00000	000000	000000000	00	

The role played by density in meso and large scale ocean dynamics

Mariana Miracca Lage

Advisor: Paulo S. Polito Instituto Oceanográfico - Universidade de São Paulo

25 September 2020

00000	000000	000000000	00	

- Chapter 2: What does the altimeter see?
- Chapter 3:
 Quasi-geostrophic interior modes and Rossby waves

Introduction				
00000	0000000	000000000	00	
The ocean viewed from space				

Introduction

The ocean viewed from space

Introduction				
0000	0000000	000000000	00	
The ocean viewed from space				

Simplified illustration of Satellite altimetry components. European Space Agency

- Large scale phenomena Electromagnetic radiation;
- Restricted to the ocean surface;
- Altimeters.

Introduction				
00000	0000000	000000000	00	
The ocean viewed from space				

- 3D density field → thermal wind;
- In a simple two-layer model, η variations are directly related to the interface displacements multiplied by ^{Δρ}/_α;
- Challenges → Ocean General Circulation Models (GCM)

Introduction				
00000	0000000	000000000	00	
Altimetry \times Ocean Models				

Altimeters \times GCM

Introduction				
0000	000000	000000000	00	
Altimetry $ imes$ Ocean Models				

Aviso/Cmems

- Variable: Sea Surface Height (SSH)
- Resolution: 0.25° (~30 km), 1 day
- Smoothed, interpolated data and noise

Hycom-Ncoda

- Variable: Sea Surface Height (SSH), experiment 53.X
- Resolution: 0.08° (~ 10 km), 3 hours
- Less noise!

Introduction				
0000	0000000	000000000	00	
Altimetry \times Ocean Models				

Time-series of sea surface height anomaly (SSHA) from the altimeter (red) and HYCOM (blue). Cross-correlation (0.8) performed from 1994 to 2015 at 15° N on the Pacific Ocean (test case).

Introduction				
00000	0000000	000000000	00	
Quasi-geostrophy				

Quasi-geostrophy and the Potential Vorticity Equation

Introduction				
00000	000000	000000000	00	
Quasi-geostrophy				

Conservation of Potential Vorticity (PV)

$$\frac{\partial}{\partial t} \left[\nabla^2 \psi + \beta y + \frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2} \frac{\partial \psi}{\partial z} \right) \right] = 0.$$

From hydrostatics, at z = 0,

$$\frac{\partial \psi}{\partial z} = \frac{b_s}{f_0}$$

Separation of variables \longrightarrow Quasi-Geostrophy (QG) and Surface Quasi-Geostrophy (SQG).

Introduction				
00000	000000	000000000	00	
Quasi-geostrophy				

Quasi-Geostrophy

- $b_s = 0;$
- Sturm-Liouville problem; λ_i is the separation constant, defined as R_{di}^{-2} ;

$$\frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2} \frac{\partial F_i}{\partial z} \right) + \lambda_i F_i = 0$$

Boundary conditions:

$$\begin{cases} \frac{\partial F_i}{\partial z} = 0 @ z = 0, \\ \frac{\partial F_i}{\partial z} = 0 @ z = -H. \end{cases}$$

Surface Quasi-Geostrophy

- $b_s \neq 0$;
- Vertical transfer function (χ) dependent on the wavenumber K;

$$\frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2} \frac{\partial \chi}{\partial z} \right) - \mathcal{K}^2 \chi = 0$$

Boundary conditions:

$$\begin{cases} \frac{\partial \chi}{\partial z} = 1 @ z = 0, \\ \frac{\partial \chi}{\partial z} = 0 @ z = -H. \end{cases}$$

Introduction				
00000	0000000	000000000	00	
Quasi-geostrophy				

Mesoscale

- L \sim 10—100 km
- $T \sim$ weeks—months
- $R_o = O(10^{-2})$

SQG dynamics \longrightarrow Chapter 2

Large scale

- L \sim 100—1000 km
- $T \sim months$ —years
- $R_o = O(10^{-4})$

QG dynamics \longrightarrow Chapter 3

Introduction	Chapter 2	Chapter 3	Final Remarks	References
00000	0000000	000000000	00	
Hypotheses				

Hypotheses and Objectives

Introduction				
00000	0000000	000000000	00	
Hypotheses				

Hypotheses

- Chapter 2:
 - *H*₁: The dominance of QG or SQG over Atlantic's SSH is related to the amount of mesoscale activity in each area;
- Chapter 3:
 - *H*₂: Most of the variability of the SSHA is explained by Rossby waves;
 - *H*₃: Rossby waves' amplitudes on the Atlantic are smaller than the ones in other ocean basins on the Southern Hemisphere due to differences in stratification.

