automatic
propagation. For instance, if:

SET

ZZ.Axial := [OCFEM, 3, 10] ;

appears in a PROCESS, all model instances within ZZ which declare an Axial domain will use
the same discretisation method—unless, of course, their Axial specification is explicitly SET to
a different value.

Automatic parameter propagation is very useful because it effectively allows parameter values
(for numbers of components, physical property coefficients etc.) to be specified only once despite
being used by many model instances in a problem.

If a parameter is not SET explicitly and gPROMS cannot deduce its value using automatic
parameter propagation, it will check whether a default value for this parameter has been specified
at the time of its declaration in the MODEL (cf. section 2.2.3.3). If this is the case, it will use that
default value. Otherwise, it will issue an error message.

6.5. Parameter value propagation 114

gPROMS Introductory User Guide

Chapter 7

Simple Operating Procedures

Contents

7.1 Elementary tasks . 117

7.1.1 The RESET elementary task . 117

7.1.2 The SWITCH elementary task 118

7.1.3 The REPLACE elementary task 119

7.1.4 The REINITIAL elementary task 119

7.1.5 The CONTINUE elementary task 120

7.2 Specifying the relative timing of multiple tasks 123

7.2.1 Sequential execution—SEQUENCE 123

7.2.2 Concurrent execution—PARALLEL 123

7.2.3 Conditional execution—IF . 124

7.2.4 Iterative execution—WHILE . 124

7.3 More elementary tasks . 130

7.3.1 The STOP and MESSAGE elementary tasks 130

7.3.2 The MONITOR elementary task 130

7.3.3 The RESETRESULTS elementary task 132

7.3.4 The SAVE and RESTORE elementary tasks 132

115

gPROMS Introductory User Guide

As was mentioned in chapter 2, operating procedures are specified in the SCHEDULE section of
a PROCESS. The gPROMS language for describing operating procedures is based on a number
of “elementary tasks” that can be used to specify simple actions (e.g. changing the values of
simulation input variables, specifying periods of undisturbed operation etc.). Elementary tasks
can be combined using “timing structures” which specify the manner in which they are executed
(sequentially, concurrently, conditionally or iteratively) in order to form more complex operating
procedures.

In the first section of this chapter, we examine each of the elementary tasks in isolation and
describe the functions they perform. In the second section, we proceed to describe the timing
structures and show how elementary tasks may be combined in order to define more complex
operating procedures.

116

gPROMS Introductory User Guide

7.1 Elementary tasks

7.1.1 The RESET elementary task

The RESET elementary task is used to change the value assigned to one or more of a simulation’s
input variables. Figure 7.1 demonstrates some applications of the RESET task.

RESET

V101.Position := 1.0 ;

END

(a)

WITHIN C101 DO

RESET

Signal:= Bias + Gain * (Error + IntegralError/ResetTime) ;

END

END

(b)

RESET

T101.FlowIn := OLD(T101.FlowIn) + 0.1 ;

END

(c)

Figure 7.1: Applications of the RESET task

In the first example, a RESET task is used to model the instantaneous opening of a manual
valve by a process operator. The MODEL that corresponds to unit V101 contains a variable called
Position, which represents the position of the valve stem, and an equation that, according to
the position of the stem and the inherent characteristics of the valve, relates the flowrate through
the valve to the pressure drop across it.

The initial position of the valve stem is specified in the ASSIGN section of the corresponding
PROCESS. During the simulation, the RESET task shown in figure 7.1 “reaches” into the model
and changes the value of this input variable, just as an operator would walk into the plant and
manipulate the valve. The action is considered to occur in such a small time interval relative to
the length of the entire simulation, that it can be modelled as an instantaneous change.

The second example demonstrates how the action of a digital controller at the end of its sampling
interval might be modelled. Here, the expression on the right hand side of the assignment is
evaluated at the time of execution of the RESET task. The value obtained is used to update the
value of the control signal instantaneously and according to a proportional-integral control law.

Finally, in the third example the RESET task is used to impose a step change of magnitude 0.1 on
variable T101.FlowIn, representing the input flowrate to a vessel. This example also illustrates
the use of the OLD built-in function to refer to the value of the variable immediately before the
execution of the RESET task. Note that the OLD function has no meaning within MODELs, because
no well-defined values for the variables exist before the simulation commences.

7.1. Elementary tasks 117

gPROMS Introductory User Guide

7.1.2 The SWITCH elementary task

Similar to the RESET task, the SWITCH task may be used to alter the value of selector variables
(cf. chapter 4). Manipulation of a selector variable by a SWITCH task forces the underlying model
to change state as a result of an external action as opposed to a physico-chemical mechanism.
Applications include the switching of a pump on or off (figure 7.2), the replacement of a shattered
bursting disc by an operator (cf. section 4.1) etc.

MODEL Pump

VARIABLE

FlowIn, FlowOut AS Flowrate

PressIn, PressOut AS Pressure

PressRise AS Pressure

SELECTOR

PumpStatus AS (PumpOn,PumpOff)

EQUATION

FlowOut = FlowIn ;

PressOut = PressIn + PressRise ;

CASE PumpStatus OF

WHEN PumpOn : FlowOut = f(PressRise) ;

WHEN PumpOff : PressRise = 0 ;

END # Case

END # Model Pump

(a)

SWITCH

P101.PumpStatus := P101.PumpOn ;

END # Reset

(b)

Figure 7.2: Manipulating selector variables using the SWITCH task

In figure 7.2, MODEL Pump has two states, On and Off, designated by the selector variable Status
and representing whether the pump is on or off. When the pump is switched on, the pump
characteristic relates the pressure rise across the pump to the flowrate through the pump. When
the pump is switched off, the pressure rise is set to zero. Note that no SWITCH statements are
present because no physico-chemical transitions link these two states.

Whether the pump is initially switched on or off forms part of the initial condition of each sim-
ulation experiment. This information is specified in the SELECTOR section of the corresponding
PROCESS. On the other hand, external actions during the simulation are modelled by SWITCH

7.1. Elementary tasks 118

gPROMS Introductory User Guide

tasks and cause dynamic changes to this status (figure 7.2).

7.1.3 The REPLACE elementary task

The REPLACE elementary task “unASSIGNs” an input variable (leaving it free to vary) and
ASSIGNs a different one in its place.

An interesting application of the REPLACE task is the automatic calculation of the steady-state
bias of a controller. In order to determine the bias, a steady-state calculation is performed in
which the controller error is set to zero by an input equation, while the bias is free to vary.
The bias value obtained by this calculation corresponds to the correct steady-state bias for the
controller. Therefore, before dynamic simulation begins, the REPLACE task shown in figure 7.3
can be used to “unASSIGN” the error variable and ASSIGN the bias variable to its steady-state
value. The controller error is then free to fluctuate as disturbances are introduced and the
controller attempts corrective action.

REPLACE

PI101.Error

WITH

PI101.Bias := OLD(PI101.Bias) ;

END

Figure 7.3: Automatic calculation of controller bias using a REPLACE task

7.1.4 The REINITIAL elementary task

Both the RESET and REPLACE elementary tasks introduce discontinuities in the simulation. Al-
though these discontinuities may affect the values of input and/or algebraic variables, they do
not normally affect the values of differential variables. The latter usually represent quantities
that are conserved according to the laws of physics (e.g. mass, energy, momentum etc.) and are
therefore continuous across such discontinuities; gPROMS follows this assumption and normally
expects the values of the differential variables before the discontinuity to be the same as those
just after the discontinuity.

The REINITIAL elementary task makes it possible to introduce discontinuities in the differential
variables themselves. Of course, once we drop the continuity assumption, we need to provide
some other information to replace it.

Two examples of the application of the REINITIAL task are shown in figure 7.4. In the first
example, the integral error of a PI controller is reset to zero. The execution of this task will
result in a reinitialisation calculation in which the usual assumption concerning the continuity
of differential variable PI101.IntegralError will be replaced by the equation in the second
clause of the REINITIAL task. The latter simply states that the value of PI101.IntegralError
after the discontinuity is zero. Note that this is a general equation and not just an assignment,
which is why we do not write:

PI101.IntegralError := 0 ;

This is consistent with the treatment of general initial conditions in gPROMS.

7.1. Elementary tasks 119

gPROMS Introductory User Guide

In the second example, the holdups of components A and B in a chemical reactor change by
instantaneous additions of material. The amounts added are such that, in the final mixture,
the holdup of A is doubled while the mass fraction of B is 0.3. Note again that the condition
specified is a general equation involving any variables in the problem and not just the ones that
are reinitialised.

Naturally, the number of differential variables in the first clause of a REINITIAL task must match
the number of equations in the second clause.

7.1.5 The CONTINUE elementary task

The execution of all elementary tasks described so far takes place instantaneously with respect to
the simulation clock. The CONTINUE elementary task provides the mechanism by which periods
of undisturbed operation between discrete actions can be specified.

We have already used the CONTINUE task in its simplest form:

CONTINUE FOR TimePeriod

This specifies a period of undisturbed process operation, starting from when the CONTINUE task
is encountered and extending until the simulation clock has advanced TimePeriod time units. In
fact, as well as being a real number, TimePeriod may alternatively be a real expression involving
any quantities that the schedule has access to. For example:

Continue for 100 time units

CONTINUE FOR 100

Continue for period equal to the sampling interval

CONTINUE FOR C101.SamplingInterval

Alternatively, the period of undisturbed process operation can be specified implicitly, in terms
of a logical condition:

CONTINUE UNTIL LogicalCondition

In this case, simulation continues until LogicalCondition becomes true. Again, LogicalCondition
can be of arbitrary complexity and can involve any quantities that the schedule has access to.
For example:

Continue until required conversion has been achieved

CONTINUE UNTIL R101.Conversion > 0.95

Continue until reactant holdups have been exhausted

CONTINUE UNTIL R101.HoldUp(1) < Epsilon AND R101.HoldUp(2) < Epsilon

The two forms described above may also be combined in a single CONTINUE task through the
use of AND and OR operators:

7.1. Elementary tasks 120

gPROMS Introductory User Guide

CONTINUE FOR TimePeriod AND UNTIL LogicalCondition
CONTINUE FOR TimePeriod OR UNTIL LogicalCondition

Here, the period of undisturbed operation extends until the simulation clock has advanced
TimePeriod time units and/or until LogicalCondition becomes true, respectively. For instance,

CONTINUE FOR 100 OR UNTIL R101.Conversion > 0.95

advances the simulation for at most 100 time units even if the reactor conversion never reaches
the required value, while

CONTINUE FOR 100 AND UNTIL R101.Conversion > 0.95

advances the simulation for a minimum of 100 time units and then waits for the reactor con-
version to reach the required value.

7.1. Elementary tasks 121

gPROMS Introductory User Guide

REINITIAL

PI101.IntegralError

WITH

PI101.IntegralError = 0 ;

END

(a)

REINITIAL

R101.HoldUp(1),

R101.HoldUp(2)

WITH

R101.HoldUp(1) = 2 * OLD(R101.Holdup(1)) ;

R101.X(2) = 0.3 ;

END

(b)

Figure 7.4: Applications of the REINITIAL task

7.1. Elementary tasks 122

gPROMS Introductory User Guide

7.2 Specifying the relative timing of multiple tasks

7.2.1 Sequential execution—SEQUENCE

Sequential execution begins with the first task and only proceeds to the next task when execution
of the preceding task has terminated. Sequential execution of a series of tasks is specified by
enclosing them within a SEQUENCE structure. The execution of a SEQUENCE structure is complete
when the execution of the last task in the structure has terminated.

Figure 7.5 shows a PROCESS for a simulation experiment involving a multi-component mixing
tank (a MODEL for a unit of this type was shown in figure 3.4). Unit T101 is a tank with two
input streams, containing a mixture of components A, B and C. The values of the flowrates and
component mole fractions of the inlet streams are specified in the ASSIGN section. The outlet
valve is closed. Initially, the tank contains 1000kg of component A, with additional components
B and C to make up a volume of 1.5m3. The initial amount of component C is twice that
of component B. The schedule of operation in figure 7.5 contains only a CONTINUE task, thus
defining a period of continuous operation with a duration of 120 time units.

Figure 7.6 illustrates how a more complicated operating procedure may be defined by using a
SEQUENCE structure in the SCHEDULE section. The execution of this simulation experiment will
result in the following:

1. Simulation begins. Based on the input equations specified in the ASSIGN section and the
initial conditions specified in the INITIAL section, consistent initial values are determined
for all variables in the system.

2. The first CONTINUE UNTIL task is executed. Simulation proceeds until the volume of liquid
in the tank exceeds 3.5m3.

3. The first RESET task is executed. The flowrate of the first inlet stream is set to zero, while
that of the second inlet stream is increased by 50%.

4. The second CONTINUE UNTIL task is executed. Simulation proceeds until the volume of
liquid in the tank exceeds 5m3.

5. The second RESET task is executed. The flowrates of both inlet streams are set to zero.
The outlet valve is opened completely.

6. The third CONTINUE UNTIL task is executed. Simulation proceeds until the tank drains.

7.2.2 Concurrent execution—PARALLEL

Tasks to be executed in parallel are enclosed within a PARALLEL structure. Execution of all
tasks begins simultaneously and proceeds concurrently. The execution of a PARALLEL structure
is completed when all tasks have terminated.

Figure 7.7 demonstrates the use of concurrent tasks in specifying an operating policy for the
mixing tank example. The operating policy is in fact the same as in figure 7.6. However, here,
the operating policies for the two inlet and the outlet streams are specified separately with three
SEQUENCE structures. These are then enclosed in a PARALLEL structure, so that the three policies
are executed concurrently.

7.2. Specifying the relative timing of multiple tasks 123

gPROMS Introductory User Guide

7.2.3 Conditional execution—IF

In many circumstances, the correct external actions to apply to a system cannot be fully de-
termined a priori and must be established from decisions that can only be made while the
simulation is in progress. For instance, consider a batch operation involving a series of elemen-
tary processing steps applied to a batch of material. Once all steps are completed a decision
is made as to whether the batch is acceptable, should receive further processing or should be
discarded. This decision depends only on the quality of the batch, so the result can only be
established after the preceding steps have been completed.

The IF conditional structure enables selection between alternative actions based on the current
status of a system. In common with most programming languages, it comprises an IF clause,
an optional ELSE clause and a logical condition. If the logical condition is true when the IF

structure is encountered, the contents of the IF clause are executed; otherwise, the contents of
the ELSE clause are executed. As with all other timing structures, conditional structures can be
nested in arbitrary manner.

Figure 7.8 shows the application of the IF structure to “clipping” a digital control signal before
sending it off to a control valve. If, at the time of execution, the signal proves to be greater than
1.0 or less that 0.0, the stem position is set to 1.0 and 0.0 respectively. Otherwise, the stem
position is set to the value indicated by the control signal.

7.2.4 Iterative execution—WHILE

Many processing systems are characterised by the repetitive nature of external actions required
to achieve the desired operation. For example, periodic processes, such as pressure swing or
temperature swing adsorption, are usually brought to and maintained at a “cyclic steady-state”
by a sequence of external actions that is applied repeatedly. Also, the action of a digital control
system on a process can be considered to consist of a regular cycle between continuous operation,
sampling and implementation of discrete actions.

The WHILE iterative structure permits the repeated execution of the tasks it encloses for as long
as a logical condition is satisfied. When the WHILE structure is first encountered, the logical
condition is examined. If it is satisfied, the enclosed tasks are executed. The condition is then
examined again and, if still satisfied, the enclosed tasks are executed once more. This process
continues until the condition is no longer satisfied, at which point the execution of the WHILE

structure is completed. Note that, if the condition is not satisfied initially, the execution of the
WHILE structure terminates immediately.

Figure 7.9 illustrates the use of a WHILE structure in specifying the operation of a digital PI
controller. While the conversion in the reactor is below 0.95, the controller repeatedly goes
through an inactive step of 5 time units (CONTINUE task), followed by a sampling and calculation
step (RESET task), followed by a clipping and implementation step (IF structure).

7.2. Specifying the relative timing of multiple tasks 124

gPROMS Introductory User Guide

PROCESS SimpleSim

UNIT

T101 AS MixingTank

SET # Parameter values

WITHIN T101 DO

NoComp := 3 ;

NoInput := 2 ;

ValveConstant := 10 ;

CrossSectionalArea := 1 ; # m2

Density := [950, 1000, 900] ; # kg/m3

END # Within

ASSIGN # Degrees of freedom

WITHIN T101 DO

First inlet stream

Fin(1) := 5 ;

Xin(1,) := [0.12, 0.21, 0.67] ;

Second inlet stream

Fin(2) := 15 ;

Xin(2,) := [0.98, 0.01, 0.01] ;

Outlet stream valve fully closed

ValvePosition := 0.0 ;

END # Within

INITIAL # Initial conditions

WITHIN T101 DO

HoldUp(1) = 1000 ;

2 * Holdup(2) = HoldUp(3) ;

TotalVolume = 1.5 ;

END # Within

SCHEDULE

CONTINUE FOR 120

Figure 7.5: Mixing tank PROCESS

7.2. Specifying the relative timing of multiple tasks 125

gPROMS Introductory User Guide

PROCESS SeqSim

...

SCHEDULE

SEQUENCE

Fill up tank to 3.5 m3

CONTINUE UNTIL T101.TotalVolume > 3.5

Turn off first inlet stream and

increase the flowrate of the second by 50%

RESET

WITHIN T101 DO

Fin(1) := 0 ;

Fin(2) := 1.5 * OLD(Fin(2)) ;

END # Within

END # Reset

Fill up tank to 5 m3

CONTINUE UNTIL T101.TotalVolume > 5.0

Turn off second inlet stream and

open the outlet valve completely

RESET

WITHIN T101 DO

Fin(2) := 0 ;

ValvePosition := 1 ;

END # Within

END # Reset

Drain tank

CONTINUE UNTIL T101.TotalVolume < 0.01

END # Sequence

Figure 7.6: Mixing tank PROCESS—tasks in SEQUENCE

7.2. Specifying the relative timing of multiple tasks 126

gPROMS Introductory User Guide

SCHEDULE

PARALLEL

Operating policy for first inlet stream

SEQUENCE

Fill up tank to 3.5 m3

CONTINUE UNTIL T101.TotalVolume > 3.5

Turn off first inlet stream

RESET

T101.Fin(1) := 0 ;

END # Reset

END # Sequence

Operating policy for second inlet stream

SEQUENCE

Fill up tank to 3.5 m3

CONTINUE UNTIL T101.TotalVolume > 3.5

Increase the flowrate of the second inlet stream by 50%

RESET

T101.Fin(2) := 1.5 * OLD(T101.Fin(2)) ;

END # Reset

Fill up tank to 5 m3

CONTINUE UNTIL T101.TotalVolume > 5.0

Turn off second inlet stream and

RESET

T101.Fin(2) := 0 ;

END # Reset

END # Sequence

Operating policy for outlet stream

SEQUENCE

Wait until both inlet streams have been turned off

CONTINUE UNTIL (T101.Fin(1) < 0.01) AND (T101.Fin(2) < 0.01)

Open the outlet valve completely

RESET

T101.ValvePosition := 1 ;

END # Reset

Drain tank

CONTINUE UNTIL T101.TotalVolume < 0.01

END # Sequence

END # Parallel

Figure 7.7: Mixing tank SCHEDULE—tasks in PARALLEL

7.2. Specifying the relative timing of multiple tasks 127

gPROMS Introductory User Guide

SCHEDULE

...

IF C101.ControlSignal > 1.0 THEN

RESET V101.Position := 1.0 ; END

ELSE

IF C101.ControlSignal < 0.0 THEN

RESET V101.Position := 0.0 ; END

ELSE

RESET V101.Position := OLD(C101.ControlSignal) ; END

END # If

END # If

...

Figure 7.8: Application of the IF conditional structure

7.2. Specifying the relative timing of multiple tasks 128

gPROMS Introductory User Guide

SCHEDULE

...

WHILE R101.Conversion < 0.95 DO

SEQUENCE

Continuous operation

CONTINUE FOR 5

Sampling and calculation

RESET

C101.Error := 150.0 - Sensor101.Measurement ;

C101.IntegralError := C101.IntegralError + 5.0*C101.Error ;

C101.ControlSignal := 0.5 + 1.2*(C101.Error +

C101.IntegralError/20.0) ;

END # Reset

Clipping and implementation

IF C101.ControlSignal > 1.0 THEN

RESET

V101.Position := 1.0 ;

END

ELSE

IF C101.ControlSignal < 0.0 THEN

RESET

V101.Position := 0.0 ;

END

ELSE

RESET

V101.Position := OLD(C101.ControlSignal) ;

END

END # If

END # If

END # Sequence

END # While

...

Figure 7.9: Application of the WHILE iterative structure

7.2. Specifying the relative timing of multiple tasks 129

gPROMS Introductory User Guide

7.3 More elementary tasks

7.3.1 The STOP and MESSAGE elementary tasks

STOP and MESSAGE are simple elementary tasks that may be used to halt a simulation and write
a message to the screen respectively. The syntax for STOP and MESSAGE are:

STOP

and:

MESSAGE "text"

7.3.2 The MONITOR elementary task

Normally, during a gPROMS simulation the values of all variables at each reporting interval are
sent to gRMS in order to be plotted. The MONITOR task may be used to restrict the amount of
data sent to gRMS, and may be useful for a number of reasons:

• For large distributed models, which may consist of tens of thousands of variables, only
a small proportion may be of particular importance and it may sometimes useful to
prevent gPROMS from sending all of these variables to gRMS. One such example is
chromatographic processes, where only the effluent profiles may be of importance. In this
case, many of the variables are of secondary importance and could be suppressed from
the gPROMS output.

• Restricting the output from gPROMS may useful in other circumstances: for example,
periodic adsorption processes require many cycles of operation before a periodic steady
state is achieved. If the modeller is only interested in the steady-state conditions, then
the output from gPROMS may be disabled until the final cycle.

• Finally, restricting the data sent to gRMS results in much smaller files (gRMS files for
large distributed models may require several Megabytes of storage).

The above situations can be dealt with in two ways, depending on whether variables should be
suppressed permanently or only at certain times.

The MONITOR section of the PROCESS is used to specify which variables are to be monitored
during the simulation; those that are not specified are permanently suppressed. If the MONITOR

section is omitted, then all variables are monitored.

The syntax for the MONITOR section is as follows:

UNIT

...

MONITOR

VariablePathPattern ;

...

SET

...

7.3. More elementary tasks 130

gPROMS Introductory User Guide

where VariablePathPattern is the full pathname of the variable to be monitored. An asterisk can
be used to specify that all components of an array or distributed variable are to be monitored.
Some examples of VariablePathPattern are:

MONITOR

aaa.bbb.x ;

aaa.bbb.y(*) ;

aaa.x(1,*) ;

aaa.x(10,*) ;

aaa.y(*,*) ;

Note that for distributed variables (i.e. those that depend on a DISTRIBUTION DOMAIN), the
indices must be integers and depend on the numerical method applied to the domain. For
each distributed variable, gPROMS will generate an indexed variable with the same number of
dimensions as the number of DISTRIBUTION DOMAINs that the variable depends on. The length
of each dimension is equal to NE × O + 1 for OCFEM and NE + 1 for finite difference methods,
where NE is the number of elements and O is the order of the method. For example, if the
variable DV1 is defined by:

DV1 AS DISTRIBUTION(x,y) OF NoType

where the DISTRIBUTION DOMAINs x and y are SET to the following methods:

x := [OCFEM, 3, 5] ;

y := [BFDM, 2, 20] ;

then the maximum values for the indices of DV1 are 16 (5× 3 + 1) and 21 (20 + 1) respectively.

During the simulation, the output of all variables that are specified in the MONITOR section can
be toggled using the MONITOR task. The syntax for the task is:

MONITOR ON

to enable monitoring and:

MONITOR OFF

to disable monitoring. An example of the MONITOR task is shown in figure 7.10, where the task
“DoSomeCycles” operates the process until cyclic steady stage is achieved, then “DoOneCycle”
operates the process for a single cycle after monitoring has been enabled.

SCHEDULE

SEQUENCE

MONITOR OFF

DoSomeCycles ;

MONITOR ON

DoOneCycle ;

END

Figure 7.10: Example of the MONITOR task.

7.3. More elementary tasks 131

gPROMS Introductory User Guide

7.3.3 The RESETRESULTS elementary task

The RESETRESULTS may be used in the SCHEDULE section of PROCESSes or TASKs to discard all
previous data that was transmitted to a particular output channel. It may be called using one
of the following commands:

RESETRESULTS gRMS

RESETRESULTS gPLOT

RESETRESULTS gExcelOutput

RESETRESULTS gUserOutput

RESETRESULTS ALL

Applying RESETRESULTS to any one of the four output channel options causes gPROMS to invoke
a procedure, gOCRESET, that is provided by the corresponding output channel interface. In
the three standard OCIs provided by gPROMS, this procedure erases all results that have
been transmitted by gPROMS to the OCI up to this stage in the simulation; it then re-starts
accumulating results from this point. This is particularly useful for very long simulations (e.g. in
an operator training context) where it is desired occasionally (e.g. at the start of a new training
exercise) to clear all past results and release the memory and/or disk space occupied by them.
On the other hand, user-provided OCIs may decide to interpret the RESETRESULTS task in a
different manner, by providing an appropriate implementation of the gOCRESET procedure.

