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The present program, adapted and updated from the original VISUAL
BASIC (© Microsoft Inc.) version (Santos and Otto, 2005; Santos, 2006),
was developed in Liberty BASIC v. 4.04, a dialect of BASIC language (©
Shoptalk Systems 1992-2010, www.libertybasic.com) that zruns in the PC
Windows environment. The zipped program can be obtained free of charge by
email from the authors (lemes.rb@usp.br or otto@usp.br) or directly from
the github repository https://github.com/Lemes-
RenanB/HardyWeinbergTesting. The program is the intellectual property of
its authors, and as such, any use of it or of the materials included in
it must contain an explicit reference to their origin. Feedback from
users is welcome and will be used to improve the program and to correct
unforeseen flaws. The program is free and as such it comes with no
warranty.

Downloading the program

The instructions on how to download the program are detailed on the
above github repository. After unzipping the downloaded =zip file in any
location of the wuser’s computer, a folder named HW TEST will be
available. This folder will contain the executable (compiled) file
HW TEST.exe, the corresponding application distribution (tokenized) file
HW TEST.tkn, and a set of static and dynamic link library files necessary
to run the compiled program (vbas3lw.sll, wvgui3lw.sll, voflr3lw.sll,
vthk3lw.dll, vtkl63lw.dll, vtk3231w.dll, vvm3lw.dll, and vvmt3lw.dll). A
pdf user’s manual and a formated text archive with the source BASIC code
of the program can also be obtained from the same site.

Running the program and entering data
When the executable file HW TEST.exe 1is activated, the following

interface graphic window (Figure 1) will be displayed in the computer's
screen:

* Hardy Weinberg Equilibrium Test
Fie About

HARDY WEINBERG EQUILIBRIUM TEST

Copyinght 2006-2013 by Femando A. Bautzer Santos. Renan Basbosa Lemes and Paubo £ Dlto
[epariamento de Genetica  Biclogia Evolutiva, Universidade da Sao Paulo
Caixa Postal [POB2<) 11461 - 05422-970 Sao Paule, SP. Brazil
Coirespondence bo: otto@husp b

Number of alleles: ||

Figure 1 - Initial prompting window used for entering the number of
alleles (2 <= k <= 12) present in the genotype sample to be analyzed.



(1) THE CASE OF TWO ALLELES

If the number 2 is entered (two-allele case), the user is prompted
with the window shown in Figure 2. The text that follows corresponds to
this case. The generalized case of n alleles will be dealt with at the
end of this section, with the corresponding text identified by the
caption (2) THE GENERALIZED CASE OF k ALLELES.
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Figure 2 - Prompting window for choosing options and entering
genotype data in the two-allele case.

The user should select, from the leftsided list on the window of
Figure 2, the tests to be performed. The option 'Chi-square without
correction' 1is preselected and will always be performed by the program.
By clicking the bar with the message 'Select all' the user can select all
options on the 1list. The user should then enter on the rightsided
genotype fields the absolute frequencies of observed genotypes to be
tested. The program will not accept total sample sizes of observed data
less than 5 or two null entries. There is no sense, either, in testing
sample sizes of the order of 20 or less, Dbecause rarely the null
hypothesis of HW ratios is rejected with such small sample sizes. Also,
if the HW null hypothesis is rejected with sample sizes of this order of
magnitude the possibility of genotype misclassification typing errors
should be seriously considered. And for any sample size, obtained test
probability values of the order of less than 10° should be considered
cautiously for the same reason.

WHAT THE PROGRAM DOES IN THE TWO-ALLELE CASE

In the two-allele case the program performs the tests listed in the
text Dbelow, which was adapted/updated/corrected from Bautzer Santos
(2006) and Otto (2008). All topics discussed in this user's manual can
also be found or complemented in Thomson et al. (2009).