Introduction				
00000	0000000	000000000	00	
Hypotheses				

Objectives

• Chapter 2:

 Numerically reconstruct the streamfunction using SQG theory and a realistic stratification profile and assess which theory dominates sea surface height over a 14-year time series;

• Chapter 3:

- Identify Rossby waves and assess differences in waves' amplitudes at several spectral bands in the three ocean basins of the Southern Hemisphere;
- Apply the QG modal decomposition to reconstruct the SSHA and identify differences in Rossby waves' amplitudes.

	Chapter 2			
00000	• 0 00000	000000000	00	

Chapter 2

What does the altimeter see?

	Chapter 2	Chapter 3	Final Remarks	References
00000	000000	000000000	00	

• TOPEX/Poseidon \longrightarrow first major oceanographic research satellite;

 Most ocean regions were dominated by the barotropic plus the first baroclinic modes, meaning the altimeter reflects the movements of the thermocline [Wunsch, 1997];

• SSH wavenumber spectral slopes in high eddy kinetic energy regions are significantly different from what QG theory predicts [LeTraon et al., 2008];

• Still an ongoing discussion [e.g. Vergara et al., 2019];

	Chapter 2			
00000	000000	000000000	00	
EKE and wavenumber spectra: a	review			

Eddy Kinetic Energy (EKE) and wavenumber spectra: a review

	Chapter 2	Chapter 3	Final Remarks	References
	000000			
EKE and wavenumber spe	ectra: a review			

• High EKE \longrightarrow SQG theory predictions [e.g. LeTraon et al., 2008];

• Low EKE and between 20°N and 20°S \longrightarrow neither SQG nor QG [e.g. Dufau et al., 2016];

• Increasing latitude, SQG becomes important [e.g. Richman et al., 2012, Vergara et al., 2019].

	Chapter 2			
00000	000000	000000000	00	
EKE and wavenumber spectra: a	review			

Spatial variance of the geostrophic velocity anomalies in the South Atlantic as a proxy of the EKE (Jm $^{-3}$).

	Chapter 2	Chapter 3	Final Remarks	References
00000	000000	000000000	00	
Study area				

Study areas

South Atlantic large-scale upper-level geostrophic circulation, adapted from Talley et al. [2011].

	Chapter 2			
00000	0000000	000000000	00	
SQG solutions				

SQG solutions: Methods

	Chapter 2		
	0000000		
SQG solutions			

 H_1 : The dominance of QG or SQG at 11°S, 24.5°S and 34.5°S in the reconstruction Atlantic's SSH is related to the amount of mesoscale activity in each area;

- HYCOM \longrightarrow assimilates satellites, has better spatial resolution, and T and S profiles are physically consistent with SSH;
- TEOS-10 \longrightarrow T and S converted to conservative temperature and absolute salinity \longrightarrow realistic N² and b_s ;
- T, S and SSH weekly averaged \longrightarrow mesoscale.

	Chapter 2		
	0000000		
SQG solutions			

Solution Numerically calculated χ ("exact" solution):

$$\frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2} \frac{\partial \chi}{\partial z} \right) - \mathcal{K}^2 \chi = 0;$$

2 Reconstruct ψ_{sqg} in the Fourier domain:

$$\hat{\psi}_{sqg}(\mathbf{k},z) = \chi(k,z)\,\hat{b_s}(\mathbf{k})$$
 ;

Filter to retain wavelengths between 12 and 400 km;

Solution Assess SQG or QG dominance provided $\psi = \psi_{sqg} + \psi_{int}$:

$$\gamma = \sqrt{rac{\sum(\psi_{sqg})}{\sum(\psi - \psi_{sqg})^2}}.$$

	Chapter 2			
00000	0000000	000000000	00	
Results: SSH reconstruction				

14 years of SSH reconstruction

	Chapter 2		
	0000000		
Results: SSH reconstruction			

 Deepening of the mixed layer (ML) facilitates ML instabilities [Rocha et al., 2016] → submesoscale fronts energize larger scales;

• Seasonal variations of the ML affect SQG reconstruction [Gonzalez-Haro and Isern-Fontanet, 2014, Sasaki et al., 2014];

• Winter: a deep ML leads to stronger lateral buoyancy gradients [Callies et al., 2015].

	Chapter 2		
	0000000		
Results: SSH reconstruction			

• Regime change [Vergara et al., 2019].