7.3.4 The SAVE and RESTORE elementary tasks

Occasionally, it may be necessary to use the solution of one simulation in another. gPROMS
provides the facility to SAVE the current values of all or some of the variables in a simulation
and to RESTORE them in another simulation through the use of Saved Variable Sets. The syntax
of the SAVE and RESTORE tasks are:

SAVE <VarType> "V Set Name"

and

RESTORE <VarType> "V Set Name"

where the optional argument VarType can be one of state, algebraic and input (or any com-
bination of these, separated by commas), and V Set Name is the name of the Saved Variable Set
that the variables will be saved in (or restored from). If the VarType argument is omitted, then
gPROMS will save the values of all variables; whereas arguments state, algebraic and input

instruct gPROMS to save only the values of the state, algebraic or input variables respectively.
The VarType optional argument works similarly with the RESTORE task.

Any new Variable Set created during a simulation activity using the SAVE elementary task will
be stored in the “Results” Entity group within the Case folder. So that the Variable Set can be
used in conjunction with the RESTORE elementary task, the Variable Set must then be copied
into the gPROMS Project where it will appear in the Saved Variable Sets Entity group1 as
shown in figure 7.11.

1If they exceed the maximum file size large Saved Variable Sets created during a simulation activity
will be stored as Miscellaneous Files. This behaviour is configured as part of the Users ModelBuilder
Preferences and is discussed further in the ModelBuilder User Guide

7.3. More elementary tasks 132

gPROMS Introductory User Guide

Auto-update source
project option

Saved Variable Set
in Project

Original
Saved Variable Set

from Project
recorded in Case

New Saved Variable Set
created by simulation activity

Figure 7.11: Saved Variables Sets in Projects and Cases

It is also possible to over-write (or modify) an existing Variable Set by using the SAVE elementary
task on a Variable Set already present in the source project2. In this instance, ModelBuilder
can be configured to automatically update the Variable Set in the Project. This is done by
checking the “auto update source project” option in the execution dialog that can also be seen
in figure7.11.

Variables may also be RESTOREd from multiple sets, separated by commas:

RESTORE "v set1", "v set2"

Figure 7.12 illustrates how the SAVE and RESTORE tasks could have been used in the example
problem that was presented in the previous section. Rather than solving the problem in one
PROCESS, with MONITOR used to show only the last cycle of operation, here we can use two
PROCESSes: one to establish the cyclic steady state and to save the variables, and the second
to simulate a single cycle using as initial conditions the values of the variables at the end of
the simulation of the first PROCESS. One advantage of this approach is that the variables can be
plotted against the local time for the cycle (i.e. the cycle starts at time = 0) as opposed to the
global time of the whole simulation (where the start of the cycle will be at some time greater
than zero).

2In this instance, two Variable Sets with the same name will appear in the Case: the original (from
the project) will appear in the “Original Entities” and the new entity created by the SAVE elementary
task will be stored under “Results”

7.3. More elementary tasks 133

gPROMS Introductory User Guide

SCHEDULE

SEQUENCE

MONITOR OFF

DoSomeCycles ;

SAVE state "CyclicSteadyState"

END

(a) SCHEDULE from first PROCESS

SCHEDULE

SEQUENCE

MONITOR OFF

RESTORE state "CyclicSteadyState"

MONITOR ON

DoOneCycle ;

END

(b) SCHEDULE from second PROCESS

Figure 7.12: Application of the SAVE and RESTORE Tasks.

7.3. More elementary tasks 134

gPROMS Introductory User Guide

Chapter 8

Complex Operating Procedures

Contents

8.1 TASKs . 136

8.1.1 The VARIABLE and SCHEDULE sections 136

8.1.2 The PARAMETER section . 138

8.2 Hierarchical sub-task decomposition 142

135

gPROMS Introductory User Guide

8.1 TASKs

A TASK is a model of an operating procedure; it corresponds to the fourth entry down in a
generic gPROMS project tree (see figure 2.5).

TASKs are created within the gPROMS ModelBuilder environment in a similar manner to MODELs
(cf. section 2.2.3), the only (obvious) difference being that TASKS is chosen for Entity Types

instead of MODELS.

Like a MODEL, a TASK is split into sections, containing different pieces of information. Overall,
the structure of a TASK declaration is the following:

PARAMETER

... Parameter declarations ...

VARIABLE

... Local variable declarations ...

SCHEDULE

... Schedule declaration ...

In the next two sections we take a detailed look at the PARAMETER, VARIABLE and SCHEDULE

sections.

8.1.1 The VARIABLE and SCHEDULE sections

The VARIABLE section is used to declare local variables. These can be of type INTEGER or REAL.
They can only be used within the TASK in which they are declared.

The SCHEDULE section defines the operating policy implemented by the TASK. It is similar to
the SCHEDULE section in PROCESSes, the only difference being that it has access to the local
variables declared in the VARIABLE section. The values of the latter can be manipulated by
using assignment statements.

Figure 8.1 shows a TASK that models the action of a digital PI controller. Three local variables
are declared in the VARIABLE section, namely Error, IntegralError and ControlSignal. In
the SCHEDULE section, an assignment statement initialises IntegralError to zero. Then, the
repeated action of the controller is specified within a WHILE structure. This is executed until
a termination condition is satisfied (in this case, when 1000 time units have passed on the
simulation clock). The action of the controller is itself a sequence of elementary tasks. First, a
CONTINUE task is used to enforce a period of undisturbed operation (5 time units). After this,
sampling takes place. The signal of a temperature sensor is used to update the controller Error
and IntegralError and a ControlSignal is calculated. An IF structure is used to clip the
signal which is then implemented it through a RESET task.

In essence, TASKs are user-defined tasks. Once declared, they are equivalent to elementary tasks
and can be used in PROCESS SCHEDULEs or even within the SCHEDULEs of other TASKs. For
instance,

SCHEDULE

PARALLEL

8.1. TASKs 136

gPROMS Introductory User Guide

TASK DigitalPI

VARIABLE

Error, IntegralError, ControlSignal AS REAL

SCHEDULE

SEQUENCE

IntegralError := 0 ;

WHILE TIME < 1000 DO

SEQUENCE

CONTINUE FOR 5.0

Error := 150.0 - Sensor101.Measurement ;

IntegralError := IntegralError + 5.0*Error ;

ControlSignal := 0.5 + 1.2 * (Error + IntegralError/20.0) ;

IF ControlSignal > 1.0 THEN

RESET Valve201.Position := 1.0 ; END

ELSE

IF ControlSignal < 0.0 THEN

RESET Valve201.Position := 0.0 ; END

ELSE

RESET Valve201.Position := OLD(ControlSignal) ; END

END # If

END # If

END # Sequence

END # While

END # Sequence

Figure 8.1: TASK for a digital PI control law

8.1. TASKs 137

gPROMS Introductory User Guide

DigitalPI

CONTINUE FOR 1000

END # Parallel

executes the digital control law in parallel with the operation of the rest of the process.

8.1.2 The PARAMETER section

The TASK shown in figure 8.1, although useful for grouping a series of elementary tasks together,
has a big disadvantage: it is extremely specific. First of all, it refers to a unique sensor/valve
pair, Sensor101 and Valve201 respectively. Moreover, the sampling interval (5 time units) and
controller tuning parameters (150.0, 0.5, 1.2, 20.0) are expressed as constant values. Finally,
the task always terminates after 1000 time units have elapsed and is thus appropriate for a
simulation of that length only. If it were necessary to apply the same operating procedure to a
different sensor/valve pair possibly using different tuning parameters for the controller, a new
TASK would have to be declared. This is clearly unsatisfactory. In most instances, we want to
be able to declare TASKs that are independent of the details of an individual simulation.

For instance, we want to be able to define a TASK that switches “a” pump on and another
that switches “a” pump off. “A” is used to indicate that the actual pump on which the TASKs
act remains unspecified until the moment they are used in a particular simulation experiment.
Similarly, we want to be able to define a TASK for “a” digital controller and only specify the
sensor/valve pair it uses and the values for its tuning parameters when the TASK is actually used
in a simulation experiment.

This is achieved by using TASK parameters. Upon declaration, a TASK can be parameterised with
respect to an arbitrary number of parameters. The actual values of these parameters have to
be specified only when the TASK is actually used in a specific simulation experiment.

TASK parameters are declared in the PARAMETER section. Declared parameters may be of any of
the following types:

• INTEGER, REAL or LOGICAL constants. These are used to parameterise a TASK with respect
to, for instance, controller tuning parameters, event durations etc.

• INTEGER EXPRESSION, REAL EXPRESSION or LOGICAL EXPRESSION. These are used to pa-
rameterise a TASK with respect to, for instance, logical conditions for the conditional and
iterative structures etc.

• MODEL. These are used to parameterise a TASK with respect to the actual MODELs on which
it acts.

For example, figure 8.2 shows a task that switches a pump on. Once this TASK has been defined,
it can be used in a SCHEDULE section. For instance,

SCHEDULE

...

SwitchPumpOn(Pump IS Plant.P201)

...

will switch on pump Plant.P201, while

8.1. TASKs 138

gPROMS Introductory User Guide

TASK SwitchPumpOn

PARAMETER

Pump AS MODEL GenericPump

SCHEDULE

RESET

Pump.Status := Pump.Open ;

END # Reset

Figure 8.2: TASK to switch on a pump

SCHEDULE

...

SEQUENCE

SwitchPumpOn(Pump IS Plant.P205)

SwitchPumpOn(Pump IS Plant.P206)

SwitchPumpOn(Pump IS Plant.P207)

END # Sequence

...

will, in sequence, switch on pumps Plant.P205, Plant.P206 and Plant.P207.

Note that, when executing a TASK that contains parameters, the proper list of arguments must
be given along with the name of the TASK. TASKs that contain parameters can be thought of
as the equivalent of subroutines or functions in high-level programming languages. Variables
declared in the VARIABLE section are the equivalent of local subroutine variables. On the other
hand, the PARAMETER section is the equivalent of a function prototype. It defines the number
and type of arguments that a TASK accepts as arguments. A “call” to the TASK then includes a
list of items which must be in the same order, and of the same number and type as the ones in
the TASK’s parameter list.

Figure 8.3 presents the correct version of the digital controller TASK of figure 8.1. The parameters
include real constants that determine the various tuning parameters and the sampling interval,
a logical expression that determines the termination of control, and model parameters that
determine the sensor/valve pair on which the controller is used.

This TASK is much more reusable. It can be used for any sensor/valve pair in a simulation
experiment and different tuning parameters for the controller can be specified without rewriting
the TASK. For instance,

SCHEDULE

...

PARALLEL

DigitalPI

(SetPoint IS 150.0,

Bias IS 0.5,

Gain IS 1.2,

IntegralTime IS 20.0,

SamplingInterval IS 5.0,

8.1. TASKs 139

gPROMS Introductory User Guide

TASK DigitalPI

PARAMETER

SetPoint, Bias, Gain, IntegralTime AS REAL

SamplingInterval AS REAL

TerminationCondition AS LOGICAL_EXPRESSION

Sensor AS MODEL GenericSensor

Valve AS MODEL GenericValve

VARIABLE

Error, IntegralError, ControlSignal AS REAL

SCHEDULE

SEQUENCE

IntegralError := 0 ;

WHILE NOT TerminationCondition DO

SEQUENCE

CONTINUE FOR SamplingInterval

Error := SetPoint - Sensor.Measurement ;

IntegralError := IntegralError + SamplingInterval*Error ;

ControlSignal := Bias + Gain*(Error +

IntegralError/IntegralTime) ;

IF ControlSignal > 1.0 THEN

RESET Valve.Position := 1.0 ; END

ELSE

IF ControlSignal < 0.0 THEN

RESET Valve.Position := 0.0 ; END

ELSE

RESET Valve.Position := OLD(ControlSignal) ; END

END # If

END # If

END # Sequence

END # While

END # Sequence

Figure 8.3: Parameterised TASK for a digital PI control law

8.1. TASKs 140

gPROMS Introductory User Guide

TerminationCondition IS Plant.T101.TotalVolume > 5.0,

Sensor IS Plant.Sensor101,

Valve IS Plant.Valve205)

DigitalPI

(SetPoint IS 10.0,

Bias IS 0.8,

Gain IS 2.6,

IntegralTime IS 50.0,

SamplingInterval IS 1.0,

TerminationCondition IS Plant.R101.Temperature > 80.0,

Sensor IS Plant.Sensor103,

Valve IS Plant.Valve207)

END # Parallel

...

will initiate two digital control procedures in parallel, acting on two different sensor/valve pairs.
The two procedures also have different controller tuning characteristics and a different logical
expression determining their termination.

8.1. TASKs 141

gPROMS Introductory User Guide

8.2 Hierarchical sub-task decomposition

A complex operation on one or more items of process equipment can usually be decomposed into
lower-level, simpler operations. Each of the lower-level operations may in turn be decomposed
in other, more primitive operations, the decomposition continuing until all operations can be
described in terms of elementary manipulations of the underlying models made possible by
elementary tasks. Similarly to hierarchical sub-model decomposition, this hierarchical sub-task
decomposition defeats complexity by restricting the scope of the problem considered at any point
to a manageable level.

Hierarchical sub-task decomposition in gPROMS is possible because, as was mentioned before,
previously declared TASKs may be used within other, higher-level TASKs and is greatly facilitated
by the fact that suitably parameterised TASKs may be reused several times in different parts of
an operation.

TASK OperateReactor

PARAMETER

Reactor AS MODEL StirredReactor

SR AS REAL

StartTemperature AS REAL

Terminationcondition AS LOGICAL_EXPRESSION

SCHEDULE

SEQUENCE

RESET

Reactor.SteamRate := SR ;

END

CONTINUE UNTIL Reactor.Temperature > StartTemperature

RESET

Reactor.SteamRate := 0 ;

END

CONTINUE UNTIL TerminationCondition

END # Sequence

Figure 8.4: Low-level TASK to operate a reactor

Consider, for instance, the OperateReactor TASK of figure 8.4. It specifies an operating proce-
dure for performing a reaction in a reactor of type StirredReactor (a parameter of the TASK).
The operating procedure is simple, involving the execution of four elementary tasks in sequence.
First, the steam supply rate to the reactor is set to a value SR. Operation then continues until
the temperature in the reactor has exceeded a predefined limit StartTemperature. Finally,
the steam supply is cut off and operation continues until a TerminationCondition is satisfied.
In addition to the reactor unit, SR, StartTemperature and TerminationCondition are also
parameters of the TASK, of type REAL, REAL and LOGICAL EXPRESSION respectively.

Figure 8.5 then illustrates how the OperateReactor TASK is used to define a higher-level TASK,
namely OperateReactionTrain. Two OperateReactor tasks are invoked in parallel to model
the operation of two reactors. Parameterisation also permits the specification of different values
for the operating parameters of the two reactors.

8.2. Hierarchical sub-task decomposition 142

gPROMS Introductory User Guide

TASK OperateReactorTrain

PARAMETER

Plant AS MODEL ReactorTrain

SCHEDULE

PARALLEL

PerformReaction

(Reactor IS Plant.R1,

SR IS 35.3,

StartTemperature IS 70.0,

TerminationCondition IS Plant.R1.Conversion(1) > 0.95)

PerformReaction

(Reactor IS Plant.R2,

SR IS 10.0,

StartTemperature IS 40.0,

TerminationCondition IS Plant.R2.Temperature > 120.0)

END # Parallel

Figure 8.5: High-level TASK to operate a reactor train

A more complicated situation is depicted in figure 8.6 where the startup of an entire plant is
modelled by hierarchically decomposing the higher-level operations into lower-level ones through
the use of nested and suitably parameterised TASKs.

8.2. Hierarchical sub-task decomposition 143

gPROMS Introductory User Guide

 SEQUENCE
 StartUpPretreatment
 PARALLEL
 StartUpReaction
 StartUpSeparation
 END
 END

 SEQUENCE
 StartUpColumn(Column IS D101)
 StartUpColumn(Column IS D102)
 StartUpColumn(Column IS D103)
 StartUpColumn(Column IS D104)
 END

 PARAMETER
 Column AS MODEL DistillationColumn
 SEQUENCE

 CONTINUE UNTIL ...
 PARALLEL
 ...
 END
 END

 FillUpTank(Vessel IS Column.Reboiler)
 OpenValve(Valve IS Column.Reboiler.SteamValve)

TASK StartUpPlant

TASK StartUpSeparation

TASK StartUpColumn

 PARAMETER
 Valve AS MODEL PipeValve
 RESET
 Valve.StemPosition := 1.0 ;
 END

TASK OpenValve

Figure 8.6: Hierarchical sub-task decomposition

8.2. Hierarchical sub-task decomposition 144

gPROMS Introductory User Guide

Chapter 9

Stochastic Simulation in

gPROMS

Contents

9.1 Assigning random numbers to PARAMETERs and VARIABLEs . . 147

9.2 Plotting results of multiple stochastic simulations 149

9.2.1 Combining multiple simulations 149

9.2.2 Plotting probability density functions 150

9.3 Example . 155

145

gPROMS Introductory User Guide

In this chapter, we discuss how one can perform stochastic simulations in gPROMS.

The first part of the chapter describes the probability functions that are supported and how to
assign values sampled from a probability function to PARAMETERs and VARIABLEs.

The second part of the chapter describes the modelling techniques used to perform stochastic
simulations and to generate results in the form of probability density functions.

146

gPROMS Introductory User Guide

Function Arguments Example

Uniform lower, upper UNIFORM(0,1) returns a uniformly dis-
tributed number in the range [0,1]. lower <
upper.

Triangular lower, mode, upper TRIANGULAR(1,2,4) returns a number sam-
pled from a triangular distribution with mode
2, lower limit 1 and upper limit 4. lower <
mode < upper.

Normal mean, stddev NORMAL(3,0.25) returns a value sampled
from a normal distribution with mean 3 and
standard deviation 0.25. stddev > 0.

Gamma alpha, beta GAMMA(3,1) returns a value from the Gamma
distribution. alpha, beta > 0.

Beta alpha, beta, lower, upper BETA(1.5,5,0,1) returns a value from the
Beta distribution. alpha, beta > 0; lower <
upper.

Weibull alpha, beta WEIBULL(4,1) returns a value from the
Weibull distribution. alpha, beta > 0.

Table 9.1: Probability distribution functions available in gPROMS.

9.1 Assigning random numbers to PARAMETERs and VARIABLEs

PARAMETERs and VARIABLEs can be given random values in the SET and ASSIGN sections, respec-
tively, of a PROCESS in the same way that they are given deterministic values.

Instead of assigning a literal value or expression to the parameter or variable, special functions
are used that return values sampled from the distribution. The syntax is shown below.

...

SET

Identifier := DistributionFunction(ArgList) ;

...

ASSIGN

Identifier := DistributionFunction(ArgList) ;

...

The functions DistributionFunction each require a different set of arguments (ArgList). The
available functions are described in table 9.1.

Once PARAMETERs and VARIABLEs have been given stochastic values, they behave exactly as
though they had been assigned deterministic values: i.e. PARAMETERs remain constant and are
not calculated by a simulation and the VARIABLEs remain at their ASSIGNed values unless re-
assigned in a RESET statement. Any VARIABLE may be RESET, as usual, using a literal or
an expression (using the OLD operator if this involves other VARIABLEs—see chapter 7) or by
assigning a new random number.

9.1. Assigning random numbers to PARAMETERs and VARIABLEs 147

gPROMS Introductory User Guide

Note that VARIABLEs and PARAMETERs can only ever be assigned “point” values; they are not
assigned distributions. Furthermore, each time a variable is RESET to a value from a distribution,
it is given a different value, even if the distribution function’s arguments are the same. For
example, in the following segment of a SCHEDULE section, the variable Random is assigned two
different values from the Normal distribution: one time it may be assigned 0.23 then 0.07;
another time it may be assigned 0.01 then 0.36.

...

SCHEDULE

SEQUENCE

...

RESET

Random := NORMAL(0,1) ;

END

...

RESET

Random := NORMAL(0,1) ;

END

...

END

One further issue that should be noted is that gPROMS will always seed the random number
generator with the same number each time gPROMS is started (i.e. each time you run gPROMS
from the command prompt; not each time you execute a PROCESS). This means that the results
of a stochastic simulation can be reproduced if you execute a process directly after starting a
gPROMS session, then end gPROMS and start again.

9.1. Assigning random numbers to PARAMETERs and VARIABLEs 148

gPROMS Introductory User Guide

9.2 Plotting results of multiple stochastic simulations

The method outlined above is somewhat limited in use, since the results of the simulations
are only for a specific realisation of the random input VARIABLEs. There is no way directly to
examine how the distributions of the output VARIABLEs are influenced by the distributions of
the input VARIABLEs, which is the prime reason for considering stochastic simulation.

In this section, we will describe methods to do precisely this. In the first part, we will describe
how you can combine multiple simulations in a single process and then use the results to evaluate
metrics (such as the mean, variance, etc.) of the output VARIABLEs. In the second part, we
will outline a method that allows you to plot the probability density functions of the output
VARIABLEs.

9.2.1 Combining multiple simulations

Given a model with some uncertain inputs, a series of simulations can be combined into a single
process by introducing a new higher-level model. The original model is included in the new one
as an array of UNITs, as shown below.

MODEL ModelUncertain

...

VARIABLE

Input AS InputVarType # uncertain input variable

Output AS OutputVarType # important output variable

...

MODEL Combined

PARAMETER

NoScenarios AS INTEGER

InputMean AS REAL

InputStdDev AS REAL

UNIT

Scenarios AS ARRAY(NoScenarios) OF ModelUncertain

The input VARIABLEs for each scenario of ModelUncertain then need to be specified as follows.

PROCESS StochSim

UNIT

StSim AS Combined

9.2. Plotting results of multiple stochastic simulations 149

gPROMS Introductory User Guide

...

ASSIGN

WITHIN StSim DO

FOR i := 1 TO NoScenarios DO

Scenarios(i).Input := NORMAL(InputMean,InputStdDev) ;

END

END

...

Note that each input variable is ASSIGNed a different value from the same distribution. This
could also have been done with PARAMETERs, but parameter propagation cannot be used in this
way: this would result in all PARAMETERs being set the same value, because the parameter in the
higher-level model will be assigned randomly and then that particular value will be propagated
to the scenarios.

Of course, any inputs that are common to the system (such as design constants or precisely
known operating PARAMETERs) can be included in the higher-level model along with equations
linking them to the scenarios. This reduces the complexity of the SCHEDULE section.

9.2.2 Plotting probability density functions

Now all of the scenarios are together in one process, but it is not easy to plot them together in
one graph. Rather than having to select each variable from each scenario instance, it would be
much easier to be able to select the whole distribution. This can easily be done as follows.

MODEL Combined

PARAMETER

NoScenarios AS INTEGER

InputMean AS REAL

InputStdDev AS REAL

UNIT

Scenarios AS ARRAY(NoScenarios) OF ModelUncertain

VARIABLE

Input AS ARRAY(NoScenarios) OF InputVarType

Output AS ARRAY(NoScenarios) OF OutputVarType

OPmean AS NoType # mean of Output

OPvariance AS NoType # variance of Output

EQUATION

FOR i := 1 TO NoScenarios DO

Input(i) = Scenarios(i).Input ;

Output(i) = Scenarios(i).Output ;

END

9.2. Plotting results of multiple stochastic simulations 150

gPROMS Introductory User Guide

OPmean = SIGMA(Output)/NoScenarios ;

OPvariance = SIGMA((Output - OPmean)^2)/NoScenarios ;

Now, all of the scenarios can be plotted on a single graph by selecting a single variable in gRMS.
Notice also that the mean and variance of the output can easily be calculated.

Finally, it is often useful to be able to plot the probability density function (pdf) of the output.
In general, for each variable this requires two new VARIABLEs a distribution domain and three
PARAMETERs. However, if two VARIABLEs are in the same interval they can share the same
distribution domain and PARAMETERs. This is shown below.

MODEL Combined

PARAMETER

NoScenarios AS INTEGER

InputMean AS REAL

InputStdDev AS REAL

NoInt_OP AS INTEGER DEFAULT 20 # number of intervals for distribution

Upper_OP AS REAL DEFAULT 3 # upper bound on distribution

Lower_OP AS REAL DEFAULT 1 # lower bound on distribution

DISTRIBUTION_DOMAIN

Dist_OP AS (Lower_OP:Upper_OP) # distribution over which

Output will be plotted

UNIT

Scenarios AS ARRAY(NoScenarios) OF ModelUncertain

VARIABLE

Input AS ARRAY(NoScenarios) OF InputVarType

Output AS ARRAY(NoScenarios) OF OutputVarType

OPmean AS NoType # mean of Output

OPvariance AS NoType # variance of Output

temp variable to count occurrences of Output in a particular interval:

OPacc AS DISTRIBUTION(Dist_OP,NoScenarios) OF NoType

pdf function for Output:

OP_pdf AS DISTRIBUTION(Dist_OP) OF NoType

EQUATION

FOR i := 1 TO NoScenarios DO

Input(i) = Scenarios(i).Input ;

Output(i) = Scenarios(i).Output ;

END

OPmean = SIGMA(Output)/NoScenarios ;

OPvariance = SIGMA((Output - OPmean)^2)/NoScenarios ;

9.2. Plotting results of multiple stochastic simulations 151

gPROMS Introductory User Guide

FOR i := Lower_OP TO Upper_OP DO

FOR j := 1 TO NoScenarios DO

IF i - (Upper_OP-Lower_OP)/NoInt_OP/2 <= Output(j) AND

Output(j) < i + (Upper_OP-Lower_OP)/NoInt_OP/2 THEN

OPacc(i,j) = 1 ;

ELSE

OPacc(i,j) = 0 ;

END

END

OP_pdf(i) = SIGMA(OPacc(i,))/NoScenarios ;

END

The three new PARAMETERs introduced are NoInt OP, Lower OP and Upper OP. These PARAMETERs
define the distribution over which the output variable will be plotted. NoInt OP is the number
of intervals used for the distribution Dist OP. This will obviously be used to set Dist OP:

PROCESS StSim

...