(1) Chi-squared HW tests with and without continuity correction



Hardy-Weinberg (HW) equilibrium is usually a null hypothesis {Hg:
P(AA)=p®’, P(Ra)=2pq, P(aa)=g?} tested by Pearson’s non-parametric chi-
squared statistics:

AA Aa aa Total
abs. obs. freq. (o;) D = o, H = o, R = 03 N
abs. exp. freq. (e:) Np® = e 2Npq = e, NG = e; N

where p = (2D+H)/(2N) = d + » h, g = (H+2R)/(2N) = ¥ h + r. The number of
degrees of freedom (d.f.) is 1 because the expected values are calculated
using the gene frequency estimated from the data being tested. The chi-
squared test value is obtained from the following formula:

¥=X(0o; — e;)*/e;=X(0;> / es) — N=D*> / Np> + H* / 2Npq + R* / Ng° - N.

For small samples, especially for those in which at least an e; is
smaller than 5, commonly the test is corrected by subtracting * from
every absolute frequency o; > e; and adding *» to each absolute frequency
o; < e;.

Since the frequencies of AA, Aa, and aa individuals in a population
with any possible mating system are given by P(AA) = d = p?> + Fpq, P(Aa)
= h = 2pqg(l-F), and P(aa) = r = g + Fpq, the testing of F = 0 is
equivalent to Hardy-Weinberg testing. If we make

AA Aa aa
abs. obs. freq. (o;) N(p° + Fpq) 2Npq (1-F) N(q® + Fpq)
abs. exp. freq. (e;) Np° 2Npq Ng*

it comes out that

x2=X(0; — e;)?/e; = N*F’p’q?/Np®> + 4AN’F’p’q?’/2Npq + N°F°p’q’/Np?
= NF? (*+2pg+p°’) = NF’* , where F = 1 - h/2pq.

There exists an obvious correspondence between the formula x*>=X(0; —
e;)?/e; and the one obtained from the contingency table:

D H/2 Np
H/2 R Ng
Np Ng N

since e = Np x Np / N = Np?, etc, the formula x®=X(0; — e;)?/e; can be
easily rearranged algebraically as:

x> = (H’/4 - DR)’N / [(D + H/2)?(H/2 + R)?]
= (H? - 4DR)?N / [(2D + H)? (H + 2R)?].
With Yates’ continuity correction (Yates, 1934) the formula for =2
becomes

x> = [I¥*/4 - DR|®> - N/2]°N / [(D + H/2)?(H/2 + R)’]
= [|H® - 4DR|2 - 2N]®* N / [(2D + H)?(H + 2R)?].

Since the data can be rearranged as the above table, we can use
other tests that make use of the same contingency table, such as the G




(likelihood ratio) test with or without correction and Fisher’s exact
test.

(2) G (log-likelihood) tests with and without continuity correction

In the case of the G test, which has approximately a chi-squared
distribution, the formula is

G =2[Xo0;.1log (0;/e;)] =2[X0;.1log (0;)- Xo; . log(e;) ],

which in the case of a contingency table takes the form

G =2[X;X;0;5.10og(0;;) -XR;.1log(R;)-XC;.10og(C;) + N.log(N)],

where C; is the marginal total of column j and R; is the marginal total of

row i. For the case of the contingency table used in the chi-squared test
seen above, the formula becomes

G =~ x° = 2[D log(D) + H/2 1og(H/2) + H/2 1og(H/2) + R 1og(R)
- (D+H/2) log(D+H/2) - (R+H/2) log(R+H/2) + N log(N)]
= 2{D log(D) + H log(H) + R log(R) — H 1log(2)
- 2N[p log(p) + q log(q)] — N log(N)}.