	N	/B	W	OF	EC)F	E	3	
	QG	SQG	QG	SQG	QG	SQG	QG	SQG	Latitude
Summer	91%	2%	72%	27%	100%	0%	100%	0%	11°S
Winter	92%	4%	49%	46%	69%	29%	100%	0%	11.5
Summer	51%	47%	45%	54%	82%	12%	100%	0%	24 E°C
Winter	59%	37%	8%	91%	33%	51%	99%	1%	24.5 5
Summer	14%	84%	91%	2%	19%	80%	60%	23%	34 F°S
Winter	7%	90%	4%	85%	0%	99%	27%	92%	54.5 5

	Chapter 2	Chapter 3	Final Remarks	References
	000000			
Chapter highlights				

Highlights

- QG dominated over most of our study areas;
- SQG dominates in regions where higher EKE is found on the South Atlantic;
- Our SSH reconstruction related to the seasonal variation of the ML, in accordance to Gonzalez-Haro and Isern-Fontanet [2014];
- Seasonal change between the QG \leftrightarrow SQG regimes, corroborating Vergara et al. [2019];
- Increase in SQG dominance poleward, corroborating Richman et al. [2012];

 coduction
 Chapter 2
 Chapter 3
 Final Remarks
 References

 0000
 0000000
 00
 00

Chapter 3

Quasi-geostrophic interior modes and Rossby waves

Schematics of a long internal Rossby wave, adapted from Salmon (1998).

- These waves have a clear signal at the surface when displacing the main thermocline [Polito and Cornillon, 1997];
- Found in the three ocean basins, and although presenting similar characteristics at the same latitudes, surface amplitudes are different [Polito and Liu, 2003].

		Chapter 3		
00000	000000	00000000	00	
Rossby waves on the Southern Hemisphere				

Rossby waves on the Southern Hemisphere

		Chapter 3		
00000	0000000	000000000	00	
Rossby waves on the Southern Hemisphere				

 H_2 : Most of the variability of the SSHA associated to propagating signals at 11°S, 24.5°S e 34.5°S is explained by Rossby waves;

• Identify Rossby waves in altimeter's SSHA at 11°S, 24.5°S and 34.5°S using Finite Impulsive Response (FIR) filters.

		Chapter 3		
		000000000		
Paraka university and the Cauthous Hamingham				

FIR2D filters [Polito et al., 2000, Polito and Liu, 2003]

		Chapter 3		
00000	0000000	000000000	00	
Pershy waves on the Southern Hamishern				

FIR2D filters [Polito et al., 2000, Polito and Liu, 2003]

		Chapter 3			
00000	0000000	000000000	00		
Rossby waves on the Southern Hemisphere					

Rossby waves account for **more than half** of the surface signal in most of the cases, being as important as the seasonal cycle!

Basin	Latitude	Rossby waves	η_t
	$11^{\circ}S$	41%	56%
Atlantic	24.5°S	57%	42%
	34.5°S	61%	32%
	11°S	63%	46%
Pacific	24.5°S	73%	22%
	34.5°S	51%	45%
	11°S	69%	30%
Indian	24.5°S	75%	19%
	34.5°S	67%	14%

Explained variance of the sum of all filtered Rossby waves and the seasonal and large scale signal (η_t) for each latitude and basin of the Southern Hemisphere.

	Chapter 2	Chapter 3	Final Remarks	References
00000	000000	00000000	00	
QG modes: Methods				

QG modes: Methods

	Chapter 2	Chapter 3	Final Remarks	References
		000000000		
QG modes: Methods				

 H_3 : Rossby waves' surface amplitudes on the South Atlantic Ocean are smaller than the ones in other ocean basins due to differences in stratification, although the atmospheric forcing is similar;

- Apply the QG modal decomposition to obtain R_{di} and the vertical structure F(z) for each mode;
- Present the Atlantic, Pacific and Indian Ocean's stratification and vertical structure *F*(z);
- Reconstruct the SSHA using different, realistic stratification profiles to detect changes in waves' surface amplitudes.