SET

...

Dist_OP := [BFDM, 1, NoInt_OP] ;

The first order, backward finite difference method is all that is required because the distribution
domain is essentially behaving as an array.

The PARAMETERs Lower OP and Upper OP are simply the lower and upper bounds on the domain
Dist OP. The variable being plotted, Output in this case, must lie in the interval [lower, upper]
for each scenario; otherwise, the pdf will become distorted. If the lower and upper bounds are
set so that a number of VARIABLEs lie in this interval, then all of these VARIABLEs can be plotted
using the same distribution. The number of intervals should be set appropriately so that the
distribution is not too coarse.

Finally, the two VARIABLEs introduced are OPacc and OP_pdf. Each variable being plotted will
need its own pair of VARIABLEs. OPacc(i,j) is set to 1 if the value of Output(j) (the value
in scenario j) lies in interval i of the distribution domain. OP_pdf(i) therefore represents the
number of scenarios in which Output has a value in interval i. This is divided by the number of
scenarios to normalise the pdf.

Plotting the pdf of a state variable can slow down the simulation significantly (due to the many
discontinuities, and therefore re-initialisations, encountered as the values of the VARIABLEs switch
between intervals). This can be remedied by introducing one further variable, as illustrated below
for the example already considered:

MODEL Combined

...

9.2. Plotting results of multiple stochastic simulations 152

gPROMS Introductory User Guide

VARIABLE

...

temporary Output variable = 0 until end of simulation, then = Output

OutputEnd AS ARRAY(NoScenarios) OF OutputVarType

...

EQUATION

FOR i := 1 TO NoScenarios DO

Input(i) = Scenarios(i).Input ;

Output(i) = Scenarios(i).Output ;

END

...

FOR i := Lower_OP TO Upper_OP DO

FOR j := 1 TO NoScenarios DO

IF i - (Upper_OP-Lower_OP)/NoInt_OP/2 <= OutputEnd(j) AND

OutputEnd(j) < i + (Upper_OP-Lower_OP)/NoInt_OP/2 THEN

OPacc(i,j) = 1 ;

ELSE

OPacc(i,j) = 0 ;

END

END

OP_pdf(i) = SIGMA(OPacc(i,))/NoScenarios ;

END

PROCESS StochSim

...

MONITOR

StSim.Output(*) ;

StSim.Input(*) ;

StSim.OPmean ;

StSim.OPvariance ;

StSim.OP_pdf ;

...

ASSIGN

WITHIN StSim DO

OutputEnd := 0 ;

...

END

...

SCHEDULE

9.2. Plotting results of multiple stochastic simulations 153

gPROMS Introductory User Guide

SEQUENCE

...

RESET

StSim.OutputEnd := OLD(StSim.Output) ;

END

END

So, OutputEnd is 0 throughout the simulation and the IF conditions are only evaluated at
initialisation. Only at the end of the simulation is OutputEnd changed, at which point all of the
IF statements are re-evaluated and OP_pdf recalculated.

Finally, note that the output has been restricted to only those VARIABLEs of importance by
using the MONITOR section. This reduces the amount of data sent to the output channel (e.g.
gRMS). Although this is not necessary, it recommended for moderate to large problems (even
small problems output large quantities of data when the number of scenarios is large).

9.2. Plotting results of multiple stochastic simulations 154

gPROMS Introductory User Guide

9.3 Example

In this section we illustrate the above techniques using a simple model of an isothermal batch
reaction. The following reactions occur in the reactor, D being the desired product.

A + B → C → D

The reactor initially contains 10m3 of an equimolar mixture of A and B. The temperature is
held constant at 353K and the reaction is allowed to progress for 1 hour. The reaction rates are
assumed to follow Arrhenius’s law.

A simple, generic model for an isothermal liquid-phase CSTR is used to model the process and
is shown overleaf.

9.3. Example 155

gPROMS Introductory User Guide

MODEL LiquidPhaseCSTR

PARAMETER

Number of components

NoComp AS INTEGER

Number of reactions

NoReac AS INTEGER

Density AS ARRAY(NoComp) OF REAL

Reaction data (Arrhenius law)

ArrhConstant AS ARRAY(NoReac) OF REAL

ActivationEnergy AS ARRAY(NoReac) OF REAL

Reaction orders

Order AS ARRAY(NoComp,NoReac) OF INTEGER

Component stoichiometric coefficients

Nu AS ARRAY(NoComp,NoReac) OF INTEGER

Gas constant

R AS REAL

VARIABLE

Fin AS MolarFlowrate

Xin AS ARRAY(NoComp) OF MolarFraction

Fout AS MolarFlowrate

X AS ARRAY(NoComp) OF MolarFraction

HoldUp AS ARRAY(NoComp) OF Moles

C AS ARRAY(NoComp) OF MolarConcentration

T AS Temperature

TotalHoldup AS Moles

TotalVolume AS Volume

ReactionConstant AS ARRAY(NoReac) OF NoType

Rate AS ARRAY(NoReac) OF NoType

EQUATION

Material balance

FOR i := 1 TO NoComp DO

$HoldUp(i) = Fin*Xin(i) - Fout*X(i) + TotalVolume*SIGMA(Nu(i,)*Rate) ;

END

Reaction rates

FOR j := 1 TO NoReac DO

ReactionConstant(j) = ArrhConstant(j) * EXP(-ActivationEnergy(j)/R/T) ;

Rate(j) = ReactionConstant(j) * PRODUCT(C^Order(,j)) ;

END

Total volume and total holdup

9.3. Example 156

gPROMS Introductory User Guide

TotalVolume = SIGMA(Holdup/Density) ;

TotalHoldup = SIGMA(HoldUp) ;

Molar fractions and concentrations

Holdup = X * TotalHoldup ;

Holdup = C * TotalVolume ;

The results of a deterministic simulation of the above model is shown in figure 9.1 (the rate
PARAMETERs were chosen such that the mole fraction of D was about 0.9).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1000 2000 3000 4000

M
o
l
e

f
r
a
c
t
i
o
n

Time [s]

A, B C D

Figure 9.1: Mole fraction profiles for the deterministic simulation.

Now we assume the that temperature of the reaction may change from batch to batch. This can
be modelled using a normal distribution with a mean of 353K and a standard deviation of 2K.
To see the effect of this, we need to introduce a new model to include a number of scenarios.
This is shown overleaf.

9.3. Example 157

gPROMS Introductory User Guide

MODEL Stochastic_LiquidPhaseCSTR

PARAMETER

define common PARAMETERs here so their values can be propagated

to each scenario

NoComp AS INTEGER

NoReac AS INTEGER

Density AS ARRAY(NoComp) OF REAL

ArrhConstant AS ARRAY(NoReac) OF REAL

ActivationEnergy AS ARRAY(NoReac) OF REAL

Order AS ARRAY(NoComp,NoReac) OF INTEGER

Nu AS ARRAY(NoComp,NoReac) OF INTEGER

R AS REAL

NoScenarios AS INTEGER

NoInt_PMF AS INTEGER DEFAULT 20

Upper_PMF AS REAL DEFAULT 1

Lower_PMF AS REAL DEFAULT 0.8

DISTRIBUTION_DOMAIN

Dist_PMF AS (Lower_PMF:Upper_PMF)

UNIT

Scenarios AS ARRAY(NoScenarios) OF LiquidPhaseCSTR

VARIABLE

T AS ARRAY(NoScenarios) OF Temperature

ProdMolFrac AS ARRAY(NoScenarios) OF MolarFraction

PMFmean AS NoType

PMFvariance AS NoType

PMFstddev AS NoType

temp variable to count occurrences of Output in a particular interval:

PMFacc AS DISTRIBUTION(Dist_PMF,NoScenarios) OF NoType

pdf function for Output:

PMF_pdf AS DISTRIBUTION(Dist_PMF) OF NoType

EQUATION

FOR i := 1 TO NoScenarios DO

T(i) = Scenarios(i).T ;

END

PMFmean = SIGMA(ProdMolFrac)/NoScenarios ;

PMFvariance = SIGMA((ProdMolFrac - PMFmean)^2)/NoScenarios ;

9.3. Example 158

gPROMS Introductory User Guide

FOR i := Lower_PMF TO Upper_PMF DO

FOR j := 1 TO NoScenarios DO

IF i - (Upper_PMF-Lower_PMF)/NoInt_PMF/2 <= ProdMolFrac(j) AND

ProdMolFrac(j) < i + (Upper_PMF-Lower_PMF)/NoInt_PMF/2 THEN

PMFacc(i,j) = 1 ;

ELSE

PMFacc(i,j) = 0 ;

END

END

PMF_pdf(i) = SIGMA(PMFacc(i,))/NoScenarios ;

END

As before, we have defined new distributed VARIABLEs to contain the values of the VARIABLEs
of interest in each scenario. These are T for the temperature and ProdMolFrac for the mole
fraction of the product D (i.e. x4). Again, PARAMETERs are defined that describe the upper and
lower limits of the distribution and its coarseness. Finally, VARIABLEs are defined for the mean,
variance and standard deviation of the product mole fraction.

The equations are the same as were described before, except that there is no equation for the
standard deviation or to relate the variable ProdMolFrac to the X(4) VARIABLEs in each scenario.

While we could include the equation for the standard devation in this model, by using the
equation:

PMFstddev^2 = PMFvariance ;

this tends to slow the simulation down. The alternative used here is to ASSIGN PMFstddev to a
temporary value in the PROCESS section and to RESET it at the end of the simulation using:

SCHEDULE

SEQUENCE

...

RESET

xxx.PMFstddev := SQRT(OLD(xxx.PMFvariance)) ;

END

END

The final difference is the missing equation relating ProdMolFrac to Scenarios().X(4). This
is because we are plotting a pdf of a dynamic variable and want to avoid slowing the simulation
but are demonstrating a different approach to the one described before (where the additional
“End” variable was used). Here, we can avoid this additional variable simply by ASSIGNing
ProdMolFrac itself and then RESETting at the end of the simulation. The disadvantage with this
approach is that you cannot plot the mean of the distribution over time; it only contains the
correct value at the end of the simulation, when ProdMolFrac gets assigned the correct values.
In this example, we were not concerned with plotting the mean, etc., over time and so this
approach is an appropriate alternative.

The final extract of the gPROMS project, the PROCESS entity, is shown below.

PROCESS Stochastic

9.3. Example 159

gPROMS Introductory User Guide

UNIT

R101 AS Stochastic_LiquidPhaseCSTR

SET

WITHIN R101 DO

NoScenarios := 1000 ;

Upper_PMF := 0.95 ;

Lower_PMF := 0.92 ;

NoInt_PMF := 20 ;

Dist_PMF := [BFDM, 1, NoInt_PMF] ;

NoComp := 4 ;

NoReac := 2 ;

Nu := [-1, 0,

-1, 0,

1, -1,

0, 1] ;

Order := [1, 0,

1, 0,

0, 1,

0, 0] ;

R := 8.31441 ; # kJ/kmol/K

ArrhConstant := [8E-3, 1E-2] ; # m3/kmol s

ActivationEnergy := [8000, 6000] ; # kJ/kmol

Density := [17.48, 17.15, 10.24, 55.56] ; # kmol/m3

END

ASSIGN

WITHIN R101 DO

PMFstddev := 0 ;

FOR i := 1 TO NoScenarios DO

ProdMolFrac(i) := 0 ;

WITHIN Scenarios(i) DO

Fin := 0 ;

Fout := 0 ;

Xin := [0.5, 0.5, 0, 0] ;

T := NORMAL(353, 2) ;

END

END

END

INITIAL

WITHIN R101 DO

FOR i := 1 TO NoScenarios DO

WITHIN Scenarios(i) DO

9.3. Example 160

gPROMS Introductory User Guide

X(2) = X(1) ;

X(3) = 0 ;

X(4) = 0 ;

TotalVolume = 10 ;

END

END

END

SCHEDULE

SEQUENCE

CONTINUE FOR 3600

RESET

FOR i := 1 TO R101.NoScenarios DO

R101.ProdMolFrac(i) := OLD(R101.Scenarios(i).X(4)) ;

END

END

RESET

R101.PMFstddev := SQRT(OLD(R101.PMFvariance)) ;

END

CONTINUE FOR .01

END

Below are some comments on the PROCESS.

SET This section illustrates a couple of useful features in gPROMS. The first is that some of
the PARAMETERs are having thier default values overridden. The second is that all of the
PARAMETERs in the lower-level model (LiquidPhaseCSTR) are being propagated.

ASSIGN In this section we assign the dummy values to ProdMolFrac and PMFstddev. Also, some
of the degrees of freedom of the LiquidPhaseCSTR model are set, e.g. the inlet and outlet
flowrates, which are set to zero. Finally, the temperature for each scenario is set a random
value from the normal distribution, N(353, 2).

INITIAL A typical set of initial conditions are used here.

SCHEDULE This sections illustrates the RESETting of the VARIABLEs ProdMolFrac and PMFstddev.
Note that because PMFstddev depends on ProdMolFrac, the latter must be RESET before
the former in a separate RESET task. If they are RESET in the same task, then PMFstddev

will be RESET based on the values in ProdMolFrac from before the RESET task.

Finally, on some systems gRMS may not be able to plot the pdf VARIABLEs correctly
(sometimes the value after the RESET is ignored by gRMS). A simple solution is to include
a short CONTINUE at the end of the SCHEDULE. This is not an issue with the Excel output
channel, although sending the values of a large number of VARIABLEs to Excel takes a
considerable length of time. It is therefore recommended that you MONITOR only the
VARIABLEs that are necessary.

The results of the stochastic simulation are shown in figures 9.2 to 9.4. Figure 9.2 shows the
values assigned to the temperature for each scenario. Figure 9.3 shows the resulting distribution
of product mole fractions. Finally, figure 9.4 shows the value of the standard deviation, also
illustrating that in this model its value is only correct at the end of the simulation.

9.3. Example 161

gPROMS Introductory User Guide

347

348

349

350

351

352

353

354

355

356

357

358

359

0 100 200 300 400 500 600 700 800 900 1000

T
e
m
p
e
r
a
t
u
r
e

[
K
]

Scenario

Figure 9.2: Values assigned to the temperature for each scnario.

9.3. Example 162

gPROMS Introductory User Guide

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.920 0.925 0.930 0.935 0.940 0.945 0.950

R
1
0
1
.
P
M
F
_
p
d
f

Product mole fraction

Figure 9.3: Probability density function for the product mole fraction (X(4)).

9.3. Example 163

gPROMS Introductory User Guide

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

0 1000 2000 3000 4000

M
o
l
e

f
r
a
c
t
i
o
n

Time [s]

Figure 9.4: Standard deviation of the product mole fraction (X(4)).

9.3. Example 164

gPROMS Introductory User Guide

Chapter 10

Controlling the Execution of

Model-based Activities

Contents

10.1 The PRESET section . 167

10.2 The SOLUTIONPARAMETERS section 169

10.2.1 Controlling result generation and destination 169

10.2.2 Choosing mathematical solvers for model-based activities . . . 170

10.2.3 Configuring the mathematical solvers 171

10.2.4 Specifying solver-type algorithmic parameters 172

10.2.5 Specifying default linear and nonlinear equation solvers 174

10.3 Standard solvers for linear algebraic equations 176

10.3.1 The MA28 solver . 176

10.3.2 The MA48 solver . 177

10.4 Standard solvers for nonlinear algebraic equations 179

10.4.1 The BDNLSOL solver . 179

10.4.2 The NLSOL solver . 181

10.4.3 The SPARSE solver . 184

10.5 Standard solvers for differential-algebraic equations 188

10.5.1 The DASOLV solver . 189

10.5.2 The SRADAU solver . 192

10.6 Standard solvers for optimisation 195

10.6.1 The CVP SS solver . 197

10.6.2 The OAERAP solver . 197

10.6.3 The SRQPD solver . 199

10.6.4 The CVP MS solver . 202

10.7 Standard solvers for parameter estimation 206

10.7.1 The MXLKHD solver . 206

165

gPROMS Introductory User Guide

As we have seen in section 2.2.5, the PROCESS entity is used to describe a simulation activity
that is to be carried out by gPROMS using instances of one or more MODEL entities. Moreover,
as described in chapters 2 and 3 of the gPROMS Advanced User Guide, PROCESS entities are
central to other types of model-based activities supported by gPROMS, such as optimisation
and parameter estimation.

The execution of model-based activities involves the solution of different types of mathematical
problems. Typically, these are complex problems due to both their size and their nonlinearity.
gPROMS provides a number of state-of-the-art mathematical solvers that employ a combination
of symbolic, structural and numerical manipulations for the solution of these problems.

This chapter describes some important features of the PROCESS entity that are related with the
solution of the underlying mathematical problems and the handling of the results produced by
it:

• section 10.1 describes how you can provide initial guesses for the variables that occur in
your model;

• section 10.2 describes how you can:

– choose appropriate solvers for different kinds of problems,

– specify the destination of any results that the solution may produce;

• the remainder of this chapter provides a detailed description of the mathematical solvers
provided as standard within gPROMS; these fall in several categories:

– solvers for sets of linear algebraic equations (section 10.3);

– solvers for sets of nonlinear algebraic equations (section 10.4);

– solvers for mixed sets of nonlinear algebraic and differential equations (section 10.5);

– solvers for optimisation problems (section 10.6);

– solvers for parameter estimation problems (section 10.7).

The description of each solver includes a list of all the parameters that you can use to
configure its precise behaviour when applying it to a particular problem.

166

gPROMS Introductory User Guide

10.1 The PRESET section

At the start of each simulation, gPROMS has to solve a problem known as initialisation. For both
steady-state and dynamic simulations, gPROMS must first solve a system of algebraic equations
(usually nonlinear). This naturally requires initial guesses for all of the variables in order to
provide the solution algorithm with a starting point. These initial guesses (and appropriate
bounds on the variables) are specified in the VARIABLE TYPE entities (see section 2.2.4). Usually,
specifying the initial guesses in this manner i.e. the same initial guess and bounds for variables
of the same type) is sufficient for gPROMS to solve the initialisation problem. Larger, more
complex problems, however, may not be suited to this approach and therefore a more flexible
method is needed specifying the initial guesses. This is catered for through the PRESET section,
which allows the default initial guess and bounds of a variable to be overridden.

The syntax for the PRESET section is:

PRESET VariablePath := InitialValue ;

or

PRESET VariablePath := InitialValue : LowerBound : UpperBound ;

WITHIN and FOR statements may also be used in the PRESET section.

Even once a set of suitable initial guesses are found, some problems may take a considerable
length of time to solve. This can often be greatly reduced if the solution of the initialisation
problem is used to provide the initial guesses. This can be done in gPROMS using Saved
Variable Sets by SAVE-ing the values of all variables after the initialisation and restoring them in
the PRESET section as shown in figure 10.1. In the first PROCESS, a set of initial guesses is used
that is sufficient for the initialisation to be solved. The second PROCESS then uses the data in
the save file to solve the initialisation more quickly. Note that the second PROCESS may also save
the result of the initialisation problem, so that changes can be made to the problem without
having to run the first PROCESS again.

Multiple Saved Variable Sets can be RESTOREd in the PRESET section, along with manually
specified initial guesses, as shown in the example below. In all cases, any initial guess provided
for a particular variable, either via an explicit specification or via a RESTORE, will override all
earlier initial guesses for the same variable.

PRESET

RESTORE "v set1", "v set2" ;"

RESTORE "v set3" ;"

VariablePath := InitialValue ;

VariablePath := InitialValue : LowerBound : UpperBound;
RESTORE "v set4", "v set5" ;"

RESTORE "v set6" ;"

10.1. The PRESET section 167

gPROMS Introductory User Guide

PROCESS InitSim1

...

PRESET

WITHIN aaa DO

x(1) := 1 ;

x(2) := 1 ;

x(3:10) := 0 ;

y() := 5 ;

z := 10 : 5 : 100 ;

...

END

...

SCHEDULE

SAVE "InitialisationData"

(a) PROCESS used to solve the initialisation problem only

PROCESS FullSim

...

PRESET

RESTORE "InitialisationData"

...

SCHEDULE

SEQUENCE

SAVE "InitialisationData"

...

END # sequence

(b) Full PROCESS restoring data from the successful initialisation

Figure 10.1: The use of RESTORE in the PRESET section.

10.1. The PRESET section 168

gPROMS Introductory User Guide

10.2 The SOLUTIONPARAMETERS section

The SOLUTIONPARAMETERS section allows the specification of parameters that affect:

• the results generated by the execution of a model-based activity;

• the mathematical solvers to be used for the execution of a model-based activity.

The basic syntax for the SOLUTIONPARAMETERS section, along with the default values of the
parameters, is shown below:

SOLUTIONPARAMETERS

parameters concerned with output generation

gExcelOutput := OFF ;

gPLOT := OFF ;

gRMS := ON ;

gUserOutput := OFF ;

Monitor := ON ;

ReportingInterval := 0.0 ;

parameters concerned with mathematical solvers

DASolver := "DASOLV" ;

DOSolver := "CVP_SS" ;

LASolver := "MA48" ;

NLSolver := "NLSOL" ;

PESolver := "MXLKHD" ;

Normally, the above default values are sufficient to solve most problems. However, they may be
overridden in the SOLUTIONPARAMETERS section if and when necessary.

10.2.1 Controlling result generation and destination

The first group of the above parameters allow the user to control the generation of results by
the execution of a model-based activity, as well as the destination of these results.

gExcelOutput Enables or disables the Microsoft Excel output channel (see Appendix C).

By default, this parameter is switched OFF. When set to ON, output is sent to a file
whose stem is the PROCESS entity name plus an index in square brackets to represent
the number of times the process has been executed. For example, if the process name
was MyProcess the first output file generated would be called MYPROCESS.xls; the second
would be MYPROCESS[2].xls; and so on.

A different file name can be specified directly in the SOLUTIONPARAMETERS section using
the syntax:

gExcelOutput := "FileName" ;

Note that this automatically implies that the gExcelOutput parameter is switched ON.

10.2. The SOLUTIONPARAMETERS section 169

gPROMS Introductory User Guide

gPLOT Enables or disables the generation of text results files (see Appendix D).

By default, this parameter is switched OFF. When set to ON, output is sent to a file whose
name is the PROCESS entity name followed by .gPLOT. A different file name can be specified
directly in the SOLUTIONPARAMETERS section using the syntax:

gPLOT := "FileName" ;

Note that this automatically implies that the gPLOT parameter is switched ON.

gRMS Enables or disables communication between gPROMS and the gPROMS Results Man-
agement System (gRMS, see Appendix B).

By default, this parameter is switched ON. When set to ON, output is archived under a
gRMS process (cf. section B.1) with the same name as that of the PROCESS entity. A
different name can be specified directly in the SOLUTIONPARAMETERS section using the
syntax:

gRMS := "FileName" ;

Note that this automatically implies that the gRMS parameter is switched ON.

gUserOutput Enables or disables a user-defined output channel.

The construction of such output channels is described in detail in the gPROMS System
Programmer Guide.

By default, this parameter is switched OFF.

Monitor Sets the initial state for monitoring of variables.

By default, this parameter is switched ON. If set to OFF, no results will be collected during
the execution of the model-based activity. However, for dynamic simulation activities,
monitoring can be enabled at a later stage by inserting the MONITOR elementary task in
the simulation SCHEDULE (cf. section 7.3.2).

ReportingInterval Specifies the reporting interval for results.

This is the frequency at which variable values are transmitted to the output channel(s)
during a dynamic simulation activity.

This parameter does not have a default value. If it is omitted, the user will be asked to
enter a value interactively before the simulation starts (cf. section 2.3).

10.2.2 Choosing mathematical solvers for model-based activities

gPROMS supports three main types of model-based activity, namely:

• simulation

• optimisation

• parameter estimation

Each one of these activities can be based on either steady-state or dynamic models.

gPROMS provides a range of state-of-the-art proprietary solvers for the execution of different
types of activity. Albeit sufficiently general to handle the dynamic case, these solvers are de-
signed to automatically detect whether a particular problem is, in fact, a steady-state one and
to take this into account in its solution.