The same formula is obtained by letting
G = 2.1log(P,/Py) ,
where

P, = N!/(D'H!'R!) . (D/N)° (H/N) ¥ (R/N)*
= N!/(D!'H'R!) .D°.H*.RF/N"
and

P, = N!/(D!'H!R!) . (p*)°(2pq) " () = N!/ (D'H!R!) .p*>"g"?"2"
N!/(D'H!R!) . [ (2D+H) /2N]*°*®[ (H+2R) /2N]#*?® 2F
N!/(D!'H'R!) . (2D+H)?** (H+2R) **?* 2% / (2N)*"

so that
G = 2.log{[(2N)®.D°.H*.R®]/[ (N". (2D+H)***®, (H+2R)""?* 27]}

The G test with continuity correction is obtained from the formula
above as follows: first we should verify if DR 2 H?/4 or DR < H?/4. If D <
H?/4, the values D, H/2 and R are replaced respectively with D + 0.5, H/2
- 0.5 and R + 0.5; otherwise (DR 2 H?/4), the values D, H/2 and B are

replaced with D - 0.5, H/2 + 0.5 and R - 0.5.

(3) Fisher's exact test

Still considering the contingency table

a=>, b = H/2 a+b
c = H/2 d =R c+d
a+c b+d N




with fixed marginal wvalues [(a + ¢), (b + d), (a + b), (¢ + d) and N]J,
Hardy-Weinberg equilibrium can be verified through Fisher’s exact test.
After this test, based on the hypergeometric distribution, the
probability of occurrence of the observed table, wunder the null
hypothesis of no association, is

P(a,b,c,d) = [(a+b)! (ctd)! (atc)! (b+d)!'] / (a'b!c!d!IN!).

The method calculates the probabilities corresponding to all
possible tables with the same marginal values (a + b), (¢ + d), (a + ¢c),
(b + d) and N. The two-tailed test probability is obtained adding all
probability wvalues equal or less than the probability wvalue of the
observed table. For the case in which H (observed number of
heterozygotes) is odd, the values of the cells in the secondary diagonal
of the table (b = ¢ = H/2) are replaced with (H+1)/2 and (H-1)/2.

There exists 1in the literature a number of tests that were
developed to cope with population samples with reduced number of
individuals, the more frequently used being the tests proposed by Hogben
(1946) and Levene (1949), Haldane (1954), and Cannings and Edwards
(1969). Haldane’s test corresponds to the exact test that 1lists all
possible samples with the same allele frequency, to be discussed in
detail separately.

The reasoning used by Hogben, Levene and Cannings & Edwards 1is
simple: in a sample small in number, 1if we take any gene (a;) from it,
the probability of a second gene being of the same type automatically
decreases, that is, the probability of formation of homozygotes aja;
becomes less than p;?, which can be expressed by the inequality P(aza;) <
P(a;) x P(a;). The conceptual difference between the tests of Hogben
(1946) / Levene (1949) and Cannings & Edwards (1969) is that the first
considers the formation of a genotype as;a; from a single gene pool that
contains both types of gametes carrying alleles a; and aj;, whereas the
second considers the formation of individuals from the combination of
gametes from two distinct sets of gametes produced by males and females.

(4) Hogben/Levene's chi-squared method

In the method of Hogben / Levene, the expected numbers of AA, Aa
and aa individuals are calculated respectively after (2D + H) (2D + H - 1)
/ [2(2N - 1)1, (2D + HY)(H + 2R) / (2N - 1) and (H + 2R)(H + 2R + 1) /
[2(2N - 1)]. The corresponding chi-squared formula then simplifies after
x? = 2D*(2N - 1) / [(2D + H)(2D + H - 1)]
+ 2H?*(2N - 1) / [(2D + H) (H + 2R)]
+ 2R*(2N - 1) / [(2R + H)(H + 2R - 1)] - N.

(5) Cannings & Edwards chi-squared method

In the method proposed by Cannings & Edwards, the expected numbers
of AA, Aa, and aa individuals are respectively calculated after [ (2D+H)?-
H] /4N, [ (2D+H) (H+2R)+H]/2N and [ (H+2R)?-H]/4N. The formula of the
corresponding chi-squared test reduces then to:

x? = 4ND* / [(2D + H)? - H]
+ 2NH?> / [(2D + H) (H + 2R) + H]
+ 4NR*> / [(2R + H)? - H] - N.