		Chapter 3		
00000	0000000	00000000	00	
QG modes: Methods				

- $\label{eq:started} \textbf{O} \ \ T \ \text{and} \ \ S \ from \ ISAS \ climatology} \longrightarrow N^2, \ longitudinally \ averaged;$
- Solution 2 Calculate F_i and R_{di} for the first 3 modes i = [0, 1, 2]:

$$\frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2} \frac{\partial F_i}{\partial z} \right) + \lambda_i F_i = 0;$$

- Or Calculate the modal amplitudes from HYCOM's vertical velocity profiles (u, v) for the first 3 modes → Ψ_i;
- Reconstruct the SSHA,

$$\eta = \frac{f_0}{g} \psi = \frac{f_0}{g} \sum_{i=0}^2 \Psi_i F_i.$$

	Chapter 3	
	000000000	
R _{di} and dispersion relation		

Rossby radii of deformation (R_{di}) and dispersion diagram

		Chapter 3		
00000	0000000	000000000	00	
R_{di} and dispersion relation				

	Chapter 2	Chapter 3	Final Remarks	References
00000	0000000	000000000	00	
Vertical modes and stratification				

Vertical modes and stratification

	Chapter 2	Chapter 3		
Vertical modes and stra	tification	000000000	00	
	Pacific	Atlantic	Indian	
° —			>	
-500				
트 뒾 -1000				11°S
ے 1500				
1000				

		Chapter 3		
00000	0000000	0000000000	00	
Sea surface height anomaly reconstruction				

SSHA reconstruction

		Chapter 3	
		000000 00 0	
Sea surface height anomaly recon	struction		

 Determining the modal amplitudes Ψ_i in the Fourier domain from HYCOM's velocities [Silveira et al., 2000];

• For a three mode truncation:

$$\eta = \frac{f_0}{g} \psi = \frac{f_0}{g} \sum_{i=0}^2 \Psi_i F_i.$$

		Chapter 3		
00000	0000000	0000000000	00	
Sea surface height anomaly reconstruction				

Explained variance for each modal component to the total $\psi.$

Basin	Latitude	ΒT	BC1	BC2	BT + BC1 + BC2
	$11^{\circ}S$	35%	70%	15%	84%
Atlantic	24.5°S	57%	67%	3%	87%
	$34.5^{\circ}S$	75%	79%	9%	91%
	$11^{\circ}S$	40%	75%	2%	83%
Pacific	24.5°S	64%	86%	6%	92%
	$34.5^{\circ}S$	75%	83%	19%	88%
	$11^\circ S$	55%	89%	9%	94%
Indian	24.5°S	74%	90%	12%	96%
	$34.5^{\circ}S$	81%	77%	5%	93%

		Chapter 3		
00000	0000000	0000000000	00	
Sea surface height anomaly reconstruction				

Explained variance for each modal component to the total $\psi.$

Basin	Latitude	ΒT	BC1	BC2	BT + BC1 + BC2
	$11^{\circ}S$	35%	70%	15%	84%
Atlantic	24.5°S	57%	67%	3%	87%
	$34.5^{\circ}S$	75%	79%	9%	91%
	$11^{\circ}S$	40%	75%	2%	83%
Pacific	24.5°S	64%	86%	6%	92%
	$34.5^{\circ}S$	75%	83%	19%	88%
	$11^\circ S$	55%	89%	9%	94%
Indian	24.5°S	74%	90%	12%	96%
	$34.5^{\circ}S$	81%	77%	5%	93%

		Chapter 3		
00000	0000000	0000000000	00	
Sea surface height anomaly recon	struction			

		Chapter 3		
00000	0000000	0000000000	00	
Sea surface height anomaly recon	struction			

An example at $24.5^{\circ}S$

- Approximately the center of subtropical gyres in all basins;
- Mean currents and shear are smaller compared to other locations;
- It is a region between the trade winds and the westerlies, so the wind contribution is relatively weak;
- For these linear waves, the only difference between basins is N^2 .

		Chapter 3		
00000	0000000	0000000000	00	
Sea surface height anomaly recon	struction			

What if we replace the Atlantic stratification with the Indian one?

- Reconstruct the Atlantic's SSHA using the Indian vertical structures;
- FIR2D \longrightarrow compare new amplitudes to the ones obtained from the unchanged Atlantic.

Result: surface amplitudes doubled!

		Chapter 3		
00000	000000	000000000	00	
Chapter highlights				

Highlights

- Rossby waves explain most of the SSHA signal at 11° S, 24.5° S, and 34.5° S, being as important as the seasonal cycle;
- Most of the Rossby waves captured by the altimeter are linear, of the first baroclinic mode and Doppler shifted;
- A three mode truncation suffices to reproduce most of the SSHA signal in all basins and latitudes;
- Stratification can modulate Rossby waves' surface amplitudes.