10.2. The SOLUTIONPARAMETERS section 170

gPROMS Introductory User Guide

gPROMS also supports an open software architecture regarding mathematical solvers. This
basically means that third-party solvers can be used within gPROMS without any modifications
either to the gPROMS software or to the models written in it. Detailed information on this
topic can be found in the gPROMS System Programmer Guide.

The SOLUTIONPARAMETERS section provides three parameters that can be used to specify which
solver (either standard gPROMS or third-party) should be used for each type of activity:

• DASolver specifies the solver to be used for simulation activities1;

• DOSolver specifies the solver to be used for optimisation activities2;

• PESolver specifies the solver to be used for parameter estimation activities.

Note that a PROCESS entity may contain specifications for all three types of solver irrespective
of the kind of activity for which it is actually used.

The value of each of the above three parameters is actually a string identifying the solver to be
used, enclosed in double quotes. For example, the syntax:

DASolver := "SRADAU";

DOSolver := "DYNOPT";

would be used to indicate that:

• dynamic simulation is to be performed with the SRADAU solver, one of the standard
gPROMS dynamic simulation solvers(cf. section 10.5.2);

• dynamic optimisation should use a (hypothetical) third-party dynamic optimisation solver
called DYNOPT.

Note that the name of the solver is always enclosed in double quotes.

10.2.3 Configuring the mathematical solvers

A mathematical solver for a model-based activity, such as dynamic simulation or optimisation,
is usually a complex piece of software. Its precise behaviour and performance in solving any
particular problem is controlled by a number of algorithmic parameters. For example, the
quality of the results produced by a dynamic simulation solver (and also the computational
effort required) can be controlled by adjusting one or more error tolerances. Each algorithmic
parameter will normally have a default value which is chosen to lead to good (if not optimal)
performance for a wide range of problems; this default will be used unless the user specifies a
different value.

The set of algorithmic parameters recognised by two different solvers – even of the same type
– will generally be different. gPROMS provides a general mechanism for specifying algorithmic
parameter values of five distinct types:

1The “DA” in DASolver stands for “differential-algebraic”; this reflects the fact that the main math-
ematical operation involved in performing dynamic simulation activities is the solution of mixed sets of
differential and algebraic equations.

2The “DO” in DOSolver stands for “dynamic optimisation”; this reflects the fact that all standard
optimisation solvers in gPROMS are designed for the general case of optimisation of systems under
transient conditions.

10.2. The SOLUTIONPARAMETERS section 171

gPROMS Introductory User Guide

• integer algorithmic parameters (e.g. the maximum permitted number of iterations);

• real algorithmic parameters (e.g. the error tolerances);

• logical algorithmic parameters (e.g. whether a certain feature of the solver is to be used
or not);

• string algorithmic parameters (e.g. the name of a file to receive special output generated
by the solver);

• enumerated algorithmic parameters; these are strings (enclosed in double quotes) that
can take only certain values (e.g. "OFF", "MEDIUM", "HIGH") which are recognised by the
solver;

• solver algorithmic parameters; these are strings (enclosed in double quotes) that specify
sub-solvers to be used by the solver, as explained in detail in section 10.2.4 below.

For example,the following syntax would be used to specify that a dynamic simulation should
be performed using the SRADAU solver with an output level of 2, an absolute error tolerance of
10−8, and with the generation of a special diagnostics output file switched on:

DASolver := "SRADAU" ["OutputLevel" := 2;

"AbsoluteTolerance" := 1E-8;

"Diag" := TRUE] ;

A complete list of all the parameters associated with the SRADAU solver is given in section 10.5.2.
The important things to note here are:

• the name of the algorithmic parameter is always enclosed in double quotes, as is the name
of the solver itself;

• the values of algorithmic parameters of type string, enumerated and solver (not shown in
the above example) must be enclosed in double quotes;

• any algorithmic parameters not specified here will retain their default values.

10.2.4 Specifying solver-type algorithmic parameters

As mentioned above, some of the algorithmic parameters used to configure solvers may be solvers
themselves. For example, solving a set of differential and algebraic equations typically requires
the solution of a number of mathematical sub-problems involving sets of either nonlinear or
linear algebraic equations. Thus, a differential-algebraic equation solver will normally need to
make use of both a nonlinear equation solver and a linear equation solver. We will refer to these
as the “sub-solvers” associated with this solver.

Some mathematical solvers have built in sub-solvers that they always use for their operation.
On the other hand, more advanced solvers may allow their users to specify the sub-solver to
be used. This can be done via an algorithmic parameter. For instance, consider the following
extended form of the example specification of the dynamic simulation solver presented in section
10.2.3:

10.2. The SOLUTIONPARAMETERS section 172

gPROMS Introductory User Guide

DASolver := "SRADAU" ["OutputLevel" := 2;

"AbsoluteTolerance" := 1E-8;

"Diag" := TRUE;

"LASolver" := "MA28";

"InitialisationNLSolver" := "SPARSE";

"ReinitialisationNLSolver" := "SPARSE"] ;

This specifies that the SRADAU solver should use the MA28 solver for the solution of any sets
of linear algebraic equations that it needs to perform3. In addition to a sub-solver for linear
equations, the SRADAU solver also needs two sub-solvers for nonlinear algebraic equations. One of
these is used for the initialisation of the dynamic simulation and the other one for re-initialisation
following discontinuities. In the above example, we are specifying that the SPARSE solver should
be used for both of these tasks4. In all cases, note that the value of a solver-type algorithmic
parameter (i.e. the name of the sub-solver to be used) needs to be enclosed in double quotes.

Of course, a sub-solver is itself a solver and may have its own algorithmic parameters that the
user may specify. In the above example, we may wish to specify a tight convergence tolerance
for the initialisation solver and a slightly less tight one for re-initialisation. This can be done
using the syntax:

DASolver := "SRADAU" ["OutputLevel" := 2;

"AbsoluteTolerance" := 1E-8;

"Diag" := TRUE;

"LASolver" := "MA28";

"InitialisationNLSolver" := "SPARSE"

["ConvergenceTolerance" := 1E-8];

"ReinitialisationNLSolver" := "SPARSE"

["ConvergenceTolerance" := 1E-7]] ;

In fact, some of the sub-solvers may themselves have solver-type parameters. For example,
nonlinear equation solvers, such as SPARSE, often need to solve sub-problems that involve sets
of linear algebraic equations. Again, this can be accommodated within the general syntax
presented above. For example:

DASolver := "SRADAU" ["OutputLevel" := 2;

"AbsoluteTolerance" := 1E-8;

"Diag" := TRUE;

"LASolver" := "MA28";

"InitialisationNLSolver" := "SPARSE"

["ConvergenceTolerance" := 1E-8;

"LASolver" := "MA48"];

"ReinitialisationNLSolver" := "SPARSE"

["ConvergenceTolerance" := 1E-7;

"LASolver" := "MA28"]] ;

3MA28 is one of the linear algebraic equation solvers provided as standard within gPROMS (see section
10.3.1).

4SPARSE is one of the nonlinear algebraic equation solvers provided as standard within gPROMS (see
section 10.4.3).

10.2. The SOLUTIONPARAMETERS section 173

gPROMS Introductory User Guide

specifies that the SPARSE solver used for initialisation should make use of the MA48 linear algebra
solver, while that used for re-initialisation should employ the MA28 solver. Moreover, MA28 will
be used by SRADAU to solve any linear equations systems arising outside the initialisation and
re-initialisation stages of its operation.

The above syntax for specifying and configuring sub-solvers within solvers is recursive and can be
used to define solver hierarchies with any number of levels. For example, a dynamic optimisation
solver can use a differential-algebraic equation solver, which in turn can make use of a nonlinear
equation solver, which can employ a linear equation solver.

10.2.5 Specifying default linear and nonlinear equation solvers

Most mathematical solvers for simulation, optimisation and parameter estimation need to make
use of sub-solvers for the solution of sets of linear and nonlinear algebraic equations. In order
to avoid having to specify and configure these low level solvers repeatedly within the same
SOLUTIONPARAMETERS section, gPROMS provides two solution parameters that can be used to
specify and configure default linear and nonlinear algebraic equation solvers. Thus, in addition
to the three main solver parameters DASolver, DOSolver and PESolver described in section
10.2.2, gPROMS recognises the following two parameters:

• LASolver specifies the default sub-solver for sets of linear algebraic equations;

• NLSolver specifies the default sub-solver for sets of nonlinear algebraic equations.

Consider, for example, the specification:

default linear algebraic equation solver configuration

LASolver := "MA28" ["PivotStabilityFactor" := 0.2;

"ExpansionFactor" := 3;

"MaxStructures" := 4] ;

default nonlinear algebraic equation solver configuration

NLSolver := "SPARSE" ["OutputLevel" := 3;

"MaxFuncs" := 1000;

"MaxIterNoImprove" := 5;

"NStepReductions" := 10;

"MaxIterations" := 1000;

"ConvergenceTolerance" := 1E-8] ;

DASolver := "DASOLV" ["OutputLevel" := 1;

"AbsoluteTolerance" := 1E-8] ;

DOSolver := "CVP_MS";

This specifies that, whenever the DASOLV solver (cf. section 10.5.1) needs to solve sets of linear or
nonlinear algebraic equations, it should use, respectively, the MA28 and SPARSE solvers configured
as shown above. Also, whenever SPARSE itself requires the solution of a set of linear equations,
it should also use MA28 in the same configuration.

The above also specifies that the CVP MS solver should be used for the execution of dynamic
optimisation activities (cf. section 10.6.4). This solver will also make use of the specified sub-

10.2. The SOLUTIONPARAMETERS section 174

gPROMS Introductory User Guide

solver choices and configurations for linear and nonlinear algebraic equations.

Interestingly, CVP MS also requires a differential-algebraic equation solver for its operation. This
could be achieved by specifying the value of a solver-type algorithmic parameter called DASolver,
e.g. DOSolver := "CVP MS" ["DASolver" := "SuperDAE"]; where SuperDAE is a (hypotheti-
cal) third-party solver for differential-algebraic equations. However, since no such explicit spec-
ification is made above, CVP MS will actually use the DASolver choice and configuration shown
above for this purpose.

In conclusion, specifying the DASolver parameter in SOLUTIONPARAMETERS fulfils a dual function
as it defines:

• the mathematical solver to be used for simulation activities;

• the default sub-solver to be used by the optimisation and parameter estimation activity
solvers whenever they need to solve sets of differential and algebraic equations.

10.2. The SOLUTIONPARAMETERS section 175

gPROMS Introductory User Guide

10.3 Standard solvers for linear algebraic equations

There are two standard mathematical solvers for the solution of sets of linear algebraic equations
in gPROMS, namely MA28 and MA48. Both of these employ direct LU-factorisation algorithms,
designed for large, sparse, asymmetric systems of linear equations. MA48 is the newer of the two
codes.

The LASolver solution parameter (cf. section 10.2.5) may be used to change and/or configure
the default linear algebra sub-solver used by all higher-level solvers. If this parameter is not
specified, then the MA48 solver is used, with the default configuration shown at the start of
section 10.3.2 below.

10.3.1 The MA28 solver

The algorithmic parameters used by MA28 along with their default values are shown below. This
is followed by a detailed description of each parameter.

"MA28" ["OutputLevel" := 0;

"PivotStabilityFactor" := 0.1;

"ExpansionFactor" := 4;

"MaxStructures" := 6;

"MaxStructuresMemory" := 100000] ;

OutputLevel An integer in the range [-1, 1].

The amount of information generated by the solver. The following table indicates the
lowest level at which different types of information are produced:

-1 (None)
0 Creation and deletion of systems

usage statistics on deletion
workspace increases

1 Structure analysis messages

PivotStabilityFactor A real number in the range [0.0, 1.0].

Controls the balance between minimising the creation of new non-zero elements during the
matrix factorisation5 (PivotStabilityFactor= 0) and numerical stability (PivotStabilityFactor
= 1).

ExpansionFactor An integer of value 1 or higher.

The amount of space that gPROMS allocates for the matrix factorisation at the start of
a computation is given by:

ExpansionFactor × (Number of Nonzero Elements in Matrix)

gPROMS will automatically expand this storage at a later stage during the computation
if the original allocation is found to be insufficient. However, if the amount of storage
needed by a particular computation is known a priori6 , it will usually be more efficient
to allocate it from the start by specifying an appropriate value for ExpansionFactor.

5And consequently, the amount of storage required by the factorisation.
6For example, from experience from earlier similar computations.

10.3. Standard solvers for linear algebraic equations 176

gPROMS Introductory User Guide

MaxStructures An integer of value 0 or higher.

The execution of a model-based activity in gPROMS typically involves the factorisation
of a number of matrices of several different structures. The gPROMS implementation
of MA28 allows the option of storing information on one or more structures encountered
for possible re-use at a later stage of the execution if it is required again to factorise
a matrix with one of those structures. This may significantly improve the efficiency of
handling discontinuities at the expense of higher memory requirements. The parameter
MaxStructures is an upper limit on the number of distinct structures that may be stored
during any one simulation.

MaxStructureMemory An integer of value 0 or higher.

This is an upper bound on the number of integer variable locations that may be used as
part of the structure storage scheme described above.

10.3.2 The MA48 solver

The algorithmic parameters used by MA48 along with their default values are shown below. This
is followed by a detailed description of each parameter.

"MA48" ["OutputLevel" := 0;

"PivotStabilityFactor" := 0.1;

"ExpansionFactor" := 5;

"FullSwitchFactor" := 0.5;

"PivotSearchDepth" := 3;

"BLASLevel" := 32;

"MinBlock" := 1] ;

OutputLevel An integer in the range [-1, 4].

The amount of information generated by the solver. The following table indicates the
lowest level at which different types of information are produced:

0 (None)
1 Creation and deletion of systems,

usage statistics including CPU,
workspace increases, numerical singularity

2 Warning messages, e.g. for duplicate entries, which can be ignored
3 Information from the internal Fortran calls: a few entries of the matrix

to be factorised and the result
4 More information, including all entries in the factorised matrices,

and the right-hand-side and solutions vectors.

PivotStabilityFactor As for MA28.

ExpansionFactor As for MA28.

FullSwitchFactor A real number in the range [0.0, 1.0].

The MA48 linear solver has an option of switching to full-matrix linear algebra computa-
tions at any stage during the matrix factorisation process if the proportion of non-zero
elements in the matrix remaining to be factorised exceeds a specified threshold. The latter
can be adjusted by the parameter FullSwitchFactor.

10.3. Standard solvers for linear algebraic equations 177

gPROMS Introductory User Guide

PivotSearchDepth An integer of value 0 or higher.

The number of columns within which the search for an appropriate pivot element during
a factorisation is limited. Generally, a higher number will result in a more numerically
stable pivot selection, at the expense of higher computation time. If PivotSearchDepth
is set to zero, MA48 will use a special technique for finding the best pivot. Although this
may result in reduced fill-in, pivot search in this case is usually slower and occasionally
very slow.

BLASLevel An integer of value 0 or more.

MA48 makes use of the Basic Linear Algebra System (BLAS) for vector and matrix oper-
ations. BLAS is organised in three different levels, in ascending order of sophistication of
the services offered. The BLASLevel parameter specifies that BLAS level BLASlevel+1
should be used by MA48. Additionally, if the value is 2 or more, it is used to set the block
column size, a parameter only applicable to level 3. For this reason, the default is 32.

MinBlock An integer of value 1 or higher.

MA48 makes use of block triangularisation as a means of accelerating the factorisation
and solution of linear systems. This parameter specifies the minimum block size to be
considered in this context.

10.3. Standard solvers for linear algebraic equations 178

gPROMS Introductory User Guide

10.4 Standard solvers for nonlinear algebraic equations

There are three standard mathematical solvers for the solution of sets of nonlinear algebraic
equations in gPROMS, namely BDNLSOL, NLSOL and SPARSE:

• BDNLSOL stands for “Block Decomposition NonLinear SOLver”. It is a new implementa-
tion of a general solver for solving sets of nonlinear equations rearranged to block trian-
gular form, and employs a novel algorithm for the handling of equations with reversible
symmetric discontinuities (IF equations). It also optionally supports “preset propaga-
tion”, a means of making better use of information provided in the PRESET section. As
a modular solver component, BDNLSOL can in principle make use of any other nonlinear
solver component to solve its individual blocks.

• NLSOL is a general purpose nonlinear solver, with and without block decomposition. In
reality, it is implemented by providing access to the nonlinear solvers existing within
gPROMS prior to version 2.1 as a means of providing continuity and complete backward
compatibility with earlier versions.

Due to its implementation, NLSOL is not a true software component, and this implies
certain restrictions in its use. In particular, it can be used only as the nonlinear solver for
simulation activities.

• SPARSE is a true solver component for solution of nonlinear algebraic systems without block
decomposition. It provides a sophisticated implementation of a Newton-type method.

All of the above solvers are designed to deal with large, sparse systems of equations in which
the variable values are restricted to lie within specified lower and upper bounds. Moreover,
they can handle situations in which some of the partial derivatives of the equations with respect
to the variables are available analytically while the rest have to approximated7. An efficient
combination of finite difference approximations and least-change secant updates is used for the
latter purpose.

The NLSolver solution parameter (cf. section 10.2.5) may be used to change and/or configure
the default linear algebra sub-solver used by all higher-level solvers. If this parameter is not
specified, then:

• simulation activities make use of the NLSOL solver with the default configuration shown
at the start of section 10.4.2;

• optimisation and parameter estimation activities make use of the BDNLSOL solver with the
default configuration shown at the start of section 10.4.1.

10.4.1 The BDNLSOL solver

The algorithmic parameters used by BDNLSOL along with their default values are shown below.
This is followed by a detailed description of each parameter.

7In gPROMS models, almost all partial derivatives are computed analytically from expressions de-
rived using symbolic manipulations. The main exception is partial derivatives of equations involving
any Foreign Object methods that are not capable of returning partial derivatives (see chapter 4 of the
gPROMS Advanced User Guide).

10.4. Standard solvers for nonlinear algebraic equations 179

gPROMS Introductory User Guide

"BDNLSOL" [OutputLevel := 0;

"LASolver" := "MA48";

"BlockSolver" := "SPARSE";

"UsePresetPropagation" := TRUE;

"PresetPropagationOutputLevel" := 0;

"IdentityElimination" := FALSE];

OutputLevel An integer in the range [-1, 5].

The amount of information generated by the solver. The following table indicates the
lowest level at which different types of information are produced:

0 (None)
1 Numbers of equations in each block in the main block decomposition

Failures to solve linear blocks
2 Result of the block decomposition: equation and variable numbers in each block

Progress of preset propagation
“Solving block n” message

3 Changes in variable values due to preset propagation
Changed/unchanged variables due to solving single linear equations
Final variable values after solving nontrivial blocks

4 Details of block decomposition performed for preset propagation (variable
and equation numbers of assignments and blocks)
Equation residuals after changing variable values for preset propagation

5 Table of equation names necessary to interpret information from
main block decomposition step
Tables of variable and equation names necessary to interpret information from
block decomposition during preset propagation

BlockSolver A quoted string specifying a nonlinear algebraic equation solver.

The solver to be used for the solution of the nonlinear systems representing each block.
This can be either SPARSE (cf. section 10.4.3) or a third-party nonlinear algebraic equation
solver (see the gPROMS System Programmer Guide).

This parameter can be followed by further specifications aimed at configuring the partic-
ular solver by setting values to its own algorithmic parameters (cf. section 10.2.4).

LASolver A quoted string specifying a linear algebraic equation solver.

The solver to be used for the solution of linear algebraic equations arising in the course
of the preset propagation algorithm. This can be either one of the standard gPROMS
linear algebraic equation solvers (cf. section 10.3) or a third-party linear algebraic equation
solver (see the gPROMS System Programmer Guide). The default is MA48.

This parameter can be followed by further specifications aimed at configuring the partic-
ular solver by setting values to its own algorithmic parameters (cf. section 10.2.4).

UsePresetPropagation A boolean value.

Specifies whether or not the preset propagation algorithm is to be used. Use of this algo-
rithm may assist with difficult initialisations. However there is cost in terms of execution
time.

PresetPropagationOutputLevel An integer in the range [-1, 5].

Controls the output from preset propagation independently from the output for the solver.

10.4. Standard solvers for nonlinear algebraic equations 180

gPROMS Introductory User Guide

0 (None)
2 Progress of preset propagation
3 Changes in variable values due to preset propagation
4 Details of block decomposition performed for preset propagation (variable

and equation numbers of assignments and blocks)
Equation residuals after changing variable values for preset propagation

5 Tables of variable and equation names necessary to interpret information from
block decomposition during preset propagation

IdentityElimination A boolean value.

If set to TRUE, the solver will attempt to internally reduce the size of the problem by
removing equations of the form x = y, and substituting all occurences of one of these
variables with the other. Such equations are often introduced in gPROMS models by
stream connectivity equations. This may result in faster solution time although at the
current stage of development the costs of creating and using the reduced system sometimes
outweigh the benefits, particularly when many IF and CASE conditions are present.

10.4.2 The NLSOL solver

The algorithmic parameters used by NLSOL along with their default values are shown below.
This is followed by a detailed description of each parameter.

"NLSOL" ["OutputLevel" := 0;

"ConvergenceTolerance" := 1E-5;

"MaxFuncs" := 1000000;

"MaxIterNoImprove" := 10;

"NStepReductions" := 10;

"MaxIterations" := 1000;

"EffectiveZero" := 1E-5;

"FDPerturbation" := 1E-5;

"SingPertFactor" := 1E-2;

"SLRFactor" := 50;

"LASolver" := "MA48";

"UseBlockDecomposition" := TRUE] ;

OutputLevel An integer in the range [-1, 10].

The amount of information generated by the solver. The following table indicates the
lowest level at which different types of information are produced:

10.4. Standard solvers for nonlinear algebraic equations 181

gPROMS Introductory User Guide

-1 (None)
0 Halving of step due to unsatisfactory progress,

initial point out of bounds
1 Solution parameters on first use, variables hitting bounds
2 Method and scaling information, number of equation evaluations on convergence,

failure to improve in MaxIterNoImprove iterations,
equation residuals norm, equation with highest residual,
variables stuck on bounds, number of variables reset to bounds

3 Variable and equation names of each nonlinear system,
call number and condition,
step reduction factors

4 Residuals at every evaluation, variables at each iteration,
lists of variables being perturbed

5 Variable values before solution, workspace information,
steps taken at each iteration

6 Complete Jacobian at each factorisation
10 Solution parameters on every use

ConvergenceTolerance A real number in the range [10−20, 1010].

The tolerance used in testing for convergence of the nonlinear system f(x) = 0 being
solved. A system of n equations f(x) in n unknowns x is assumed to have converged
when the norm of the equations:

||f(x)|| ≡ max
i∈[1,n]

|fi(x)|

falls below the ConvergenceTolerance. This is equivalent to the absolute value of the
difference between the left and right hand sides of each and every equation in the system
being below this tolerance. Note that no automatic scaling is applied by the solver.

MaxFuncs An integer in the range [0, 1000000].

The maximum number of evaluations of the vector of equations f(x) that is permitted
during solution. This includes the equation evaluations required for approximating any
elements of the Jacobian matrix ∂f/∂x that are not available analytically, using finite
difference perturbations.

MaxIterNoImprove An integer in the range [0, 1000000].

The maximum number of iterations without a reduction in the norm of the equation vector
(see above) before the solver takes corrective action. For convergence to be achieved, this
norm must eventually decrease to below the ConvergenceTolerance. However, it may
actually increase between two consecutive iterations.

The solver monitors the norm at each iteration. It also keeps a record of the best (i.e.
lowest) norm obtained so far in the solution, the values of the unknowns xbest at this
point, and the value of the step length restriction factor βbest that was applied at the
corresponding iteration (see parameter SLRFactor below). If no improvement over this
best norm is observed within MaxIterNoImprove consecutive iterations, then the solver
attempts to take corrective action, as follows:

• the unknowns are reset to xbest;

• the Jacobian matrix is recomputed, using finite differences for any elements not
available analytically;

• the step length restriction factor β (see parameter SLRFactor below) is halved.

10.4. Standard solvers for nonlinear algebraic equations 182

gPROMS Introductory User Guide

NStepReductions An integer in the range [0, 1000000].

The maximum number of consecutive corrective actions that the solver is allowed to
attempt. As explained in the context of parameter MaxIterNoImprove above, the solver
attempts to take certain corrective actions if no improvement in the equation norm is
achieved within a certain number of consecutive iterations. If such corrective action is
attempted more than NStepReductions times in a row (i.e. having to return to the same
xbest in all cases), then the solver terminates its operation unsuccessfully.

MaxIterations An integer in the range [0, 1000000].

The maximum number of iterations that the solver is allowed to take. Note that, unlike
MaxFuncs (see above), this does not include any evaluations of the equations for the
purpose of estimating elements of the Jacobian matrix using finite difference perturbations.

EffectiveZero A real number in the range [10−20, 1010].

The magnitude of a variable below which absolute rather than relative perturbations are
used – see parameters FDPerturbation, SingPertFactor and SLRFactor below.

FDPerturbation A real number in the range [10−20, 1010].

Finite difference perturbation factor. If finite difference calculation of partial derivatives
with respect to a variable x is required, x is perturbed by:

FDPerturbation× |x|

unless |X | is less than EffectiveZero (see above), in which case it is perturbed by
FDPerturbation.