(6) Haldane's exact test

The classical example of exact test in population genetics is given
by the panmixia test applied to the case of two autosomal alleles without
dominance. Given that nAA = D AA individuals, nAa = H Aa individuals and

naa = R aa individuals were observed out of a total of N = nAA + nAa +
naa sampled individuals and that the Dbinomially distributed sample
allelic frequencies are p = P(A) = nA /(nA + na) = (2nAA + nAa) / 2N and

q = P(a) = 1 - p, the probability of occurrence of the sample under the
hypothesis of panmixia 1is given by

P,=P{ [nAA=Np’, nAa=2Npq, naa=Nq’] | [nA=2Np= (2nAA+nAa) /2 ,na=2Ng= (nAa+2naa) /2] }
= P(nAA,nAa,naa) / P(nA,na) = N!/(2N)!. (2D+H) ! (H+2R) !'2/ (D'H!R!)

The test lists all possible samples with same size and allele
frequencies and calculates the probabilities of occurrence of each one of
them under the hypothesis of panmixia. Each one of these probabilities
(P;) is then compared to P,; if Pi S P,, its value is added to P = XP;,
whose final wvalue 1is therefore the probability of occurrence of the
observed sample (Py) and of all samples with probability P; less than P,.
This is the so-called exact probability favoring the hypothesis of the
sampled genotypes being in Hardy-Weinberg ratios p? : 2pq : g°. Haldane,
who originally proposed this test, noticed also that for a fixed value of
P or q all possible populations can be expressed as function of N and the
number of heterozygotes (H), since p = 1-q = (2D+H) /2N, D = Np-H/2 = N(1-
q)-H/2 and q = 1-p = (H+2R) /2N, R = Ng-H/2 = N(1l-p)-H/2

The exact test just examined has a severe limitation: the maximum
number of possible populations with the same gene frequencies increases
dramatically with the number of sampled individuals and the number of
alleles. To circumvent this problem, exact Hardy-Weinberg tests are
generated through computer simulation, a topic we discuss in the lines
that follow.

(7) Exact tests based on computer simulations

The program starts by extracting the allele frequencies p and g
from the set of observed data (D = nAA, H = nAa, R = naa, D+H+R = N) and
calculates the probability of occurrence of the sample wunder the
hypothesis of Hardy-Weinberg equilibrium:

P, = N!/(2N)!. (nA'na'!2"®) /(nAA'nAa'naa!)
= N!/(2N)!. (2D+H) ! (H+2R) !'2% /(D'H!R!).

The program generates a normalized random number between 0 and 1;
if the number is smaller than or equal to p2 = [(2D+H)/2N]?, this
indicates that an AA homozygous genotype was obtained among the N of the
sample; if the random number is larger than p?, but smaller than p’+2pq =
1-¢¢ = 1 - [(H+2R)/2N]?, this indicates that a heterozygous genotype Aa
was generated; and, finally, if the random number is larger than l—qﬂ
the genotype is aa. The process is then repeated N-1 times, and in each
instance the random number generated is compared to p? and 1-g*. When the
computer generates the N individuals of the sample, the frequencies p and
q of A and a alleles are calculated from the numbers of AA, Aa and aa
generated individuals. The computer repeats this process t times (t, the



number of simulations is a number of the order of magnitude of 1,000 to
10,000; this program generates 1,000 simulations). After each simulation
the computer calculates the value of the probability P; of occurrence of
the sample under the hypothesis of Hardy-Weinberg equilibrium:

P, = N!'/(2N)!. (2D;’+H;’) ! (H;' +2R;’ ) 12" /(D;’ 'H," 'R;" !) .

This probability P; is then compared to P,, the probability of
occurrence of the observed sample under the hypothesis of HW equilibrium.
The exact probability P, obtained after t simulations, 1is given by P =
T/t (our program uses t = 1000 and P = T/1000), where T is the number of

times in which P; is smaller than or equal to P, (P; £ Py).