			Final Remarks	
00000	000000	000000000	0	

Final remarks

Introduction	Chapter 2	Chapter 3	Final Remarks	
00000	0000000	000000000	•O	

Final Remarks

- SQG dominates where EKE is higher and with increasing latitude on the South Atlantic → we confirm hypothesis H₁;
- Westward propagating features explained from 41% to 75% of the total sea level anomaly field in all latitudes and basins \longrightarrow we **confirm** hypothesis H_2 ;
- In most cases a more (less) stratified water column lead to larger (smaller) surface amplitudes; where waves are non-linear and where stratification profiles are similar, differences in amplitudes were smaller among basins → we **confirm** hypothesis H₃.

			Final Remarks	
00000	000000	000000000	•0	

Final Remarks

- SQG dominates where EKE is higher and with increasing latitude on the South Atlantic → we confirm hypothesis H₁;
- Westward propagating features explained from 41% to 75% of the total sea level anomaly field in all latitudes and basins \longrightarrow we **confirm** hypothesis H_2 ;
- In most cases a more (less) stratified water column lead to larger (smaller) surface amplitudes; where waves are non-linear and where stratification profiles are similar, differences in amplitudes were smaller among basins → we **confirm** hypothesis H₃.

			Final Remarks	
00000	000000	000000000	•0	

Final Remarks

- SQG dominates where EKE is higher and with increasing latitude on the South Atlantic → we confirm hypothesis H₁;
- Westward propagating features explained from 41% to 75% of the total sea level anomaly field in all latitudes and basins \longrightarrow we **confirm** hypothesis H_2 ;
- In most cases a more (less) stratified water column lead to larger (smaller) surface amplitudes; where waves are non-linear and where stratification profiles are similar, differences in amplitudes were smaller among basins → we **confirm** hypothesis H₃.

			Final Remarks	
000	000000	000000000	00	

Thank you!

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Laboratório de Oceanografia por Satélites

References

- J. Callies, R. Ferrari, J. M. Klymak, and J. Gula. Seasonality in submesoscale turbulence. Nature communications, 6(1):1-8, 2015.
- C. Dufau, M. Orsztynowicz, G. Dibarboure, R. Morrow, and P.-Y. LeTraon. Mesoscale resolution capability of altimetry: Present and future. Journal of Geophysical Research: Oceans, 121:4910–4927, 2016.
- C. Gonzalez-Haro and J. Isern-Fontanet. Global ocean current reconstruction from altimetric and microwave sst measurements. Journal of Geophysical Research: Oceans, 119:3378–3391, 2014.
- P. Y. LeTraon, P. Klein, B. L. Hua, and G. Dibarboure. Do altimeter wavenumber spectra agree with the interior or surface quasigeostrophic theory? *Journal of Physical Oceanography*, 38:1137–1142, 2008.
- P. S. Polito and P. Cornillon. Long baroclinic Rossby waves detected by topex/poseidon. Journal of Geophysical Research, 102:3215–3235, 1997.
- P. S. Polito and W. Timothy Liu. Global characterization of Rossby waves at several spectral bands. Journal of Geophysical Research, 108 (C1):1–18, 2003.
- P. S. Polito, O. T. Sato, and W. Timothy Liu. Characterization and validation of the heat storage variability from TOPEX/Poseidon at four oceanographic sites. *Journal of Geophysical Research*, 105(C7):16911–16921, 2000.
- J. G. Richman, B. K. Arbic, J. F. Shriver, E. J. Metzger, and Alan J. Wallcraft. Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides. Journal of Geophysical Research, 117(C12012):1–11, 2012.
- C. B. Rocha, S. T. Gille, T. K. Chereskin, and D. Menemenlis. Mesoscale to submesoscale wavenumber spectra in Drake Passage. Journal of Physical Oceanography, 46:601–620, 2016.
- H. Sasaki, P. Klein, B. Qiu, and Y. Sasai. Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nature: Communications, 5(5636):1–8, 2014.
- I. C. A. Silveira, W. S. Brown, and G. R. Flierl. Dynamics of the North Brazil Current retroflection region from the western Tropical Atlantic Experiment observations. *Journal of Geophysical Research*, 105(C12):28559–28583, 2000.
- L. D. Talley, G. L. Pickard, W. J. Emery, and J. H. Swift. Descriptive Physical Oceanography: An Introduction. Elsevier, sixth edition edition, 2011.
- O. Vergara, R. Morrow, I. Pujol, G. Dibarboure, and C. Ubelmann. Revised global wave number spectra from recent altimeter observations. Journal of Geophysical Research: Oceans, 124:3523–3537, 2019.
- C. Wunsch. The vertical partition of oceanic horizontal kinetic energy. Journal of Physical Oceanography, 27:1770-1794, 1997.