SingPertFactor A real number in the range [10−20, 1010].

The perturbation factor used for escaping from local singularities. If, at a certain iteration,
the Jacobian matrix is found to be singular (with a rank r that is less than the size of the
system n), the solver attempts to escape from such a point by applying a perturbation to
n − r of the system variables. For a variable x, the size of this perturbation is:

SingPertFactor× |x|

unless |x| is less than EffectiveZero (see above), in which case it is perturbed by
SingPertFactor.

SLRFactor A real number in the range [10−20, 1010].

The step length restriction factor. In the interests of improving convergence from poor
initial guesses, the solver automatically limits the step taken in any iteration by a fraction
α ∈ (0, 1] so that the magnitude of the change in any variable x does not exceed:

• β|x| if x is equal to, or exceeds the EffectiveZero (see above);

• β otherwise.

The factor β is set to SLRFactor at the start of the solution. Thereafter, it is adjusted
automatically to reflect the difficulty of solving the system:

• β is reduced if corrective action needs to be taken (see parameter MaxIterNoImprove
above);

• β is increased if fast reduction in the equation norm is observed from one iteration
to the next.

10.4. Standard solvers for nonlinear algebraic equations 183

gPROMS Introductory User Guide

LASolver A quoted string specifying a linear algebraic equation solver.

The solver to be used for the solution of linear algebraic equations at every iteration.
This can be either one of the standard gPROMS linear algebraic equation solvers (cf.
section 10.3) or a third-party linear algebraic equation solver (see the gPROMS System
Programmer Guide). The default is MA48.

This parameter can be followed by further specifications aimed at configuring the partic-
ular solver by setting values to its own algorithmic parameters (cf. section 10.2.4).

UseBlockDecomposition A boolean value.

Specifies whether block decomposition should be applied to the nonlinear system. If it
is, then all the parameters mentioned above are applied to the solution of each block
individually.

10.4.3 The SPARSE solver

The algorithmic parameters used by SPARSE along with their default values are shown below.
This is followed by a detailed description of each parameter.

"SPARSE" ["OutputLevel" := 0;

"ConvergenceTolerance" := 1E-5;

"MaxFuncs" := 1000000;

"MaxIterNoImprove" := 10;

"NStepReductions" := 10;

"MaxIterations" := 1000;

"EffectiveZero" := 1E-5;

"FDPerturbation" := 1E-5;

"SingPertFactor" := 1E-2;

"SLRFactor" := 50;

"LASolver" := "MA48";

"IdentityElimination" := FALSE;

"IterationsWithoutNewJacobian" := 0] ;

OutputLevel An integer in the range [-1, 10].

The amount of information generated by the solver. The following table indicates the
lowest level at which different types of information are produced:

10.4. Standard solvers for nonlinear algebraic equations 184

gPROMS Introductory User Guide

-1 (None)
0 Halving of step due to unsatisfactory progress,

initial point out of bounds
1 Solution parameters on first use, variables hitting bounds
2 Method and scaling information, residual and call number on convergence,

failure to improve in MaxIterNoImprove iterations,
residual and worst equation number at each call to driver,
variables stuck on bounds, number of variables reset to bounds

3 Variable and equation names of each nonlinear system,
call number and condition on each call to driver,
step reduction factors

4 Residuals at every evaluation, variables at each iteration,
function value on each call to driver,
lists of variables being perturbed

5 Variable values before solution, workspace information,
solutions of linear systems (i.e. steps)

6 Complete Jacobian at each factorisation
10 Solution parameters on every use

ConvergenceTolerance A real number in the range [10−20, 1010].

The tolerance used in testing for convergence of the nonlinear system f(x) = 0 being
solved. A system of n equations f(x) in n unknowns x is assumed to have converged
when the norm of the equations:

||f(x)|| ≡ max
i∈[1,n]

|fi(x)|

falls below the ConvergenceTolerance. This is equivalent to the absolute value of the
difference between the left and right hand sides of each and every equation in the system
being below this tolerance. Note that no automatic scaling is applied by the solver.

MaxFuncs An integer in the range [0, 1000000].

The maximum number of evaluations of the vector of equations f(x) that is permitted
during solution. This includes the equation evaluations required for approximating any
elements of the Jacobian matrix ∂f/∂x that are not available analytically, using finite
difference perturbations.

MaxIterNoImprove An integer in the range [0, 1000000].

The maximum number of iterations without a reduction in the norm of the equation vector
(see above) before the solver takes corrective action. For convergence to be achieved, this
norm must eventually decrease to below the ConvergenceTolerance. However, it may
actually increase between two consecutive iterations.

The solver monitors the norm at each iteration. It also keeps a record of the best (i.e.
lowest) norm obtained so far in the solution, the values of the unknowns xbest at this
point, and the value of the step length restriction factor βbest that was applied at the
corresponding iteration (see parameter SLRFactor below). If no improvement over this
best norm is observed within MaxIterNoImprove consecutive iterations, then the solver
attempts to take corrective action, as follows:

• the unknowns are reset to xbest;

• the Jacobian matrix is recomputed, using finite differences for any elements not
available analytically;

• the step length restriction factor β (see parameter SLRFactor below) is halved.

10.4. Standard solvers for nonlinear algebraic equations 185

gPROMS Introductory User Guide

NStepReductions An integer in the range [0, 1000000].

The maximum number of consecutive corrective actions that the solver is allowed to
attempt. As explained in the context of parameter MaxIterNoImprove above, the solver
attempts to take certain corrective actions if no improvement in the equation norm is
achieved within a certain number of consecutive iterations. If such corrective action is
attempted more than NStepReductions times in a row (i.e. having to return to the same
xbest in all cases), then the solver terminates its operation unsuccessfully.

MaxIterations An integer in the range [0, 1000000].

The maximum number of iterations that the solver is allowed to take. Note that, unlike
MaxFuncs (see above), this does not include any evaluations of the equations for the
purpose of estimating elements of the Jacobian matrix using finite difference perturbations.

EffectiveZero A real number in the range [10−20, 1010].

The magnitude of a variable below which absolute rather than relative perturbations are
used – see parameters FDPerturbation, SingPertFactor and SLRFactor below.

FDPerturbation A real number in the range [10−20, 1010].

Finite difference perturbation factor. If finite difference calculation of partial derivatives
with respect to a variable x is required, x is perturbed by:

FDPerturbation× |x|

unless |X | is less than EffectiveZero (see above), in which case it is perturbed by
FDPerturbation.

SingPertFactor A real number in the range [10−20, 1010].

The perturbation factor used for escaping from local singularities. If, at a certain iteration,
the Jacobian matrix is found to be singular (with a rank r that is less than the size of the
system n), the solver attempts to escape from such a point by applying a perturbation to
n − r of the system variables. For a variable x, the size of this perturbation is:

SingPertFactor× |x|

unless |x| is less than EffectiveZero (see above), in which case it is perturbed by
SingPertFactor.

SLRFactor A real number in the range [10−20, 1010].

The step length restriction factor. In the interests of improving convergence from poor
initial guesses, the solver automatically limits the step taken in any iteration by a fraction
α ∈ (0, 1] so that the magnitude of the change in any variable x does not exceed:

• β|x| if x is equal to, or exceeds the EffectiveZero (see above);

• β otherwise.

The factor β is set to SLRFactor at the start of the solution. Thereafter, it is adjusted
automatically to reflect the difficulty of solving the system:

• β is reduced if corrective action needs to be taken (see parameter MaxIterNoImprove
above);

• β is increased if fast reduction in the equation norm is observed from one iteration
to the next.

10.4. Standard solvers for nonlinear algebraic equations 186

gPROMS Introductory User Guide

LASolver A quoted string specifying a linear algebraic equation solver.

The solver to be used for the solution of linear algebraic equations at every iteration.
This can be either one of the standard gPROMS linear algebraic equation solvers (cf.
section 10.3) or a third-party linear algebraic equation solver (see the gPROMS System
Programmer Guide). The default is MA48.

This parameter can be followed by further specifications aimed at configuring the partic-
ular solver by setting values to its own algorithmic parameters (cf. section 10.2.4).

IdentityElimination A boolean value.

If set to TRUE, the solver will attempt to internally reduce the size of the problem by
removing equations of the form x = y, and substituting all occurences of one of these
variables with the other. Such equations are often introduced in gPROMS models by
stream connectivity equations. This may result in faster solution time although at the
current stage of development the costs of creating and using the reduced system sometimes
outweigh the benefits, particularly when many IF and CASE conditions are present.

If using SPARSE as the BlockSolver parameter of BDNLSOL, it is better to set this pa-
rameter in BDNLSOL rather than SPARSE, so that the eliminations are carried out on the
complete system.

IterationsWithoutNewJacobian An integer in the range [0, 1000000].

If set to 0 SPARSE computes the Jacobian at every iteration. Otherwise, SPARSE will use
a simple form of Modified Newton keeping the Jacobian for a set number of iterations. In
some cases this can be used to speed up the solution.

10.4. Standard solvers for nonlinear algebraic equations 187

gPROMS Introductory User Guide

10.5 Standard solvers for differential-algebraic equations

There are two standard mathematical solvers for the solution of mixed sets of differential and
algebraic equations in gPROMS, namely DASOLV and SRADAU:

• DASOLV is based on variable time step/variable order Backward Differentiation Formulae
(BDF). This has been proved to be efficient for a wide range of problems. However, BDF
solvers suffer from loss of stability for certain types of problems (e.g. highly oscillatory
ones) and they are not very efficient for problems with frequent discontinuities.

• SRADAU implements a variable time step, fully-implicit Runge-Kutta method. It has been
proved to be efficient for the solution of problems arising from the discretisation of PDAEs
with strongly advective terms (in general, highly oscillatory ODEs), and models with
frequent discontinuities.

Both of the above solvers are designed to deal with large, sparse systems of equations in which
the variable values are restricted to lie within specified lower and upper bounds. Moreover, they
can handle situations in which some of the partial derivatives of the equations with respect to
the variables are available analytically while the rest have to approximated8. Efficient finite
difference approximations are used for the latter purpose.

Both solvers automatically adjust each time step taken so that the following criterion is satisfied:

√

√

√

√

1

nd

nd
∑

i=1

(

εi

a + r|xi|

)2

≤ 1

where:

• nd is the number of differential variables in the problem (i.e. those that appear as $x in
the gPROMS model);

• εi is the solver’s estimate for the local error in the ith differential variable;

• xi is the current value the ith differential variable;

• a is an absolute error tolerance;

• r is a relative error tolerance.

In rough terms, this means that the error εi incurred in a particular variable xi over a single
time step is not allowed to exceed a + r|xi|. The default values for a and r (10−5 in both cases)
are usually adequate since:

• they control the error in variables xi of size 0.01 or higher to within acceptable ranges;

• smaller variable values are often not important from an engineering point of view9.

8In gPROMS models, almost all partial derivatives are computed analytically from expressions de-
rived using symbolic manipulations. The main exception is partial derivatives of equations involving
any Foreign Object methods that are not capable of returning partial derivatives (see chapter 4 of the
gPROMS Advanced User Guide).

9For example, a liquid level in a processing vessel of 10−4m is practically indistinguishable from one
of 10−5m.

10.5. Standard solvers for differential-algebraic equations 188

gPROMS Introductory User Guide

However, for problems in which small variable values may have an important effect on system
behaviour, it is advisable to specify a smaller absolute tolerance10.

The DASolver solution parameter may be used to change and/or configure the solver used for
simulation activities (cf. section 10.2.2), as well as the default DAE sub-solver used by all higher-
level solvers (cf. section 10.2.5). If this parameter is not specified, then the DASOLV solver is
used, with the default configuration shown at the start of section 10.5.1 below.

10.5.1 The DASOLV solver

The algorithmic parameters used by DASOLV along with their default values are shown below.
This is followed by a detailed description of each parameter.

"DASOLV" ["OutputLevel" := 0;

"AbsoluteTolerance" := 1E-5;

"RelativeTolerance" := 1E-5;

"EventTolerance" := 1E-5;

"EffectiveZero" := 1E-5;

"FDPerturbation" := 1E-6;

"SenErr" := FALSE;

"Absolute1stTimeDerivativeThreshold" := 0.0;

"Relative1stTimeDerivativeThreshold" := 0.0;

"Relative2ndTimeDerivativeThreshold" := 0.0;

"VariablesWithLargestCorrectorSteps" := 5;

"LASolver" := MA48;

"InitialisationNLSolver" := "BDNLSOL";

"ReinitialisationNLSolver" := "BDNLSOL"]

However, NLSOL is used as the default InitialisationNLSolverand ReinitialisationNLSolver

when DASOLV is used for simulation activities.

OutputLevel An integer in the range [-1, 7].

The amount of information generated by the solver. The following table indicates the
lowest level at which different types of information are produced:

10For example, in a problem involving free radicals or ions, it may be important to distinguish between
mole fraction of 10−6 and 10−7.

10.5. Standard solvers for differential-algebraic equations 189

gPROMS Introductory User Guide

0 (None)
1 (Re-)initialisation times, projection of predictor onto bounds,

variables hitting bounds
2 Successful initialisation, change of branch in IF conditional equations,

location of discontinuities, step failures,
repeated convergence failures, predictor outside bounds,
predictor step reduction, variables stuck on bounds

3 Detail of convergence failures,
values of derivatives on commencing integration,
number of perturbation groups,
step length reduction due to bounds violation

4 Variable causing discontinuity, detail of perturbation groups
5 Entry to main integrator routines,

all error test values,
nonfatal singularities during integration,
greatest changes in variables at each corrector iteration

6 Convergence values at every corrector iterations,
step change factors

7 Time, step, variables, derivatives and residuals
at every corrector iteration

AbsoluteTolerance A real number in the range [10−20, 1010].

The absolute integration tolerance. Together with the parameter RelativeTolerance

(see below), they determine whether or not a time step taken by the solver is sufficiently
accurate. See the introduction to section 10.5 for more details.

RelativeTolerance A real number in the range [10−20, 1010].

The relative integration tolerance. Together with the parameter AbsoluteTolerance (see
above), they determine whether or not a time step taken by the solver is sufficiently
accurate. See the introduction to section 10.5 for more details.

EventTolerance A real number in the range [10−20, 1010].

The event tolerance, i.e. the maximum time interval within which discontinuities during
integration are located.

EffectiveZero A real number in the range [10−20, 1010].

The magnitude of a variable below which absolute rather than relative finite difference
perturbation is used – see parameter FDPerturbation below.

FDPerturbation A real number in the range [10−20, 1010].

Finite difference perturbation factor. If finite difference calculation of partial derivatives
with respect to a variable X is required, X is perturbed by:

FDPerturbation× |X |

unless |X | is less than EffectiveZero, in which case it is perturbed by FDPerturbation.

Diag A boolean value.

Specifies whether very detailed diagnostic information is to be generated during integra-
tion.

SenErr A boolean value.

For optimisation type activities: specifies whether the sensitivity error test is to be applied
at each step of the integration.

10.5. Standard solvers for differential-algebraic equations 190

gPROMS Introductory User Guide

Absolute1stTimeDerivativeThreshold A real number in the range [0, 1010].

Unless this parameter has the value zero, it represents the value θA in the condition used
to determine reporting of potential “runaway” derivatives — see Figure 10.2.

If it is zero (the default), no runaway derivatives will be reported.

Relative1stTimeDerivativeThreshold A real number in the range [0, 1010].

Represents the value θR in the condition used to determine reporting of potential “run-
away” derivatives — see Figure 10.2.

Relative2ndTimeDerivativeThreshold A real number in the range [0, 1010].

Represents the value θ2 in the conditions used to determine reporting of potential “run-
away” derivatives: see Figure 10.2.

If a subset of the system being solved by DASOLV becomes unstable, then DA-
SOLV may fail, issuing a ”repeated error test failure” message. This indicates
that the code is no longer able to control the error of integration.
The variables associated with such instabilities often exhibit excessively large
values of their first and second time derivatives immediately preceding the
instability. DASOLV exploits this fact to help in the diagnosis of such prob-
lems. More specifically, DASOLV will report any variable X which satisfies
all three of the following tests:

1. Minimum magnitude: The value of |X| must be greater than 10−5

2. First derivative:

• EITHER
|Ẋ| > θA

(specified with the AbsoluteDerivativeThreshold parameter)

• OR
|Ẋ |
|X| > θR

(specified with the RelativeDerivativeThreshold parameter)

3. Second derivative:
|Ẍ |
|Ẋ |

> θ2

(specified with the RelativeSecondDerivativeThreshold parameter)

Figure 10.2: Diagnosing error test failures in DASOLV

VariablesWithLargestCorrectorSteps A non-negative integer.

On rare occasions, DASOLV fails with a ”corrector step failure” message. This indicates
that the code is unable to establish a set of variable values that satify the system equations
at a particular point. It is often caused by errors or bad scaling in some modelling

10.5. Standard solvers for differential-algebraic equations 191

gPROMS Introductory User Guide

equations which results in the corrector iterations taking excessively large steps in some
of the variables.

To help with the diagnosis of such problems, DASOLV can report the variables with the
largest relative change at each corrector iteration. The relative change for a variable X is
defined as:

δX

a + r|X |
where:

• δX is the step in the variable at this corrector iteration;

• a is the absolute tolerance;

• r is the relative tolerance.

The parameter VariablesWithLargestCorrectorSteps specifies the number of variables
to be reported in this manner. Note that such reporting takes place only if the parameter
OutputLevel is set to a value of 5 or higher.

LASolver A quoted string specifying a linear algebraic equation solver.

The solver to be used for the solution of linear algebraic equations at each step of the
integration. This can be either one of the standard gPROMS linear algebraic equation
solvers (cf. section 10.3) or a third-party linear algebraic equation solver (see the gPROMS
System Programmer Guide). The default is MA48.

This parameter can be followed by further specifications aimed at configuring the partic-
ular solver by setting values to its own algorithmic parameters (cf. section 10.2.4).

InitialisationNLSolver A quoted string specifying a nonlinear algebraic equation solver.

The solver to be used for the solution of nonlinear algebraic equations occurring at the
initialisation stage of the integration. This can be either one of the standard gPROMS
nonlinear algebraic equation solvers (cf. section 10.4) or a third-party nonlinear algebraic
equation solver (see the gPROMS System Programmer Guide). The default is NLSOL when
DASOLV is used for simulation activities, and BDNLSOL when it is used for optimisation or
parameter estimation activities.

This parameter can be followed by further specifications aimed at configuring the partic-
ular solver by setting values to its own algorithmic parameters (cf. section 10.2.4).

ReinitialisationNLSolver A quoted string specifying a nonlinear algebraic equation solver.

The solver to be used for the solution of nonlinear algebraic equations that is necessary for
re-initialisation following discontinuities. This can be either one of the standard gPROMS
nonlinear algebraic equation solvers (cf. section 10.4) or a third-party nonlinear algebraic
equation solver (see the gPROMS System Programmer Guide). The default is SPARSE.

This parameter can be followed by further specifications aimed at configuring the partic-
ular solver by setting values to its own algorithmic parameters (cf. section 10.2.4).

10.5.2 The SRADAU solver

The algorithmic parameters used by SRADAU along with their default values are shown below.
This is followed by a detailed description of each parameter.

10.5. Standard solvers for differential-algebraic equations 192

gPROMS Introductory User Guide

"SRADAU" ["OutputLevel" := 0;

"AbsoluteTolerance" := 1E-5;

"RelativeTolerance" := 1E-5;

"EventTolerance" := 1E-5;

"Diag" := FALSE;

"LASolver" := MA48;

"InitialisationNLSolver" := "NLSOL";

"ReinitialisationNLSolver" := "NLSOL"]

OutputLevel An integer in the range [0, 4].

The amount of information generated by the solver. The following table indicates the
lowest level at which different types of information are produced:

0 (None)
1 (Re-)initialisation times, projection of predictor onto bounds,

variables hitting bounds
2 Successful initialisation, change of branch in IF conditional equations,

location of discontinuities, step failures,
repeated convergence failures, predictor outside bounds,
predictor step reduction, variables stuck on bounds

3 Detail of convergence failures,
values of derivatives on commencing integration,
number of perturbation groups,
step length reduction due to bounds violation

4 Variable causing discontinuity, detail of perturbation groups

AbsoluteTolerance A real number in the range [10−20, 1010].

The absolute integration tolerance. Together with the parameter RelativeTolerance

(see below), they determine whether or not a time step taken by the solver is sufficiently
accurate. See the introduction to section 10.5 for more details.

RelativeTolerance A real number in the range [10−20, 1010].

The relative integration tolerance. Together with the parameter AbsoluteTolerance (see
above), they determine whether or not a time step taken by the solver is sufficiently
accurate. See the introduction to section 10.5 for more details.

EventTolerance A real number in the range [10−20, 1010].

The event tolerance, i.e. the maximum time interval within which discontinuities during
integration are located.

Diag A boolean value.

Specifies whether very detailed diagnostic information is to be generated during integra-
tion.

LASolver A quoted string specifying a linear algebraic equation solver.

The solver to be used for the solution of linear algebraic equations at each step of the
integration. This can be either one of the standard gPROMS linear algebraic equation
solvers (cf. section 10.3) or a third-party linear algebraic equation solver (see the gPROMS
System Programmer Guide). The default is MA48.

This parameter can be followed by further specifications aimed at configuring the partic-
ular solver by setting values to its own algorithmic parameters (cf. section 10.2.4).

10.5. Standard solvers for differential-algebraic equations 193

gPROMS Introductory User Guide

InitialisationNLSolver A quoted string specifying a nonlinear algebraic equation solver.

The solver to be used for the solution of nonlinear algebraic equations occurring at the
initialisation stage of the integration. This can be either one of the standard gPROMS
nonlinear algebraic equation solvers (cf. section 10.4) or a third-party nonlinear algebraic
equation solver (see the gPROMS System Programmer Guide). The default is NLSOL.

This parameter can be followed by further specifications aimed at configuring the partic-
ular solver by setting values to its own algorithmic parameters (cf. section 10.2.4).

ReinitialisationNLSolver A quoted string specifying a nonlinear algebraic equation solver.

The solver to be used for the solution of nonlinear algebraic equations that is necessary for
re-initialisation following discontinuities. This can be either one of the standard gPROMS
nonlinear algebraic equation solvers (cf. section 10.4) or a third-party nonlinear algebraic
equation solver (see the gPROMS System Programmer Guide). The default is SPARSE.

This parameter can be followed by further specifications aimed at configuring the partic-
ular solver by setting values to its own algorithmic parameters (cf. section 10.2.4).

10.5. Standard solvers for differential-algebraic equations 194

gPROMS Introductory User Guide

10.6 Standard solvers for optimisation

There are two standard mathematical solvers for optimisation in gPROMS, namely CVP SS and
CVP MS. CVP SS can solve optimisation problems with both discrete and continuous decision vari-
ables (“mixed integer optimisation”). Both steady-state and dynamic problems are supported.
CVP MS can solve dynamic optimisation problems with continuous decision variables.

For dynamic optimisation problems, both CVP SS and CVP MS are based on a control vector
parameterisation (CVP) approach which assumes that the time-varying control variables are
piecewise constant (or piecewise linear) functions of time over a specified number of control in-
tervals. The precise values of the controls over each interval, as well as the duration of the latter,
are generally determined by the optimisation algorithm11. As the number of control variables
is usually a small fraction of the total number of variables in the problem, the optimisation
algorithm has to deal only with a relatively small number of decisions, which makes the CVP
approach applicable to large problems.

t

x(t)

1 2 30 4

(a) Single-shooting algorithm

t

x(t)

1 2 30 4

(b) Multiple-shooting algorithm

Figure 10.3: Single- vs. multiple-shooting algorithms

The CVP SS solver implements a “single-shooting” dynamic optimisation algorithm. This in-
volves the following steps (see figure 10.3(a)):

1. the optimiser chooses the duration of each control interval, and the values of the control
variables over it;

2. starting from the initial point at time t = 0 (shown as a cross on the vertical axis in figure
10.3(a)), the dynamic system model is solved over the entire time horizon to determine
the time-variation of all variables x(t) in the system;

3. the above information is used to determine the values of12:

• the objective function to be optimised;

• any constraints that have to be satisfied by the optimisation;

11In addition, as explained in chapter 2 of the gPROMS Advanced User Guide, many dynamic opti-
misation problems involve time-invariant parameters that also have to be chosen by the optimiser.

12In practice, the solution of the model also needs to determine the values of the partial derivatives
(sensitivities) of the objective function and constraints with respect to all the quantities specified by
the optimiser.

10.6. Standard solvers for optimisation 195

gPROMS Introductory User Guide

4. based on the above, the optimiser revises the choices it made at the first step, and the
procedure is repeated until convergence to the optimum is achieved.

The term “single-shooting” arises from the second step in the above algorithm which involves a
single integration of the dynamic model over the entire horizon.