Besides generating 1,000 populations in expected HW proportions,
the program simulates also 1,000 populations with frequencies d = D/N, h
= H/N and r = R/N.

Our program calculates also exact confidence intervals for genotype
frequencies, based on algorithms that use random numbers to simulate
genetic populations. The 95% probability confidence intervals using
computer simulations (bootstrap column) are “exact” and are calculated as
follows: (a) for the items labelled as observed, by excluding 2.5% of the
smaller and 2.5% of the larger t = 1000 frequency values generated by the
program for each genotypic class; (b) for the items labelled as expected,
the genotype frequencies are <calculated Dby squaring the allele
frequencies (p?,2pq,q’) generated for each simulation cycle and then
excluding 2.5% of the smaller and 2.5% of the larger values out of the
total set of t = 1000 calculated frequencies for each possible genotype.
The normal approximations to these confidence intervals are constructed:
(a) for the items labelled as observed the confidence intervals are
obtained directly from the sampled observed values of genotype

frequencies: s.e.(pi;) = pPi;(1-pi;)/N, 95% c.i. = p;; + 1.96 s.e. (pij); (D)
for the items labelled as expected, the same procedure is applied but the
standard errors are calculated after s.e.[P(A;A))] = s.e.(p:;) = [4p:®(1-

pi) /2N] if i=]j, s.e.[P(AA;)] = s.e. (pij)= 1[[4p-1pj (pi+p;-4pip;) /2N] otherwise
(Weir, 1999).

The following is a standard program text output obtained by running
the program with the genotype data D = N(AA) = 119, H = N(Aa) = 42 and R
= N(aa) = 39 and selecting all tests provided:

HARDY-WEINBERG TESTING

Copyright 2006-2019 by
Fernando A. Bautzer Santos, Renan B. Lemes & Paulo A. Otto
Departamento de Genetica e Biologia Evolutiva
Universidade de Sao Paulo
Rua do Matao 277
05508-090 Sao Paulo SP, Brazil
ottoQusp.br

obs. abs. frequencies 119 42 39 200
exp. abs .freq. (without correction) 98.000 84.000 18.000 200



exp. abs. freq. (Hogben/Levene) 97 .895 84.211 17.895 200

exp. abs. freq. (Cannings & Edwards) 97.948 84.105 17.948 200
obs. rel. frequencies 0.595 0.210 0.195 -
exp. rel _freq. (without correction) 0.490 0.420 0.090 -
exp. rel. freq. (Hogben/Levene) 0.489 0.421 0.089 -
exp. rel. freq. (Cannings & Edwards) 0.490 0.421 0.090 -
p=P(A) = 0.7000
q =P = 0.3000
HO:{d,h,r} s.e.(p) = s-e.(q) = 0.0281
Ha:{p"2,2pq,q"2} s.e.(p) = s.e.(q@) = 0.0229
P(chi-squared test without correction) < 10n-6
P(chi-sg. test with Yates"™ correction) < 10n-6
P(c.s. test w/ Hogben/Levene correct.) < 10n-6
P(c.s. test w/ Cannings & Edwards corr.) < 10"-6
P(G or log-likelihood test without cor.) < 10"-6
P(log-likelih. test w/ continuity corr.) < 10"-6
P(Fisher®s exact test) < 10n-6
P(Haldane"s exact test) < 10n-6
"EXACT" BOOTSTRAP (1000 SIMULATIONS) ESTIMATES
OBS. SAMPLE p = P(A) = (2D+H)/2N = 0.7000
BOOTSTRAP EST. p = 0.7014
EXACT PROBABILITY (1000 SIMUL.) < 10™-6
normal approximation bootstrap (1000 simul.)
genotype calc.P 95% C.1. meanP med.P 95% C. 1.
AA obs. 0.595 {0.527,0.663} 0.597 0.595 {0.525,0.670}
exp. 0.490 {0.427,0.553} 0.492 0.490 {0.420,0.565}
Aa obs. 0.210 {0.154,0.266%} 0.210 0.210 {0.155,0.270}
exp. 0.420 {0.384,0.456%} 0.419 0.420 {0.350,0.490}
aa obs. 0.195 {0.140,0.250} 0.193 0.190 {0.140,0.250}
exp. 0.090 {0.063,0.117} 0.089 0.090 {0.055,0.125}%

