

PROJETO MICROMAT LEITURA DO EXP. 1

Cálculo de concentração de leveduras

Para calcular o número de células de leveduras por grama de fermento biológico (cel/g), observe a figura abaixo:

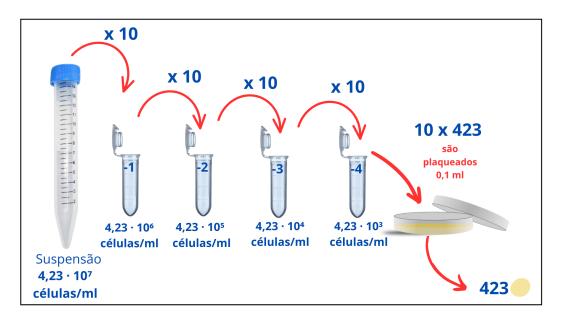


Figura 1: Exemplo de diluição seriada, na qual foram contadas 423 colônia na placa de diluição 10^{-4} .

Para estimar o número de células de levedura por grama de fermento biológico, é preciso fazer o cálculo "de trás para frente".

Partimos do pressuposto de que cada célula de levedura deu origem a uma colônia. Na placa de Petri, foram depositados 100 μ l, que deram origem a 423 colônias. Note que, 100 μ l correspondem a $\frac{1}{10}$ do volume da suspensão no microtubo, ou seja, se plaqueássemos todo o conteúdo do microtubo teríamos contado 10×423 colônias. Concluímos, portanto que no microtubo 10^{-4} havia $4230 = 4,23 \times 10^3$ células. Já no microtubo 10^{-3} há $10 \times$ mais células do que no microtubo 10^{-4} e assim por diante, desta forma:

- ullet no microtubo 10^{-4} há 4230 células/ml
- no microtubo 10^{-3} há $4230 \times 10 = 4,23 \cdot 10^{4}$ células/ml
- no microtubo 10^{-2} há $4230 \times 10 \times 10 = 4,23 \cdot 10^{5}$ células/ml
- no microtubo 10^{-1} há $4230 \times 10 \times 10 \times 10 = 4,23 \cdot 10^{6}$ células/ml
- no tubo Falcon há $4230 \times 10 \times 10 \times 10 \times 10 = 4,23 \cdot 10^7$ células/ml

No entanto, ao considerar o tubo Falcon, é preciso ter em mente que na suspensão há um volume de 10 ml, ou seja, $10.000 \,\mu l$. Sendo assim, a suspensão no tubo Falcon tem $4,23 \cdot 10^8$ células/10 ml.

E quantas células há por grama de fermento?

Como, no tubo Falcon, foram adicionados 0,1 g de fermento a 10 ml de suspensão salina, temos que multiplicar a concentração obtida por 10. No nosso exemplo, sabendo que 0,1 g de fermento contém 4, 23 · 10⁸ células, teremos 4, 23 · 10⁹ células por g de fermento biológico. Em português, isso seria o equivalente a 4 bilhões e 230 milhões de células de levedura por grama de fermento biológico.

Responda:

Tabela 1: Complete de acordo com seus resultados.

Microtubos	—1	-2	-3	-4	- 5	-6
Concentração (células/ml)						

- 1. Se na placa referente à diluição _____ há ____ colônias, então na suspensão do tubo Falcon há _____ células/10 ml e _____ células/g.
- 2. Por que plaqueamos as diluições (microtubos) 10^{-4} , 10^{-5} e 10^{-6} ?
- 3. Por que não plaqueamos as diluições (microtubos) 10^{-1} , 10^{-2} e 10^{-3} ?
- 4. Utilizando o exemplo da Figura 1, se plaqueássemos a diluição 10^{-5} , quantas colônias haveria na placa? Dê um número aproximado.
- 5. Considere uma suspensão de 5,56 x 10° cel/ml. Quantas células por litro (cel/l) há nesta suspensão? E por microlitros (cel/µl)?
- 6. Qual o volume de líquido em cada microtubo (-1, -2, -3, -4, -5, -6) e no tubo Falcon após completar o processo de diluições seriadas?
- 7. Sabendo que 10 gramas de fermento custaram R\$1,20 qual foi o custo de fermento em cada experimento? (lembrando que foram utilizados 0,1 g de fermento)
- 8. Ainda com o valor de R\$1,20 por 10 g de fermento, suponha que um aluno ao realizar o experimento 1 encontrou a concentração de $1,8\cdot10^{10}$ células/g. Quanto vale (em reais) cada célula do pacotinho? Use notação científica.
- 9. Vamos supor que, após aspirar $100\mu l$ da diluição 10^{-3} (para transferir ao microtubo 10^{-4}), a ponteira caiu no chão, junto com a amostra de leveduras. Se formos aspirar novamente $100\mu l$ do microtubo 10^{-3} , isso afetaria o resultado final? Explique.