The CVP MS solver implements a “multiple-shooting” dynamic optimisation algorithm with the
following steps (see figure 10.3(b)):

1. the optimiser chooses the duration of each control interval, the values of the control
variables over it, and, additionally, the values of the differential variables x(t) at the start
of each control interval other than the first one (shown as solid circles in figure 10.3(b));

2. for each control interval, starting from the initial point that is either known (for the first
interval) or is chosen by the optimiser (for all subsequent intervals), the dynamic system
model is solved over this control interval to determine the time-variation of all variables
x(t) in the system;

3. the above information is used to determine the values of:

• the objective function to be optimised;

• any constraints that have to be satisfied by the optimisation;

• the discrepancies between the computed values of the variables x(t) at the end of
each interval and the corresponding values chosen by the optimiser at the start of
the next interval;

4. based on the above, the optimiser revises the choices it made at the first step, and repeats
the above procedure until it obtains a point that:

• optimises the objective function;

• satisfies all constraints;

• ensures that all differential variables x(t) are continuous at the control interval
boundaries.

The “multiple-shooting” term reflects the fact that each control interval is treated independently
at the second step above.

Both solvers, by default, employ the DASOLV code (cf. section 10.5.1) for the solution of the
underlying DAE problem and the computation of its sensitivities. In principle, this can be
replaced by a third-party solver with similar capabilities.

The choice between the CVP SS and CVP MS solvers for any dynamic optimisation problem de-
pends primarily on the number of optimisation decision parameters that the algorithm has to
deal with in computing the sensitivities of the model variables. In principle:

• CVP MS should normally be preferred for problems with many time-varying control vari-
ables and/or many control intervals, but with relatively few differential (“state”) variables;

• CVP SS should normally be preferred for large problems (potentially involving several
hundreds or thousands of differential (“state”) variables) but with relatively few time-
varying control variables and control intervals.

10.6. Standard solvers for optimisation 196

gPROMS Introductory User Guide

In practice, some experimentation may be required to determine the better algorithm for any
particular application.

The DOSolver solution parameter may be used to change and/or configure the solver used for
optimisation activities (cf. section 10.2.2). If this parameter is not specified, then the CVP SS

solver is used, with the default configuration shown at the start of section 10.6.1 below.

10.6.1 The CVP SS solver

CVP SS can solve steady-state and dynamic optimisation problems with both continuous and
discrete optimisation decision variables. The algorithmic parameters used by CVP SS along with
their default values are shown below. This is followed by a detailed description of each parameter.

"CVP_SS" ["DASolver" := "DASOLV";

"MINLPSolver" := "OAERAP"];

DASolver A quoted string specifying a differential-algebraic equation solver.

The solver to be used for integrations of the model equations and their sensitivity equations
at each iteration of the optimisation. This can be either the standard DASOLV solver (cf.
section 10.5.1) or a third-party differential-algebraic equation solver (see the gPROMS
System Programmer Guide). The default is DASOLV.

This parameter can be followed by further specifications aimed at configuring the partic-
ular solver by setting values to its own algorithmic parameters (cf. section 10.2.4).

MINLPSolver A quoted string specifying a mixed integer optimisation solver.

The solver to be used for mixed integer optimisation problems. This can be either the
standard OAERAP solver (cf. section 10.6.2) or a third-party mixed integer optimisation
solver (see the gPROMS System Programmer Guide). For optimisation problems that do
not involve any discrete decision variables, this can be any CAPE-OPEN compliant solver
that is capable of solving NLPs but not MINLPs, e.g.the standard NLP solver SRQPD (cf.
section 10.6.3). The default is OAERAP.

This parameter can be followed by further specifications aimed at configuring the partic-
ular solver by setting values to its own algorithmic parameters (cf. section 10.2.4).

10.6.2 The OAERAP solver

The OAERAP solver employs an outer approximation (OA) algorithm for the solution of the
MINLP. As outlined in Figure 10.4, this involves solving a sequence of simpler optimisation
problems, including nonlinear programs (NLPs) at steps 1 and 3 and mixed integer linear pro-
grams (MILPs) at step 2. The OAERAP code has been designed so that it can make direct use
of any CAPE-OPEN compliant NLP and MILP solvers (see the gPROMS System Programmer
Guide) without the need for any additional interfacing or modification.

10.6. Standard solvers for optimisation 197

gPROMS Introductory User Guide

Given initial guesses for all optimisation decision variables, both discrete (y) and continuous (x):

Step 0: Initialisation

• Set the objective function of the best solution that is currently available, φbest := +∞.

• Set the objective function of the best solution that may be obtained, φLB := +∞.

Step 1: Solve fully relaxed problem

• Solve a continuous optimisation problem (NLP) treating all discrete variables as continu-
ous (i.e. allow them to take any value between their lower and upper bounds) to determine
optimal values xFR, yFR of the optimisation decision variables and of the objective func-
tion, φFR.

• If above problem is infeasible, terminate: original problem is infeasible as posed.

• If all discrete optimisation decision variables have discrete values at the solution of the
above problem, then terminate: optimal solution of original problem is (xFR, yFR) with
an objective function value of φFR.

Step 2: Solve master problem

• Construct a mixed integer linear programming (MILP) problem which:

– involves appropriate linearisations of the objective function and the constraints carried
out at the solutions of all continuous optimisation problems solved so far,

– excludes all combinations of discrete variable values that have been considered at step
2 so far.

• Solve the above MILP problem to determine optimal values of both the continuous and
discrete variables xMP , yMP , and the corresponding value of the objective function φMP .

• If the above problem is infeasible or if φbest − φMP ≤ ε max(1, |φbest|), then terminate:
there are no more combinations of discrete variables that can be usefully considered.

– If φbest = +∞, then original problem was infeasible.

– Otherwise, the optimal solution is (xbest, ybest) with a corresponding objective func-
tion value of φbest.

• The MILP provides an improved bound on the best solution that may be obtained; there-
fore, update φLB := φMP .

Step 3: Solve primal optimisation problem

• Fix all discrete optimisation decision variables to their current values.

• Solve continuous optimisation problem (NLP) to determine:

– optimal value of objective function, φPR;

– optimal values of continuous optimisation decision variables, xPR.

• If the above NLP is feasible and φPR < φbest, then an improved solution to the original
problem has been found; record its details by setting φbest := φPR; xbest := xPR; ybest :=
yPR.

Step 4: Iterate

• Set the next set of values of the discrete optimisation decision variables to be considered
yPR := yMP .

• Repeat from step 2.

Figure 10.4: Outline of the OAERAP algorithm for the solution of a MINLP problem
(minimisation case)

10.6. Standard solvers for optimisation 198

gPROMS Introductory User Guide

The OAERAP solver also includes an equality relaxation (ER) scheme for handling equality con-
straints. It should be emphasised that, in the case of optimisation problems defined in gPROMS,
this relaxation is applied only to any ENDPOINT EQUALITY constraints that may appear in the
OPTIMISATION Entity.

The algorithm described in Figure 10.4 is guaranteed to obtain the globally optimal solution
to the optimisation problem posed only if the latter is convex. This is unlikely to be the case
in many problems of engineering interest. An augmented penalty (AP) strategy is employed in
order to increase the probability of a global solution being obtained.

The algorithmic parameters used by OAERAP along with their default values are shown below.
This is followed by a detailed description of each parameter.

"OAERAP" ["OutputLevel" := 0;

"MaxIterations" := 100000;

"OptimisationTolerance" := 1E-4;

"MILPSolver" := "GLPK";

"NLPSolver" := "SRQPD"];

OutputLevel An integer in the range [-1, 0].

The amount of information generated by the solver. The following table indicates the
lowest level at which different types of information are produced:

-1 (None)
0 Solution of fully relaxed point,

solution of master problem,
solution of primal optimisation problem,
final solution

MaxIterations An integer in the range [1, 100000].

The maximum number of iterations involving step 2-4 of the algorithm described in Figure
10.4. This is essentially the maximum number of distinct alternatives to be considered by
the algorithm.

OptimisationTolerance A real number in the range [0.0, 1.0].

The optimisation tolerance ε used in the termination criterion at step 2 of the algorithm
described in Figure 10.4.

MILPSolver A quoted string specifying a mixed integer linear programming solver.

Specifies a CAPE-OPEN compliant solver to be used for the solution of the mixed integer
linear programming (MILP) problems at step 2 of the algorithm described in Figure 10.4.

NLPSolver A quoted string specifying a nonlinear programming solver.

Specifies a CAPE-OPEN compliant solver to be used for the solution of the nonlinear pro-
gramming (NLP) problems at steps 1 and 3 of the algorithm described in Figure 10.4.

10.6.3 The SRQPD solver

The SRQPD solver employs a sequential quadratic programming (SQP) method for the solution of
the nonlinear programming (NLP) problem. The algorithmic parameters used by SRQPD along
with their default values are shown below. This is followed by a detailed description of each
parameter.

10.6. Standard solvers for optimisation 199

gPROMS Introductory User Guide

"SRQPD" ["OutputLevel" := 0;

"MaxFun" := 10000,

"MaximumLineSearchSteps" := 20,

"MinimumLineSearchStepLength" := 1e-005,

"InitialLineSearchStepLength" := 1.0,

"OptimisationTolerance" := 0.001,

"Scaling" := 0];

OutputLevel An integer in the range [-1, 4].

The amount of information generated by the solver. The following table indicates the
lowest level at which different types of information are produced:

-1 (None)
0 Failed integrations and initialisations, optimisation failure,

summary information from the SRQPD nonlinear programming code,
final solution point and constraint values,
best available point after failure

1 Values of optimisation decision variables, objective function and constraints
in each major optimisation iteration

2 Start and end times of each interval of integration,
optimisation decision variables and objective function at each line search trial

3 Derivatives of objective function and constraints

MaxFun An integer in the range [0, 100000].

The maximum number of optimiser function evaluations (i.e. solutions of the underlying
steady-state or dynamic model) to perform before halting the solution process (if no
optimum has been found by that point).

MaximumLineSearchSteps An integer in the range [1, 100].

The maximum number of line search steps in one optimisation iteration.

MinimumLineSearchStepLength A real number in the range [10−10, 1.0].

The minimum length of a line search step.

InitialLineSearchStepLength A real number in the range [10−10, 1.0].

The length of the line search step for the first optimisation iteration. An initial line search
step length less than 1 is recommended when the initial approximation of the Hessian (i.e.
identity matrix) is very different to the actual values in the Hessian. This could result in
a very large initial step and therefore several line search trials before the optimiser finds
a better point.

Scaling An integer in the range [0, 3].

The form of scaling to be applied to the optimisation decision variables, including control
variables, time-invariant parameters, the length of the time horizon and the lengths of
individual control intervals. These decision variables may vary significantly in magnitude,
which may adversely affect the performance of the optimisation algorithms. Consequently,
appropriate scaling of the optimisation decision variables is strongly recommended13.

The scaling performed is of the general mathematical form:

13A useful indication as to whether scaling is necessary is the condition number estimate that is printed
out at each iteration of the optimisation calculation. It is recommended that scaling be undertaken for
problems with condition numbers exceeding 1010.

10.6. Standard solvers for optimisation 200

gPROMS Introductory User Guide

q̃j ≡ qj − cj

dj

(10.1)

where qj is the jth original optimisation decision variable and q̃j is the corresponding
scaled decision variable. The constants cj and dj are determined automatically depending
on the value of Scaling, as described below:

• Scaling = 0: No scaling (default).

dj = 1,

cj = 0.

• Scaling = 1: Scaling according to the ranges of the optimisation decision variables
so that the scaled variables vary between −1 and 1.

dj =
1

2

(

qmax
j − qmin

j

)

,

cj =
1

2

(

qmax
j + qmin

j

)

• Scaling = 2: Scaling according to the initial guesses of the optimisation variables.

dj =

{

q0
j if |q0

j | > ε,

1
2

(

qmax
j − qmin

j

)

otherwise

cj = 0

where q0
j is the initial guess for the jth optimisation variable and ε is a small constant

(currently set at 10−8).

• Scaling = 3: Scaling according to the value and the gradients of the objective
function Φ at the initial guess.

dj =











1+|Φ(q0)|

2

∣

∣

∣

∣

∂Φ
∂qj

∣

∣

∣

∣

q0

if
∣

∣

∣

∂Φ
∂qj

∣

∣

∣

q0

> ε,

1
2

(

qmax
j − qmin

j

)

otherwise

cj = 0

where q0 is the vector of initial guesses of the optimisation decision variables and ε
is a small constant (currently set at 10−8).

OptimisationTolerance14 A real number in the range [0.0, 1.0].

The solution tolerance for the optimisation. Convergence is deemed to occur when a linear
combination of the gradients of the Lagrangian function on one hand, and the violation of
the constraints on the other, drops below this tolerance. More specifically, the convergence
criterion used is:

1

|Φ∗| + 1.0





∣

∣

∣

∣

∣

∣

∑

j

∂Φ∗

∂qj

δqj

∣

∣

∣

∣

∣

∣

+
∑

j∈E

|λj(x
∗
j − x̃j)| +

∑

j∈I

|µj |max(0, xL
j − x∗

j , x
∗
j − xU

j)





14The alternative spelling OptimizationTolerance is also recognized as well as the old spelling OptTol.

10.6. Standard solvers for optimisation 201

gPROMS Introductory User Guide

+
∑

j∈E

|x∗
j − x̃j | +

∑

j∈I

max(0, xL
j − x∗

j , x
∗
j − xU

j) ≤ OptTol

where:

• qj is the jth optimisation decision variable (including time-invariant parameters,
control variable parameterisations, and control interval durations);

• Φ∗ is the final value of the objective function;

• δqj is the step taken in variable qj at the last iteration of the optimisation calculation;

• x∗
j are the final values of the quantities xj that are subject to equality and inequality

constraints in the optimisation15;

• E is the subset of xj that are constrained to be equal to specified values x̃j ;

• I is the subset of xj that are constrained to lie between lower and upper bounds xL
j

and xU
j respectively;

• λj is the Lagrange multiplier that corresponds to the equality constraint imposed
on variable xj , j ∈ E ;

• µj is the Lagrange multiplier that corresponds to the bound constraints imposed on
variable xj , j ∈ I.

10.6.4 The CVP MS solver

The algorithmic parameters used by CVP MS along with their default values are shown below.
This is followed by a detailed description of each parameter16.

"CVP_MS" ["OutputLevel" := 0;

"MaxFun" := 10000;

"SQPMinAlpha" := 1E-10;

"SQPHeLa" := "BFGS";

"SQPHeLaEps" := 1E-10;

"SQPHeLaScale" := TRUE;

"SQPHeLaEigenCtrl" := TRUE;

"SQPMaxIters" := 500;

"SQPMaxInfIters" := 10;

"SQPWatchdogStart" := 10;

"SQPWatchdogCredit" := 0;

"SQPWatchdogLogging" := FALSE;

"SQPSolver" := "Powell";

"SQPQPSolver" := "Franke";

"QPEps" := 1E-10;

"QPMatSolver" := "RedSpBKP";

"QPMaxIters" := 250;

"OptTol" := 1E-3;

"InfDefault" := 1E10;

"NumSen" := FALSE;

15This set normally includes all of the optimisation decision variables q, as well as any model variables
which are subject to equality and inequality constraints.

16For full details, please consult the information at http://www.systemtechnik.tu-ilmenau.de/

f̃g opt/omuses/omuses.html.

10.6. Standard solvers for optimisation 202

gPROMS Introductory User Guide

"SetBounds" := FALSE;

"NeedLagrangeMultipliers" := FALSE;

"DASolver" := "DASOLV"];

OutputLevel An integer in the range [0, 4].

The amount of information generated by the solver. The following table indicates the
lowest level at which different types of information are produced:

0 Failed integrations and initialisations, optimisation failure,
summary information from the HQP nonlinear programming code,
final solution point and constraint values,
best available point after failure

1 Values of optimisation decision variables, objective function and constraints
in each major optimisation iteration

2 For each multiple-shooting interval in each major optimisation iteration:
the values of the optimisation decision variables,
the values and derivatives of the matching conditions, the constraints
and the objective function.

MaxFun An integer in the range [0, 100000].

The maximum number of optimiser function evaluations (i.e. solutions of the underlying
dynamic model) to perform before halting the solution process (if no optimum has been
found by that point).

SQPMinAlpha A real number in the range [0, 105].

Lower limit for the step length in the line search of the sequential quadratic programming
(SQP) sub-solver.

SQPHeLa A quoted string.

The method to be used for constructing the approximation of the Hessian matrix of the
Lagrangian. Permitted values are:

• "BFGS": partitioned BFGS update with Powell’s damping

• "DScale": numerical approximation with a diagonal matrix

SQPHeLaEps A real number in the range [0, 105].

ε parameter used in SQP algorithm, see the Omuses document.

SQPHeLaScale A boolean value.

Use “DScale” approach to initialise Hessian rather than setting it to the identity matrix.

SQPHeLaEigenCtrl A boolean value.

Control of positive definite Hessian blocks based on eigenvalues (only used with the BFGS

method).

SQPMaxIters An integer in the range [0, 100000].

Total number of SQP iterations allowed.

SQPMaxInfIters An integer in the range [0, 100000].

Number of infeasible SQP iterations (i.e. points where the integration fails) allowed before
failure.

SQPWatchdogStart An integer in the range [0, 100000].

Iteration at which to start watchdog algorithm if using "Powell" algorithm (see SQPSolver
parameter below).

10.6. Standard solvers for optimisation 203

gPROMS Introductory User Guide

SQPWatchdogCredit An integer in the range [0, 100000].

Number of “bad” iterations until backtracking and regular step are performed (0 means
disable watchdog).

SQPWatchdogLogging A boolean value.

Specifies whether watchdog log output should be produced.

SQPSolver A quoted string.

The type of sequential quadratic programming (SQP) algorithm to be used for the opti-
misation. Permitted values:

• "Powell"

• "Schittkowski"

SQPQPSolver A quoted string.

The type of quadratic programming (QP) solver to be used at each iteration of the opti-
misation. Permitted values are:

• "Franke"

• "Mehrotra"

QPEps A real number in the range [0, 105].

The tolerance to which the quadratic programming sub-problems are to be solved.

QPMatSolver A quoted string.

The matrix solver to use for the solution of the quadratic programming sub-problems in
the optimisation. Permitted values are (refer to Omuses document for details):

• "SpBKP"

• "RedSpBKP"

• "SpSC"

• "LQDOCP"

QPMaxIters An integer in the range [0, 100000].

Maximum number of QP iterations to attempt.

OptTol A real number in the range [0.0, 1.0].

The solution tolerance for the optimisation.

InfDefault A real number in the range [0, 1035].

Upper and lower bounds greater than this value in magnitude are treated as ±∞ (as
appropriate).

NumSen A boolean value.

Specifies whether sensitivities should be calculated numerically – i.e. by repeated “nor-
mal” integrations with perturbed values – rather than ‘analytically’, i.e. with a special
sensitivity integration. Not recommended except perhaps for large problems with very
few parameters per interval.

10.6. Standard solvers for optimisation 204

gPROMS Introductory User Guide

DASolver A quoted string specifying a differential-algebraic equation solver.

The solver to be used for integrations of the model equations and their sensitivity equations
at each stage and each iteration of the optimisation. This can be either the standard
DASOLV solver (cf. section 10.5.1) or a third-party differential-algebraic equation solver
(see the gPROMS System Programmer Guide). The default is DASOLV.

This parameter can be followed by further specifications aimed at configuring the partic-
ular solver by setting values to its own algorithmic parameters (cf. section 10.2.4).

10.6. Standard solvers for optimisation 205

gPROMS Introductory User Guide

10.7 Standard solvers for parameter estimation

There is currently only one standard mathematical solver for parameter estimation in gPROMS,
namely MXLKHD. This is based on a general maximum likelihood approach. More details are given
in chapter 3 of the gPROMS Advanced User Guide.

The PESolver solution parameter may be used to configure the parameter estimation solver (cf.
section 10.2.2). The default configuration is shown at the start of section 10.7.1 below.

10.7.1 The MXLKHD solver

The algorithmic parameters used by MXLKHD along with their default values are shown below.
This is followed by a detailed description of each parameter.

"MXLKHD" ["OutputLevel" := 0;

"OptTol" := 1E-3;

"MaxFun" := 10000;

"MaximumLineSearchSteps" := 20,

"MinimumLineSearchStepLength" := 1e-005,

"Scaling" := 0;

"Statistics" := 0;

"DASolver" := "DASOLV"]

OutputLevel An integer in the range [-1, 4].

The amount of information generated by the solver. The following table indicates the
lowest level at which different types of information are produced:

-1 (None)
0 Failed integrations and initialisations, optimisation failure,

summary information from the SQP nonlinear programming code,
final solution point and constraint values,
best available point after failure

1 values of optimisation decision variables, objective function and constraints
in each major optimisation iteration

3 The derivatives of the objective function and constraints

OptTol A real number in the range [0.0, 1.0].

The solution tolerance for the parameter estimation. Convergence is deemed to occur
when the following convergence criterion is satisfied:

1

|Φ∗| + 1.0





∣

∣

∣

∣

∣

∣

∑

j

∂Φ∗

∂θj

δθj

∣

∣

∣

∣

∣

∣

+
∑

j

|µj |max(0, θL
j − θ∗j , θ∗j − θU

j)





∑

j

max(0, θL
j − θ∗j , θ∗j − θU

j) ≤ OptTol

where:

10.7. Standard solvers for parameter estimation 206

gPROMS Introductory User Guide

• θj is the jth parameter to be estimated (including both model parameters and
variance model parameters);

• θ∗j is the final value of parameter θj ;

• θL
j is the lower bound imposed on parameter θj ;

• θU
j is the upper bound imposed on parameter θj ;

• Φ∗ is the final value of the maximum likelihood objective function;

• δθj is the step taken in parameter θj at the last iteration of the parameter estimation
calculation;

• µj is the Lagrange multiplier that corresponds to the bound constraints imposed on
parameter θj ;

MaxFun An integer in the range [0, 100000].

The maximum number of optimiser function evaluations (i.e. solutions of the underlying
dynamic model) to perform before halting the solution process (if no optimum has been
found by that point).

MaximumLineSearchSteps An integer in the range [1, 100].

The maximum number of line search steps in one optimisation iteration.

MinimumLineSearchStepLength A real number in the range [10−10, 1.0].

The minimum lenght of a line search step.

Scaling An integer in the range [0, 3].

The parameters to be determined in the context of a single parameter estimation problem
may vary significantly in magnitude, which may adversely affect the performance of the
optimisation algorithms. Consequently, appropriate scaling of these parameters is strongly
recommended17.

The scaling performed is of the general mathematical form:

θ̃j =
θj − cj

dj

(10.2)

where θj is the jth original parameter to be estimated and θ̃j the corresponding scaled
parameter. The constants cj and dj are determined automatically depending on the value
of Scaling, as described below:

• Scaling = 0: No scaling (default).

dj = 1,

cj = 0.

• Scaling = 1: Scaling according to the ranges of the parameters so that the scaled
parameters vary between −1 and 1.

dj =
1

2

(

θmax
j − θmin

j

)

,

cj =
1

2

(

θmax
j + θmin

j

)

17A useful indication as to whether scaling is necessary is the condition number estimate that is printed
out at each iteration of the optimisation calculation. It is recommended that scaling be undertaken for
problems with condition numbers exceeding 1010.

10.7. Standard solvers for parameter estimation 207

gPROMS Introductory User Guide

• Scaling = 2: Scaling according to the initial guesses of the parameters.

dj =

{

θ0
j if |θ0

j | > ε,

1
2

(

θmax
j − θmin

j

)

otherwise

cj = 0

where θ0
j is the initial guess for the jth parameter and ε is a small constant (currently

set at 10−8).

• Scaling = 3: Scaling according to the value and the gradients of the objective
function at the initial guess.

dj =











1+|Φ(θ0)|

2

∣

∣

∣

∣

∂Φ
∂θj

∣

∣

∣

∣

θ0

if
∣

∣

∣

∂Φ
∂θj

∣

∣

∣

θ0

> ε,

1
2

(

θmax
j − θmin

j

)

otherwise

cj = 0

where θ0 is the vector of initial guesses of the parameters and ε is a small constant
(currently set at 10−8).

Statistics An integer in the range [0, 2].

Controls the information produced by the solver in the machine-readable estimation statis-
tics (.stat-mr) file at the end of the computation (cf. section 3.6.1.4 of the gPROMS
Advanced User Guide):

0 The parameter vector used for the calculation of the variance/covariance matrices
includes both the model parameters and the variance model parameters.

1 The parameter vector used for the calculation of the variance/covariance matrices
includes only the model parameters.

2 The variance/covariance matrices are not calculated.

DASolver A quoted string specifying a differential-algebraic equation solver.

The solver to be used for integrations of the model equations and their sensitivity equations
at each iteration of the parameter estimation. This can be either the standard DASOLV

solver (cf. section 10.5.1) or a third-party differential-algebraic equation solver (see the
gPROMS System Programmer Guide). The default is DASOLV.

This parameter can be followed by further specifications aimed at configuring the partic-
ular solver by setting values to its own algorithmic parameters (cf. section 10.2.4).