Besides generating 1,000 populations iIn expected HW proportions
{P(AA) = p?, P(Aa) = 2pq, P(aa) = g%}, the program simulates also 1,000
populations with frequencies {d = D/N, h = H/N, r = R/N}, where D, H and
R are the observed numbers of sampled genotypes AA, Aa and aa
respectively. These population points are then plotted on an isosceles
ternary diagram (Otto and Benedetti, 2000) that shows the HW parabola
{p?, 2pgq, g%} and its 95% chi-squared confidence intervals corresponding
to the population of size N, represented by curves {p? + pqF.., 2pq(1-F.),
g? + pgFu} and {p? + pgFu, 2pq(l-Fu), g + pqFu} with lower and upper
limits Fu. = + V(3.841/N) and Fy = - V(3.841/N) (Bautzer Santos, 2006;
Graffelman & Camarena, 2008).
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Figure 3 - Trilinear diagram showing the results obtained with the
observed sample N(AA) = 119, N(RAa) = 42, and N(aa) = 39. Please consult

the preceding text for explanations.

(2) THE GENERALIZED CASE OF k ALLELES

If a number larger than 2 is entered (k-allele case)
initial input window (Figure 1),
shown in Figure 4.

into the
the user is prompted with the window




Figure 4 - Prompting window for choosing options and entering
genotype data in the generalized k-allele case. The window shown above
corresponds to the case of four alleles (A, B, C, D), in which the exact
test option has been checked and the following genotype numbers were
entered: N(AA) = 2, N(AB) = 4, N(AC) = 6, N(AD) = 8, N(BB) = 10, N(BC) =
12, N(BD) = 14, N(CC) = 16, N(CD) = 18, N(DD) = 20.

As in the two-allele case, in order to avoid running problems, the
user should not use small total sample sizes (v.g. of the order of 10k or
less, where k is the number of alleles). Many null entries should also be
avoided; in the common case when some of these occur, and especially when
the total sample size 1is relatively small, the user 1is advised to
properly agglutinate some wvalue classes, thus reducing the number of
alleles, and improving the power of the test and the performance of the
program. Just like in the two-allele case, there 1is no sense at all,
either, in testing sample sizes of the order of about 10k or less, for
the reasons already explicited. And for any sample size, obtained test
probability values of the order of less than 10° should be considered
cautiously because they could result exclusively from genotyping errors
with a large probability.

WHAT THE PROGRAM DOES IN THE k-ALLELE CASE

In the k-allele case the program performs the chi-squared test and
the 'exact' test based on computer bootstrap simulations.

(1) Chi-squared HW test without continuity correction

As in the two-allele case, in the n-allele case Hardy-Weinberg (HW)
equilibrium is usually a null hypothesis {H,: P(AA) = p,?, P(AB) = 2p:p:,
P(AC) = 2p;ps, ...} tested by Pearson’s non-parametric chi-squared
statistics ¥* =X(0s5 — ei;)°/es; =X(0:;° / ei;5) — N, where o;; is the genotype
observed absolute frequency, e;; its corresponding expected figure based
on HW proportions, N the total sample size, the summation taking place
from i = j =1 to i = j = k. As there are k different alleles and the
k(k+1l) /2 expected genotype absolute frequencies are calculated
conditional to the sample size N and to the fixed value of k-1 different
allele frequencies extracted from the same sample, the number of degrees
of freedom of the HW chi-squared test is calculated after k(k+1l)/2 - k =
k(k-1)/2. No continuity correction is applied to the test, since this
procedure is appropriate only for the two-allele case, when the number of
degrees of freedom is 1.