10.7. Standard solvers for parameter estimation 208

gPROMS Introductory User Guide

Appendix A

Model Analysis and Diagnosis

Contents

A.1 Introduction . 210

A.2 Well-posed models and degrees-of-freedom 211

A.2.1 Case I: over-specified systems 211

A.2.2 Case II: under-specified systems 212

A.3 High-index DAE systems . 215

A.4 Inconsistent initial conditions 218

209

gPROMS Introductory User Guide

A.1 Introduction

At the start of each simulation, gPROMS analyses the mathematical model so as to assist
the user in identifying structural problems and errors in the modelling and/or the problem
specification. In particular, gPROMS attempts to determine:

• if the model is well-posed and whether alternative specifications are required for the
degrees-of-freedom;

• if the underlying set of differential and algebraic equations is of index exceeding 1; and

• if the initial conditions are inconsistent.

These structural problems are considered in more detail below.

A.1. Introduction 210

gPROMS Introductory User Guide

A.2 Well-posed models and degrees-of-freedom

A.2.1 Case I: over-specified systems

An over-specified system is one which either itself consists of more equations than unknown
variables, or involves an over-specified sub-set of equations and unknowns.

Mathematically, it can be shown that any over-specified system will contain at least one sub-
system involving k equations in only (k − 1) distinct unknowns. gPROMS identifies this sub-
system and, where appropriate, offers informed suggestions on which ASSIGNments may be
responsible for the over-specification.

As a simple example of this, consider the gPROMS input shown in figure A.1. It is easy to see
that MODEL mod1 consists of 4 equations in 4 variables, one of which, y2, is ASSIGNed in the
PROCESS proc. Execution of the PROCESS proc leads to the following diagnostic message:

Executing process PROC...

All 4 variables will be monitored during this simulation!

Building mathematical problem description took 0.014 seconds.

Loaded MA48 library

Execution begins....

Variables

Known : 1

Unknown : 3

Differential : 2

Algebraic : 1

Model equations : 4

Initial conditions : 2

Checking consistency of model equations and ASSIGN specifications...

ERROR: Part of your problem is over-specified.

The following 3 equation(s) involve only 2 unknown variable(s).

Model Equation 1: MYMOD.$X1 = MYMOD.X1 * MYMOD.Y1 ;

Model Equation 3: MYMOD.X1^2 = MYMOD.Y2 ;

Model Equation 4: 0 = MYMOD.Y1 - MYMOD.Y2 ;

The 2 unknown(s) occuring in these 3 equations are:

MYMOD.Y1 (ALGEBRAIC)

MYMOD.X1 (STATE)

The problem may have been caused because you ASSIGNed the

following variable(s):

MYMOD.Y2 (INPUT)

A.2. Well-posed models and degrees-of-freedom 211

gPROMS Introductory User Guide

Initialisation calculation failed.

Execution of PROC fails prematurely.

gPROMS identifies the over-specified sub-system of 3 equations in 2 unknown variables and
suggests that the ASSIGNment of the variable y2 is causing the problem. Un-ASSIGNing this
variable leads to a working simulation.

A.2.2 Case II: under-specified systems

An under-specified system has more unknown variables than equations. In this case, gPROMS
diagnoses the problem and provides a list of candidate variables for ASSIGNment (while advising
against ASSIGNing differential variables). This is illustrated by the gPROMS v1.x example shown
in figure A.2. gPROMS issues the following message upon execution of the PROCESS proc:

Executing process PROC...

All 5 variables will be monitored during this simulation!

Building mathematical problem description took 0.001 seconds.

Loaded MA48 library

Execution begins....

Variables

Known : 0

Unknown : 5

Differential : 2

Algebraic : 3

Model equations : 4

Initial conditions : 2

Checking consistency of model equations and ASSIGN specifications...

ERROR: Your problem is underspecified.

You need to ASSIGN 1 of the following unknown variables:

MYMOD.X2 *** Not recommended ***

MYMOD.Y3

Initialisation calculation failed.

Execution of PROC fails prematurely.

ASSIGNing the algebraic variable y3 leads to a well-posed system.

A.2. Well-posed models and degrees-of-freedom 212

gPROMS Introductory User Guide

DECLARE

TYPE

NoType = 0.5 : -1E30 : 1E30

END #declare

#===

MODEL mod1

VARIABLE

x1, x2, y1, y2 AS NoType

EQUATION

$x1 = x1*y1 ;

$x2 = x1 + x2*y1 + y2 ;

x1^2 = y2 ;

0 = y1 - y2 ;

END #model

#===

PROCESS proc

UNIT

mymod AS mod1

ASSIGN

WITHIN mymod DO

y2 := 3 ;

END #within

INITIAL

WITHIN mymod DO

x1 = 0 ;

x2 = 0 ;

END #within

SOLUTIONPARAMETERS

ReportingInterval := 1 ;

SCHEDULE

CONTINUE FOR 10

END #process

Figure A.1: Illustrative example: over-specified system

A.2. Well-posed models and degrees-of-freedom 213

gPROMS Introductory User Guide

DECLARE

TYPE

NoType = 0.5 : -1E30 : 1E30

END #declare

#===

MODEL mod1

VARIABLE

x1, x2, y1, y2, y3 AS NoType

EQUATION

$x1 = x1*y1 ;

$x2 = x1 + x2*y1 + y2 + 3*y3 ;

x1^2 = y2 ;

0 = y1 - y2 ;

END #model

#===

PROCESS proc

UNIT

mymod AS mod1

INITIAL

WITHIN mymod DO

x1 = 0 ;

x2 = 0 ;

END #within

SOLUTIONPARAMETERS

OutputLevel := 2 ;

gRMS := OFF ;

ReportingInterval := 1 ;

SCHEDULE

CONTINUE FOR 10

END #process

Figure A.2: Illustrative example: under-specified system

A.2. Well-posed models and degrees-of-freedom 214

gPROMS Introductory User Guide

A.3 High-index DAE systems

Consistent initialisation of DAE systems is often related to their index. The index of a DAE
system is defined as the minimum number of differentiations with respect to time that are
necessary in order to obtain the time derivatives of all variables, i.e. to reduce the system to
a set of ordinary differential equations (ODEs). Index-1 systems are generally very similar to
ODEs in that the number of initial conditions that can be specified arbitrarily is equal to the
number of differential variables in the system, all the differential variables may be given arbitrary
initial values, and similar numerical methods can be used for the solution of the system. On
the other hand, in “high-index” DAEs (index > 1), the number of initial conditions that can
be specified arbitrarily may be less than the number of differential variables, the differential
variables are not independent and ODE-type numerical methods may fail. For the latter case,
gPROMS:

• lists the subset of differential variables that cannot be given arbitrary initial values;

• indicates the sub-system of k equations in (k− 1) algebraic variables and time derivatives
of differential variables that is responsible; and

• lists any variables that are ASSIGNed in the above sub-system, since it is often the choice
of ASSIGNments that causes high-index problems.

In order to illustrate this, consider the gPROMS input shown in figure A.3. Executing the
PROCESS proc gives:

Executing process PROC...

All 5 variables will be monitored during this simulation!

Building mathematical problem description took 0.009 seconds.

Loaded MA48 library

Execution begins....

Performing initialisation calculation at time: 0.000

Variables

Known : 1

Unknown : 4

Differential : 2

Algebraic : 2

Model equations : 4

Initial conditions : 2

Checking consistency of model equations and ASSIGN specifications... OK!

Checking index of differential-algebraic equations (DAEs)...

ERROR: Your problem is a DAE system of index greater than 1.

A.3. High-index DAE systems 215

gPROMS Introductory User Guide

Your differential variables ("states") are not independent: for

example, you cannot specify arbitrary initial values for the

differential variable(s):

MYMOD.X1 (STATE)

since the following 1 equation(s) will then be left with only 0

unknown(s):

Model Equation 3: MYMOD.X1^2 = MYMOD.Y2 ;

The problem may have been caused because you ASSIGNed the

following variable(s):

MYMOD.Y2 (INPUT)

Initialisation calculation failed.

Execution of PROC fails prematurely.

The DAE system in this example consists of 4 equations in 4 unknown variables, and, as
gPROMS confirms, is well-posed. However, with the variable y2 ASSIGNed, the system is
high-index because the initial value of x1 cannot be specified arbitrarily due to the algebraic
relationship x2

1 = y2.

A.3. High-index DAE systems 216

gPROMS Introductory User Guide

DECLARE

TYPE

NoType = 0.5 : -1E30 : 1E30

END #declare

#===

MODEL mod1

VARIABLE

x1, x2, y1, y2, y3 AS NoType

EQUATION

$x1 = x1*y1 ;

$x2 = x1 + x2*y1 + y2 + 3*y3 ;

x1^2 = y2 ;

x2 = x1 + y1 + y2*y3 ;

END #model

#===

PROCESS proc

UNIT

mymod AS mod1

ASSIGN

WITHIN mymod DO

y2 := 1 ;

END #within

INITIAL

WITHIN mymod DO

x1 = 0 ;

x2 = 0 ;

END #within

SOLUTIONPARAMETERS

ReportingInterval := 1 ;

SCHEDULE

CONTINUE FOR 10

END #process

Figure A.3: Illustrative example: high-index system

A.3. High-index DAE systems 217

gPROMS Introductory User Guide

A.4 Inconsistent initial conditions

Once gPROMS has checked that the system is well-posed, square and of index 1, it checks the
consistency of the initial conditions and identifies sub-systems that are over- or under-specified
at t = 0. For example, consider the system shown in figure A.4. In this case, it is clear from
inspection that the initial conditions, x1(0) = 0 and y2(0) = 1, are inconsistent due to the
relationship x2

1 = y2. This is confirmed by the gPROMS output:

Executing process PROC...

All 5 variables will be monitored during this simulation!

Building mathematical problem description took 0.001 seconds.

Loaded MA48 library

Execution begins....

Variables

Known : 1

Unknown : 4

Differential : 2

Algebraic : 2

Model equations : 4

Initial conditions : 2

Checking consistency of model equations and ASSIGN specifications... OK!

Checking index of differential-algebraic equations (DAEs)... OK!

Checking consistency of initial conditions...

ERROR: Your initial conditions are inconsistent.

At time t=0, the following 3 equation(s) involve only 2 unknown

variable(s).

Model Equation 3: MYMOD.X1^2 = MYMOD.Y2 ;

Initial Condition 1: MYMOD.X1 = 0 ;

Initial Condition 2: MYMOD.Y2 = 1 ;

The 2 unknown(s) occuring in these 3 equations are:

MYMOD.Y2 (ALGEBRAIC)

MYMOD.X1 (STATE)

Initialisation calculation failed.

Execution of PROC fails prematurely.

A.4. Inconsistent initial conditions 218

gPROMS Introductory User Guide

Note that using the initial conditions:

INITIAL

WITHIN mymod DO

$x1 = 0 ;

y2 = 1 ;

END #within

for example, rectifies the problem.

A.4. Inconsistent initial conditions 219

gPROMS Introductory User Guide

DECLARE

TYPE

NoType = 0.5 : -1E30 : 1E30

END #declare

#===

MODEL mod1

VARIABLE

x1, x2, y1, y2, y3 AS NoType

EQUATION

$x1 = x1*y1 ;

$x2 = x1 + x2*y1 + y2 + 3*y3 ;

x1^2 = y2 ;

x2 = x1 + y1 + y2*y3 ;

END #model

#===

PROCESS proc

UNIT

mymod AS mod1

ASSIGN

WITHIN mymod DO

y3 := 1 ;

END #within

INITIAL

WITHIN mymod DO

x1 = 0 ;

y2 = 1 ;

END #within

SOLUTIONPARAMETERS

ReportingInterval := 1 ;

SCHEDULE

CONTINUE FOR 10

END #process

Figure A.4: Illustrative example: system with inconsistent initial conditions

A.4. Inconsistent initial conditions 220

gPROMS Introductory User Guide

Appendix B

gRMS Output Channel

Contents

B.1 gRMS processes . 223

B.2 Plotting 2D graphs . 224

B.2.1 Adding lines to a plot . 224

B.2.2 Formatting lines . 225

B.2.3 Formatting 2D plots . 226

B.3 Plotting 3D graphs . 232

B.3.1 Adding a surface to a plot . 232

B.3.2 Formatting surfaces . 232

B.3.3 Formatting 3D plots . 232

B.4 Printing gRMS plots . 234

B.5 Viewing and exporting data 236

B.5.1 2D plots . 236

B.5.2 3D plots . 236

B.6 Exporting images . 237

B.7 Templates . 238

B.7.1 Line templates . 238

B.7.2 Plot templates . 238

B.8 Advanced use of gRMS . 243

B.8.1 Preventing gRMS from starting automatically with gPROMS . 243

B.8.2 Starting gRMS independently from gPROMS 243

B.8.3 Running gPROMS and gRMS on different machines 243

B.8.4 Multiple gPROMS runs communicating with a single gRMS . . 244

B.8.5 gRMS resources under UNIX 244

221

gPROMS Introductory User Guide

The gRMS (gPROMS Results Management Service) application provides facilities for plotting
and printing gPROMS results as 2D and 3D graphs. It is normally started automatically by
gPROMS.

You will find an introduction to the use of gRMS in sections 2.4.1 and 2.4.2 for MS Windows-
based and Unix systems respectively. This appendix goes into some more detail that you may
find useful in making the most out of this powerful results presentation tool.

The gRMS Toolbar (UNIX). The empty gRMS frame (Windows).

UNIX The UNIX version of gRMS starts up displaying the gRMS Toolbar which contains
menu-items for loading/saving data and for creating new plots. Each plot is displayed in a
separate window with its own menu-bar containing items specific to that plot.

Windows The Windows version of gRMS starts up displaying an empty frame. Each plot is
displayed in a sub-window within that frame. All menu-items appear on the main frame’s menu
and plot specific menu-items always operate on the currently active plot. If there is no active
plot, then plot specific menu-items cannot be used and will be grayed out.

222

gPROMS Introductory User Guide

B.1 gRMS processes

gRMS organises all its results in Processes. A gRMS Process:

• is created when a gPROMS PROCESS starts being executed (cf. section 2.3);

• receives data from gPROMS including information on the variables in the problem as well
as their values during the simulation;

• remains in existence even after the gPROMS simulation has terminated or, indeed, gPROMS
has been exited;

• can be saved as a permanent file on disk; such files normally have a .gRMS file extension;

• may be reloaded by gRMS from the above file at a later time in order to display results
etc.. This can be done using the “Open...” menu-item.

gRMS manages its processes using the “Process” menu. Initially this menu contains the “Open...”
“Save All” and “Close All” items. Each new Process that is created (either by an executing
gPROMS PROCESS or by loading in a .gRMS file) appears as an additional item on this menu.

The menu-item for each Process in the “Process” menu is a pull-right menu containing the
following items:

Close Close the Process. If the Process has not been saved, then the data that it
contains will be lost.

Save Save the process using its current name. This menu-item is disabled if the
process has already been saved.

Save As... Display a standard file dialog allowing you to choose a destination directory
and filename to which the Process will be saved.

Properties... Displays statistics about the Process including the number of variables,
domains and time-intervals.

B.1. gRMS processes 223

gPROMS Introductory User Guide

B.2 Plotting 2D graphs

To plot a new 2D graph, select the “Graph→New 2D Plot” menu-item. A new “2D Plot
Window” is displayed containing an empty 2D plot.

A 2D Plot Window (UNIX).

B.2.1 Adding lines to a plot

To add a new line to a plot select the “Line→Add...” menu-item. The “Add Line Dialog” is
displayed which allows you to navigate the model hierarchy and choose a variable to be plotted.

When a line is added to a plot, a “Line Properties Dialog” will be displayed so that the line can
be formatted (see section B.2.2). The line will be drawn on the plot only if it has a single free
domain i.e. the corresponding variable is a function of a single independent variable (usually
Time).

Windows On Windows, navigation of the model hierarchy is achieved using a tree-style
mechanism. To add a line corresponding to a certain variable:

• either double-click on the variable,

• or click on the variable to select it and then click “OK”.

B.2. Plotting 2D graphs 224

gPROMS Introductory User Guide

The Add Line Dialog (Windows). The Add Line Dialog (UNIX).

UNIX On UNIX, navigation of the model hierarchy is achieved using a list.

Selecting (single-clicking) an item in the list causes it to be listed in the “Selection” field.

The action of the “OK” button depends on what type of item is in the “Selection” field:

<UP> Moves up the hierarchy by one level.
xxx* Moves down the hierarchy into model instance xxx.
xxx Adds a line to the plot using the variable xxx.

The behaviour of this dialog can be altered by the three toggle buttons which, by default, are
all set off.

Show variables as flat list – setting this toggle flattens the model hierarchy and activates the
“Filter” field which can then be used to filter the contents of the list using standard UNIX
wild-cards (“?” to represent one character, “*” to represent any number of characters.)

Show all descendants – by default, the list only displays the models/variables at the cur-
rent level of the hierarchy. With this toggle set, the list also includes the names of all
models/variables deeper in the hierarchy.

Show full variable names – by default, the list only displays the next element in the name
of each model/variable. Setting this toggle causes the full names to be listed.

B.2.2 Formatting lines

For each line on the plot, the “Line” menu contains a pull-right menu-item (if the line cannot
be plotted, then on Windows its name is preceded with “*” and on UNIX it is highlighted in

B.2. Plotting 2D graphs 225

gPROMS Introductory User Guide

red.) The pull-right menu contains the following items:

Properties... Displays a “Line Properties Dialog” for the line.
This dialog presents you with a list of all the domains of the line (3 in the
example shown, “Time”, “Axial” and “Radial”.) In order to be plottable a
line must have only one free-domain which is achieved by fixing the other
domains to a point.
In addition, this dialog allows you to specify a label for the line that will
appear in the plot legend, and to specify which of the y-axis the line should
be plotted against.
N.B. If a plot contains only one line it will be plotted against the Left axis
even if you specify otherwise.
A drop-down list on this dialog allows you to change the data-source to
any similar variable or to convert the line into a “Template” (both of these
concepts are explained in section B.7).

Style... Pops up a “Line Style Dialog” for the line to allow you to change its ap-
pearance on the plot.

Copy Adds an identical copy of the line to the plot.

Remove Removes the line from the plot.

Line Properties Dialog (UNIX). Line Style Dialog (UNIX).

B.2.3 Formatting 2D plots

The format of the plot is controlled via the items in the plot’s “Format” menu.

B.2. Plotting 2D graphs 226

gPROMS Introductory User Guide

B.2.3.1 Axes

Windows The format of the axes can be changed using the “Axis Format Dialog” which is
displayed when the “Format→Axis...” menu-item is selected.

Axis Format Dialog (Windows).

Title Title to display on the axis. By default, this is the name of the first line
plotted against that axis.

Rotation Orientation of the axis title. This cannot be changed for the X-Axis.
Show Axis Select to display the axis.
Log Axis Select to display the axis with a logarithmic scale.
Minimum Minimum value of the data on this axis.
Maximum Maximum value of the data on this axis.
Origin Specifies where the axis should be drawn. For example, setting the x origin

to 4.0 will cause the left y-axis to cross the x-axis at 4.0.
Numbering Increment between axis numbers.
Ticks Increment between axis ticks.
Precision Number of decimal places the axis numbering should use.

A bounding box can be displayed around the axes by selecting the “Format→Bounding Box”
menu-item.

UNIX On UNIX, the “Axis Format Dialog” can be used only to alter the format of one axis
at a time and “Format→Axis” menu-item is a pull-right menu containing an item for each axis.

B.2. Plotting 2D graphs 227

gPROMS Introductory User Guide

Axis Format Dialog (UNIX).

The bounding box is displayed by selecting the “Format→Axis→Bounding Box” menu-item.

B.2.3.2 Default line styles

When lines are first created on 2D plots, gRMS chooses an unused line style from the following
list of default styles:

Name Line Style Colour Data Points Style

Black Solid Black Dot
Red Solid Red Square
Blue Solid Blue Triangle
Green Solid Green Diamond
Magenta Solid Magenta Star
Dashed Black Dashed Black Dot
Dashed Red Dashed Red Square
Dashed Blue Dashed Blue Triangle
Dashed Green Dashed Green Diamond
Dashed Magenta Dashed Magenta Star

The list of default styles can be edited using the “Format→Default Line Style” menu-item.

As changes to the default style list are lost when gRMS is shut down, this facility is only really
useful when used in conjunction with Plot Templates (see section B.7).

B.2.3.3 Fonts

The fonts used to display text on the plot can be changed using the items in the “‘Format→Fonts”
menu. These can be used to display a “Font Selection Dialog” which allows a font to be picked
from a system dependent list.

B.2. Plotting 2D graphs 228

gPROMS Introductory User Guide

Font Selection Dialog (Windows). Font Selection Dialog (UNIX).

B.2.3.4 Grid

The format of the plot’s grid can be changed using the “Grid Dialog” which is displayed when
the “Format→Grid...” menu-item is selected.

Grid Dialog (UNIX).

B.2. Plotting 2D graphs 229

gPROMS Introductory User Guide

By default, the “Increment” of a grid-line is the same as the axis-numbering. To remove the
grid-lines set the “Increment” to 0.

B.2.3.5 Legend

The format of the plot’s legend can be changed using the “Legend Dialog” which is displayed
when the “Format→Legend...” menu-item is selected.

Legend Dialog (UNIX).

N.B. The values of the “Anchor” and “Orientation” are only hints, if the window is too small
then the legend may not appear as specified.

B.2.3.6 Title

The plot can be supplied with a header and footer using the “Title Dialog” which is displayed
when the “Format→Title...” menu-item is selected.

Title Dialog (UNIX).

B.2.3.7 Scaling, zooming and translation

Scaling With Ctrl pressed and the middle mouse button depressed, moving the
mouse up and down zooms the plot in and out.

Translation With Shift pressed and the middle mouse button depressed, moving the
mouse translates the plot.

Zooming With Shift pressed and the left mouse button depressed the mouse can be
used to select an area to zoom into.

B.2. Plotting 2D graphs 230

gPROMS Introductory User Guide

Pressing r resets the scaling, translation and zooming.

N.B. For mice with only two buttons pressing the middle button is simulated by pressing both
buttons simultaneously.

B.2. Plotting 2D graphs 231

gPROMS Introductory User Guide

B.3 Plotting 3D graphs

To plot a new 3D graph select the “Graph→New 3D Plot” menu-item. A new “3D Plot Window”
is displayed containing an empty 3D Plot. The appearance of this window is the same as for a
2D Plot except the “Line” menu is replaced by the “Surface” menu.

B.3.1 Adding a surface to a plot

Adding a surface to a 3D Plot is achieved in the same way as adding a line to a 2D Plot.

Only one 3D surface can be plotted at a time. If the plot already contains a surface, then the
“Surface→Add...” menu-item is renamed “Surface→Change...”; otherwise, the behaviour is the
same.

B.3.2 Formatting surfaces

The “Surface” menu contains the following items for formatting the surface displayed on a 3D
Plot.

Properties... Displays a “Surface Properties Dialog” for the surface. This dialog is func-
tionally identical to the “Line Properties Dialog”.

Remove Removes the surface from the plot.

Draw Mesh When set, the surface is plotted in 3D with the X-Y grid projected onto
the surface.

Draw Shade When set, the surface is plotted in 3D with flat shading.

Draw Contour When set, contour lines are automatically drawn between distribution levels
in the data.

Draw Zones When set, each distribution level in the data is displayed in a different solid
colour.

B.3.3 Formatting 3D plots

The format of the plot is controlled via the items in the plot’s “Format” menu.

B.3.3.1 Axes

Windows Same as for 2D plots though there are fewer controllable parameters.

UNIX The format of the axes can be changed using the “3D Axis Format Dialog” which is
displayed when the “Format→Axis...” menu-item is selected.

Functionally, this is the same as for 2D plots except there are fewer controllable parameters.

B.3. Plotting 3D graphs 232

gPROMS Introductory User Guide

B.3.3.2 Fonts

Windows Same as for 2D plots except that only the style (Bold, Italic, ...) and not the face
can be selected for the Axis font.

UNIX Same as for 2D plots except the Axis font is picked from a pull-right menu rather than
the “Font Selection Dialog”.

B.3.3.3 Legend

Same as for 2D plots except that there is an option to display the legend as either “Stepped”
or “Continuous”.

B.3.3.4 Rotation

The default rotation of the plot about the (X,Y,Z) axes is (45,0,45).

With the middle mouse button (or both buttons for 2-button mouse) depressed, moving the
mouse rotates the plot.

If you hold down x, y, or z, then the rotation is restricted to being around that axis.

If your hold down e, then the rotation is restricted to being perpendicular to the screen.

Alternatively you can change the rotation from the “Format” menu.

Windows The rotation of the plot can be changed using the “Rotation Dialog” which is
displayed when the “Format→Rotation...” menu-item is selected.

Rotation Dialog (Windows).

UNIX The rotation of the plot can be changed to a limited set of preset values using the
sub-items in the “Format→Rotation” pull-right menu.

B.3.3.5 Title

Same as for 2D plots.

B.3. Plotting 3D graphs 233

gPROMS Introductory User Guide

B.3.3.6 Scaling, zooming and translation

Same as for 2D plots except you need to hold down Ctrl and not Shift when zooming.

N.B. You can actually hold down Ctrl when zooming 2D plots, but in this case the axes will
only be displayed if they lie within the selected zoom area.

B.4 Printing gRMS plots

2D and 3D Plots can be printed by selecting the “File→Print...” menu-item.

Windows gRMS uses the standard Windows print dialog.

The printed plot will be scaled to fit the page whilst maintaining the same aspect ratio as
displayed on the screen.

UNIX The “Print Dialog” will be displayed allowing you to choose the format of the printed
plot, and the name of the printer or file you wish to print to.

The Print Dialog (UNIX). The Printer Properties Dialog (UNIX).

PostScript The default format which outputs an encapsulated PostScript (EPSF-2.0) image
of the graph using device-independent PostScript operators.

Clicking the “Props...” button pops-up the “Printer Properties Dialog” which contains addi-
tional formatting options for “PostScript” output.

The “Fonts” option requires a little explaining, by default gRMS tries to “Use X Fonts” which
means that the plot is printed using the closest available font to that displayed on the screen.
If this does not print correctly then you can disable this option and select fonts from the four
menus.

B.4. Printing gRMS plots 234

gPROMS Introductory User Guide

N.B. To obtain the best WYSIWYG (what you see is what you get) output filling the whole of
the printed page, stretch the Plot Window so that it has the aspect ratio of your paper in the
orientation you are using and then set the “Maintain Aspect Ratio” toggle button to be off.

Three additional output formats are also available, however the options in the “Printer Proper-
ties Dialog” are not available for them:

PostScript Bitmap (Monochrome) An encapsulated PostScript (EPSF-2.0) image of
the graph created by taking the pixels on the screen and outputting them using the PostScript
image operator. The resolution is not as good as with the standard PostScript format, and the
file size is much larger. The only reason to use this format is if the plot uses especially unusual
fonts which are not reproduced correctly by the standard PostScript format.

PostScript Bitmap (Colour) Same as the above, but in Colour.

X Window Dump A standard X Windows Dump representation of the graph.

B.4. Printing gRMS plots 235

gPROMS Introductory User Guide

B.5 Viewing and exporting data

Data from 2D and 3D plots can be viewed in a window or exported as a “tab/space/comma
delimited” ASCII text file suitable for importing into a spreadsheet.

N.B. “comma delimited” format is only available in the Windows version of gRMS.

B.5.1 2D plots

The data can be viewed by selecting the “Graph→View Data...” menu-item.

The data is displayed in a table with the values of the free-domain in the first column and the
values of lines plotted against that domain in subsequent columns. If the plot contains lines
from variables in different Processes, or lines plotted against different free-domains then multiple
tables are displayed.

Windows The data can be exported to a file by selecting
Graph→Export Data...”. This displays a Windows file dialog for you to specify the file name
and type.

UNIX The data can be exported to a file by selecting either the “Graph→Export Data→Tab
Delimited Table...” or “Graph→Export Data→Space Delimited Table...” menu-item. This
displays a standard Motif file dialog for you to specify a file name.

B.5.2 3D plots

The data can be viewed by selecting either the “Graph→View Data→Table...” or “Graph→View
Data→Matrix...” menu-item.

In ‘Matrix’ format the data is exported in a table with the x-values labelling the columns, the
y-values labelling the rows and the z-values in the table. The ‘Table’ format exports the data
in a three column table (x,y,z).

Windows The data can be exported to a file by selecting “Graph→Export Data...”. This
displays a Windows file dialog for you to specify the file name and type.

UNIX The data can be exported to a file by selecting one of the “Graph→Export Data→Tab
Delimited Table...”, “Graph→Export Data→Space Delimited Table...”,
“Graph→Export Data→Tab Delimited Matrix...” or “Graph→Export Data→Space Delimited
Matrix...” menu-items. This displays a standard Motif file dialog for you to specify a file name.

B.5. Viewing and exporting data 236

gPROMS Introductory User Guide

B.6 Exporting images

Graphical images of plots can be exported from gRMS for inclusion in documents and presen-
tations.

Windows Select the “Graph→Export Image...” menu-item. This displays a standard Win-
dows file dialog for you to specify a file name and image type from the following:

Enhanced Metafile (emf)
Aldus Placeable Windows Metafile (wmf)
Windows Bitmap (bmp)
Standard PNG (png)
Interlaced PNG (png)
JPEG (jpg)

UNIX Select the “Graph→Print...” menu-item and use the “Printer Dialog” to select output
to a file.

B.6. Exporting images 237

gPROMS Introductory User Guide

B.7 Templates

To simplify the use of gRMS when creating many similar plots, e.g. for multiple runs of the
same process, gRMS allows plot and line ‘Templates’ to be defined.

A template is a ‘description’ of a plot (or line) that contains everything needed to display the
plot except for the data itself.

Using a template requires sources of data for the plot (or line) to be specified; this is known as
instantiation.

There are two types of Templates, ‘Line/Surface Templates’ and the much more useful ‘Plot
Templates’.

All references to lines on 2D plots in the following discussion also apply to a surface on a 3D
plot.

B.7.1 Line templates

Line templates are ‘descriptions’ of lines; they contain everything needed to display a line except
for the data itself. Line templates contain information about the line colour, line style, line width,
point style (what symbol is used), point colour, point size and the line label.

Like lines, line templates appear on the “Lines” menu of the Plot Window. They can be
manipulated exactly like lines (see section B.2.2). They can be instantiated from their Line
Properties Dialog, by selecting a variable from the “Variable” drop-down list (this contains a
list of all variables with the same name, distributed over domains of the same name and in the
same order).

Lines can be converted into templates from their Line Properties Dialog by selecting the “Tem-
plate: *.xxx” item from the “Variable” drop-down list.

B.7.2 Plot templates

Plot Templates are ‘descriptions’ of plots; they contain everything needed to display a plot except
for the data itself. Plot templates contain information about each axis (scale, origin, minimum
value, maximum value, tick parameters, title, etc.), all fonts used, grid lines, the legend, the
title, the properties of each line (as in a line template) and the set of variables to be plotted.
One can imagine that setting all of this information each time a process is executed will become
extremely tedious. Also note that a plot template can be instantiated with processes that are
not identical to the one used to create the template: gRMS will search through the data to find
as many matches to the variables that it has in the template.

Plot templates are created from normal 2D and 3D plots (see sections B.7.2.1–B.7.2.3).

N.B. It is possible to create a template from a plot that contains no lines or surfaces; just line
templates and axes, font, grid, legend, title and default line style formatting. Such a template
requires no instantiation.

B.7. Templates 238

gPROMS Introductory User Guide

B.7.2.1 Saving a plot as a template

To save a plot as a template select the “Graph→Save As Template...” menu-item. This displays
a standard file dialog allowing you to choose a name for the template file. We suggest that plot
templates are saved with the file extension .gpt.

B.7.2.2 Creating a new plot from a saved template

To create a new plot from a previously saved template select the “Graph→Open Template...”
menu-item. This displays a standard file dialog allowing you to choose the template to open.

B.7.2.3 Using an existing plot as a template

If you want to quickly use a plot as a template without going through the Save/Open procedure
then select the “Graph→Use As Template...” menu-item.

B.7.2.4 Instantiating a plot template

The ‘Plot Template Dialog’ is displayed when you use any plot template that requires instantia-
tion (i.e. was created from a plot containing lines or surfaces). This dialog is used to instantiate
the template.

Template Dialog (UNIX).

The dialog displays the details for one required data-source at a time. If more than one data-
source needs to be instantiated then the “Back” and “Next” buttons can be used to move
through the required data-sources.

The dialog contains two lists. The top list contains all the variables that are required from the
data-source whilst the bottom list contains all the possible data-sources meeting these require-
ments (from those processes loaded into gRMS).

B.7. Templates 239

gPROMS Introductory User Guide

A particular data-source is chosen by selecting it from the bottom list.

When you have specified all the data-sources click “Finish”.

By default all the data-sources are instantiated as “No Data” which means that lines depending
on those data-sources will become ‘Line Templates’ on the finished plot.

B.7.2.5 Common templates

Plot templates saved in the oc directory of the gPROMS installation directory (as identified by
the value of the GPROMSHOME environment variable) are known as common templates.

These appear in the “Graph→Open Common Template” menu for easy access.

If you have common templates called plot2d.gpt and plot3d.gpt then gRMS uses these when
you select the “Graph→New 2D Plot” and “Graph→New 3D Plot” menu-items. Usually you
would create these templates from plots with no lines or surfaces.

B.7.2.6 Plot template example

This example demonstrates how plot templates can be used to simplify viewing of the results
for similar sub-models within the same gPROMS process. The example shown creates and used
a template for models with P (pressure) and T (temperature) variables.

1. Create a plot of P and T from one model.

B.7. Templates 240

gPROMS Introductory User Guide

2. Save the plot as a template.

3. Open the template.

B.7. Templates 241

gPROMS Introductory User Guide

4. Instantiate the template from a different model with P and T.

5. View the resulting plot.

B.7. Templates 242

gPROMS Introductory User Guide

B.8 Advanced use of gRMS

In all likelihood you will never need to use any of the features described in this section, but for
the adventurous herein may lie some items of interest.

B.8.1 Preventing gRMS from starting automatically with gPROMS

To prevent gPROMS automatically starting gRMS set the NOGRMS environment variable.

N.B. gRMS will also not be started automatically if the GRMSPORT or GRMSHOST environment
variables are set, or if the UNIX version of gPROMS is started with the -port or -host flags.

B.8.2 Starting gRMS independently from gPROMS

If you wish to start gRMS independently of gPROMS then you can start it with the command
line:

gRMS.exe [-port number] [-dir directory] [-print printer] [-lpr]

Where the contents of [square brackets] are optional command line switches for the following:

-port gRMS is a server application that receives data over a network from gPROMS.
This command line switch tells gRMS to listen for connections from gPROMS
on a given port number. When gRMS is started by gPROMS this is set auto-
matically.
If not specified gRMS checks to see if GRMSPORT is set and if not uses port 9876.

-dir This is the directory which gRMS will try to open and save files to by default.
When gRMS is started by gPROMS this is set automatically.
If not specified gRMS check to see if GRMSDIR is set. If GRMSDIR is not set then
it uses GPROMSDIR/output and if that is not set it uses the directory it is started
in.

-print This switch is only for the UNIX version and can be used to specify the name
of the default printer that gRMS should print plots to.
If not specified gRMS checks to see if GRMSPRINTER is set.

-lpr This switch is only for the UNIX version. By default gRMS uses the UNIX
system program “lp” to print plots, some earlier versions of UNIX do not have
this program and use one called “lpr” instead, this switch tells gRMS to use
the “lpr” program.
If not specified gRMS checks to see if GRMSLPR is set..

B.8.3 Running gPROMS and gRMS on different machines

Because gPROMS and gRMS communicate using the TCP/IP protocol they can be run on sep-
arate machines and communicate over a local area network, or the internet. This is best demon-
strated by example: if we want to run gRMS on a machine called marzipan.psenterprise.com

B.8. Advanced use of gRMS 243

gPROMS Introductory User Guide

(the name of the machine gPROMS is running on is not important) and communicate using
port 9999 then gRMS is started like this:

gRMS.exe -port 9999 -dir ~/gPROMS/output

and gPROMS is started like this:

gPROMS -port 9999 -host marzipan.psenterprise.com

N.B. The Windows version of gPROMS does not currently accept command line arguments so
you would have to set GRMSPORT and GRMSHOST instead.

B.8.4 Multiple gPROMS runs communicating with a single gRMS

More than one gPROMS run can communicate their results to a single instance of gRMS at a
time.

Again we demonstrate by example, and use port 9999 for communication. gRMS is started like
this:

gRMS.exe -port 9999 -dir ~/gPROMS/output

the first gPROMS is started like this:

gPROMS -port 9999

and the second gPROMS is started in the same way:

gPROMS -port 9999

Both gPROMS runs will now communicate their results to gRMS.

N.B. The Windows version of gPROMS does not currently accept command line arguments so
you would have to set GRMSPORT instead.

B.8.5 gRMS resources under UNIX

X-Windows provides a mechanism to customise applications using Resource Files. It is beyond
the scope of this manual to discuss the eccentricities of this mechanism other than to refer
the user to a book (X-Window System User’s Guide, OSF/Motif 1.2 Edition, O’Reilly &
Associates, Inc., ISBN 1-56592-015-5) and to list the resources that can be used to customise
gRMS. If you would like help in creating a gRMS resource file on your system then please
contact support.gPROMS@psenterprise.com. The resources provided for customisation can be
split into three sets:

B.8. Advanced use of gRMS 244

gPROMS Introductory User Guide

• Those mimicking the command line switches. If gRMS is started from the command line
using switches then these override the associated resource settings.

• Those that control the overall appearance of gRMS.

• Those that control the appearance of individual gRMS windows and dialogs.

Resource Function

Grms.directory Duplicates function of -dir command line switch.
Grms.lpr Duplicates function of -lpr command line switch.
Grms.port Duplicates function of -port command line switch.
Grms.printer Duplicates function of -print command line switch.

Table B.1: Resources mimicking the command line switches.

B.8. Advanced use of gRMS 245

gPROMS Introductory User Guide

Resource Function Default

height The height of the dialog or window. Not set, except for
Grms.PlotWindow.height
that is set to 600.

width The width of the dialog or window. Not set, except for
Grms.PlotWindow.width
that is set to 500.

foreground The foreground colour of the dialog
or window.

Not set, so defaults to value of
Grms*.foreground.

background The background colour of the dia-
log or window.

Not set, so defaults to value of
Grms*.background.

x The initial x position of the top left
corner of the dialog or window.

Not set, so position depends
on Window Manager.

y The initial y position of the top left
corner of the dialog or window.

Not set, so position depends
on Window Manager.

Table B.2: Resources controlling individual windows and dialogs.

Grms Grms*.PlotWindow
Grms*.AddDialog Grms*.PrintDialog
Grms*.AxisDialog Grms*.PrintPropsDialog
Grms*.ErrorDialog Grms*.PropsDialog
Grms*.FontDialog Grms*.QuestionDialog
Grms*.GridDialog Grms*.StyleDialog
Grms*.InformationDialog Grms*.TitleDialog
Grms*.LegendDialog

Table B.3: Names of individual windows and dialogs.

B.8. Advanced use of gRMS 246

gPROMS Introductory User Guide

Resource Function Default

Grms*.background Default background colour for
gRMS windows.

grey

Grms*.foreground Default foreground colour for
gRMS windows.

black

Grms*.fontList Comma separated list of three
fonts, the standard font, the
bold font and the italic font.
N.B. Due to bugs in the
DEC/OSF1 version of Motif,
the bold and italic fonts do not
have any effect.

fixed,
fixed=BOLD TAG,
fixed=ITALIC TAG

Grms*.selectColor Colour for selected toggle but-
tons.

blue

Grms*.DirList.background Background colour for list
in File Dialog, should
be set the same as
Grms*.Text.background.

light grey

Grms*.DirList.foreground Foreground colour for list in File
Dialog, should be set the same
as Grms*.Text.foreground.

black

Grms*.FilterText.background Background colour for “Fil-
ter” text fields, should
be set the same as
Grms*.Text.background.

light grey

Grms*.FilterText.foreground Foreground colour for “Fil-
ter” text fields, should
be set the same as
Grms*.Text.foreground.

black

Grms*.ItemsList.background Background colour for list in
Font Dialog and Add Dialog,
should be set the same as
Grms*.Text.background.

light grey

Grms*.ItemsList.foreground Foreground colour for list in
Font Dialog and Add Dialog,
should be set the same as
Grms*.Text.foreground.

black

Grms*.Text.background Background colour for text
fields.

light grey

Grms*.Text.foreground Foreground colour for text
fields.

black

Table B.4: Resources controlling general appearance.

B.8. Advanced use of gRMS 247

gPROMS Introductory User Guide

Appendix C

Microsoft Excel Output Channel

Contents

C.1 Introduction . 249

C.2 Enabling the Microsoft Excel Output Channel 250

C.3 Format of the Microsoft Excel output 251

C.4 Using the graph generation macro 252

248

gPROMS Introductory User Guide

C.1 Introduction

The Microsoft Excel1 output channel is a method for storing the results of a simulation in
spreadsheet form. Each time a gPROMS simulation is executed, the output channel creates a
new Microsoft Excel workbook containing the values of the variables arranged in worksheets.
These data can then be plotted or manipulated using Excel’s existing facilities or exported to
other common data management systems.

1The facilities described in this Appendix are supported by Microsoft Excel 97 and later versions.

C.1. Introduction 249

gPROMS Introductory User Guide

C.2 Enabling the Microsoft Excel Output Channel

The Microsoft Excel output channel is enabled via a specification in the SOLUTIONPARAMETERS

section of the PROCESS entity. The default specification is written

SOLUTIONPARAMETERS

gExcelOutput := ON ;

With the above specification, gPROMS will generate a temporary file called ProcessName.xls2.
However, it is recommended that the default filename is overridden using the following specifi-
cation:

gExcelOutput := "FullFileName" ;

In this case, the results will be stored in FullFileName.xls. Where FileName.xls corresponds
to the full pathname of the new Excel file (e.g. C:\My Documents\MyResults.xls).

In the latter case, if the file already exists (e.g. the process has already been executed at least
once), the file will be called FileName[2].xls. If this file also exists, gPROMS will increment
the number in brackets until a new file can be generated without overwriting an existing one.

2This will be created in the output directory of the gPROMS execution directory used during the
execution of the activity

C.2. Enabling the Microsoft Excel Output Channel 250

gPROMS Introductory User Guide

C.3 Format of the Microsoft Excel output

The output of the simulation is written into several worksheets within the Microsoft Excel
workbook. The first worksheet, called “Details”, contains a list of units and variables. The data
for each variable are stored in individual worksheets.

When gPROMS executes the process, it automatically opens Excel and the output file along
with a macro file (Output.xls in the OC directory). You can use the macros to select the
worksheet that contains the data for a specific variable. Simply select the cell in Details that
contains the name of the variable that you want and then press CTRL+SHIFT+g.

C.3. Format of the Microsoft Excel output 251

gPROMS Introductory User Guide

C.4 Using the graph generation macro

A second macro is available that can generate simple 2-D plots. From anywhere in the workbook,
press CTRL+SHIFT+n to start the macro. A window will then appear with a list of available units
and variables. Selecting a variable and pressing the Add button either generates a new worksheet
containing a copy of the data and the 2-D plot (for scalar variables) or brings up an option
window (for arrays and distributions). If a variable depends on a number of different domains,
one must be selected to be plotted on the abscissa by pressing the corresponding radio button.
For the remaining domains, appropriate values must be entered into the corresponding boxes.
Once all domains have been specified, pressing the Add button will generate the graph.

You can plot multiple instances of the same variable in the same graph (e.g. the mole fractions
of all components) simply by entering a new value for the component index and pressing Add.
However, at present, variables with different names cannot be plotted on the same graph. It is,
of course, a simple procedure to copy the required data into a new worksheet and to create the
graph manually.

C.4. Using the graph generation macro 252

gPROMS Introductory User Guide

Appendix D

gPLOT Output Channel

Apart from the gRMS and Microsoft Excel output channels, gPROMS provides a general purpose
ASCII output channel, called gPLOT, that can be used to interface with any other software.

If gPLOT := ON ; is specified in the SOLUTIONPARAMETERS section of a PROCESS entity, then
gPROMS will create an ASCII text file called

ProcessName.gPLOT

where ProcessName is the name of the PROCESS being executed.

gPROMS ModelBuilder will automatically load the gPLOT file into the “Results” Entity group
within the Case folder. The file can easily be exported for use in applications outside Model-
Builder using the Export tool explained in the ModelBuilder User Guide.

Alternately, the name of the gPLOT file can be specified explicitly by using the alternative
declaration in the SOLUTIONPARAMETERS section: gPLOT := "FileName" ;.

In this file, gPROMS will generally record results:

• at the initial time;

• just before each discontinuity;

• just after each discontinuity;

• at the regular recording interval specified by the user.

Each such result set will contain the corresponding value of the simulation time, followed by the
values of all recorded variables. Each entry is on a separate line.

The precise format of the gPLOT file is as follows:

253

gPROMS Introductory User Guide

Line 1 The number of variables being monitored (n)
Next n lines The names of variables in order

Next n + 1 lines “0” on the first line (the initial simulation time), followed by the
initial values of the variables on the subsequent n lines

Next n + 1 lines A value of the simulation time on the first line, followed by the
values of the variables at this time on the subsequent n lines

< The above repeated at every reporting time, and before and after
every discontinuity >

Last line A terminator (-1.00000E+09)

254

	Introduction
	What is gPROMS?
	gPROMS advantages
	Clear, concise language
	Modelling power
	Modelling of process discontinuities
	Modelling of operating procedures
	Hierarchical modelling structure
	Dynamic optimisation
	Parameter estimation
	Project management
	Open architecture

	Outline of this User Guide

	An Overview of gPROMS
	Starting gPROMS
	Using gPROMS on MS Windows platforms
	Using gPROMS on Unix platforms

	Developing a simple gPROMS model
	Introduction
	New gPROMS Project
	Describing physical behaviour - MODELs
	Declaring variable types
	Describing simulation activities - PROCESSes
	Syntax checking

	Running a gPROMS simulation activity
	Cases
	Executing a simulation
	Execution diagnostics

	Displaying gPROMS output
	On MS Windows workstations
	On UNIX workstations

	Arrays and Intrinsic Functions
	Declaring arrays of parameters and variables in MODELs
	Arrays of parameters
	Arrays of variables
	Rules for array declarations

	Using arrays of parameters and variables in expressions
	General rules for referring to gPROMS arrays
	Array expressions

	Using arrays in equations
	Array equations
	The FOR construct

	Intrinsic gPROMS functions
	Vector intrinsic functions
	Scalar intrinsic functions

	Conditional Equations
	State-Transition Networks
	The CASE conditional construct
	An example of the use of CASE construct
	General considerations in the use of CASE constructs
	Initial values of SELECTOR variables

	The IF conditional construct

	Distributed Models
	Declaring DISTRIBUTION_DOMAINs
	Declaring distributed VARIABLEs
	Defining distributed EQUATIONs
	Distributed expressions
	The PARTIAL operator
	The INTEGRAL operator
	Explicit and implicit definition of distributed equations
	BOUNDARY Conditions

	Specifying discretisation methods for distribution domains

	Composite Models
	Hierarchical sub-model decomposition
	Declaring higher-level MODELs
	Instances of lower-level models: the UNIT concept
	Arrays of UNITs
	The WITHIN construct

	Specifying connections as EQUATIONs
	Specifying connections using STREAMs
	The STREAM concept
	Stream type declarations
	Connecting models via STREAMs

	Parameter value propagation
	Explicit parameter assignment
	Automatic parameter propagation

	Simple Operating Procedures
	Elementary tasks
	The RESET elementary task
	The SWITCH elementary task
	The REPLACE elementary task
	The REINITIAL elementary task
	The CONTINUE elementary task

	Specifying the relative timing of multiple tasks
	Sequential execution---SEQUENCE
	Concurrent execution---PARALLEL
	Conditional execution---IF
	Iterative execution---WHILE

	More elementary tasks
	The STOP and MESSAGE elementary tasks
	The MONITOR elementary task
	The RESETRESULTS elementary task
	The SAVE and RESTORE elementary tasks

	Complex Operating Procedures
	TASKs
	The VARIABLE and SCHEDULE sections
	The PARAMETER section

	Hierarchical sub-task decomposition

	Stochastic Simulation in gPROMS
	Assigning random numbers to PARAMETERs and VARIABLEs
	Plotting results of multiple stochastic simulations
	Combining multiple simulations
	Plotting probability density functions

	Example

	Controlling the Execution of Model-based Activities
	The PRESET section
	The SOLUTIONPARAMETERS section
	Controlling result generation and destination
	Choosing mathematical solvers for model-based activities
	Configuring the mathematical solvers
	Specifying solver-type algorithmic parameters
	Specifying default linear and nonlinear equation solvers

	Standard solvers for linear algebraic equations
	The MA28 solver
	The MA48 solver

	Standard solvers for nonlinear algebraic equations
	The BDNLSOL solver
	The NLSOL solver
	The SPARSE solver

	Standard solvers for differential-algebraic equations
	The DASOLV solver
	The SRADAU solver

	Standard solvers for optimisation
	The CVP_SS solver
	The OAERAP solver
	The SRQPD solver
	The CVP_MS solver

	Standard solvers for parameter estimation
	The MXLKHD solver

	Model Analysis and Diagnosis
	Introduction
	Well-posed models and degrees-of-freedom
	Case I: over-specified systems
	Case II: under-specified systems

	High-index DAE systems
	Inconsistent initial conditions

	gRMS Output Channel
	gRMS processes
	Plotting 2D graphs
	Adding lines to a plot
	Formatting lines
	Formatting 2D plots

	Plotting 3D graphs
	Adding a surface to a plot
	Formatting surfaces
	Formatting 3D plots

	Printing gRMS plots
	Viewing and exporting data
	2D plots
	3D plots

	Exporting images
	Templates
	Line templates
	Plot templates

	Advanced use of gRMS
	Preventing gRMS from starting automatically with gPROMS
	Starting gRMS independently from gPROMS
	Running gPROMS and gRMS on different machines
	Multiple gPROMS runs communicating with a single gRMS
	gRMS resources under UNIX

	Microsoft Excel Output Channel
	Introduction
	Enabling the Microsoft Excel Output Channel
	Format of the Microsoft Excel output
	Using the graph generation macro

	gPLOT Output Channel