(2) Exact tests based on computer simulations

Just 1like in the two-allele case, the program calculates the
probability of occurrence of the observed sample N(AA), N(AB), N(AC),
., under the hypothesis of panmixia {N(AA) = Np,?, N(AB) = 2Npp,, ...}
and conditional to allele absolute frequencies {N(A) = 2Np,, N(B) = 2Np,,
...} estimated from the sample. The formula for this probability (Py) is
similar to the one used in the two-allele case, taking into account the
complications associated to the multinomial case, that is, that now there
exist k alleles, k(k+1l)/2 different genotypes and k different types of



heterozygous individuals. The rest of the program works exactly as in the
two-allele case, with the difference that instead of creating a single
normalized random number and verifying its correspondence to pi?, 2PiP2,

2piPs, ..., P«’, the program generates two random numbers and verifies the
correspondence of each of them with each of the k different possible
allele frequencies p; = P(A), po= P(B), ...; each pair of two consecutive

random numbers, on its turn, thus automatically generates a genotype
occurring under ‘perfect’ panmictic conditions.

The program calculates also approximate and ‘exact’ confidence
intervals for genotype frequencies, the latter based on algorithms that
use random numbers to simulate genetic populations, exactly as described
in the two-allele case, in which the formulas used are already shown in
their generalized form for the k-allele case.

The following is a standard program text output obtained by running
the program with the genotype data described on the legend of Figure 4
and selecting the exact test option.

HARDY-WEINBERG TESTING

Copyright 2006-2019 by
Fernando A. Bautzer Santos, Renan B. Lemes & Paulo A. Otto
Departamento de Genetica e Biologia Evolutiva
Universidade de Sao Paulo
Rua do Matao 277
05508-090 Sao Paulo SP, Brazil
ottoQusp.br

genotype genotype
absolute frequencies relative frequencies
observed expected observed expected
AA 2 1.100 0.018 0.010
AB 4 5.000 0.036 0.045
AC 6 6.800 0.055 0.062
AD 8 8.000 0.073 0.073
BB 10 5.682 0.091 0.052
BC 12 15.455 0.109 0.140
BD 14 18.182 0.127 0.165
cc 16 10.509 0.145 0.096
CD 18 24.727 0.164 0.225
DD 20 14.545 0.182 0.132
N 110
allele s.e. (pi) s.e. (pi)
freq. (pi) HO:{d,h,r} H1l:{p*2,2pq,q*2}
A 0.100 0.021 0.020
B 0.227 0.031 0.028
Cc 0.309 0.035 0.031
D 0.364 0.036 0.032



P(chi-squared test without correction) = 0.0465

normal approximation bootstrap (1000 simul.)
genotype calc.P 95% C.I. meanP med.P 95% C.I.
AA obs. 0.018 {0.000,0.043} 0.018 0.018 {0.000,0.045}
exp. 0.010 {0.002,0.018} 0.011 0.010 {0.004,0.021}
AB obs. 0.036 {0.001,0.071} 0.037 0.036 {0.009,0.073}
exp. 0.045 {0.026,0.065} 0.046 0.046 {0.026,0.068}
AC obs. 0.055 {0.012,0.097} 0.054 0.055 {0.018,0.100}
exp. 0.062 {0.037,0.087} 0.063 0.062 {0.039,0.087}
AD obs. 0.073 {0.024,0.121} 0.074 0.073 {0.027,0.127}
exp. 0.073 {0.044,0.101} 0.073 0.073 {0.046,0.104}
BB obs. 0.091 {0.037,0.145} 0.092 0.091 {0.045,0.145}
exp. 0.052 {0.026,0.077} 0.053 0.052 {0.030,0.079}
BC obs. 0.109 {0.051,0.167} 0.110 0.109 {0.055,0.173}
exp. 0.140 {0.105,0.176} 0.142 0.142 {0.109,0.179}
BD obs. 0.127 {0.065,0.190} 0.129 0.127 {0.073,0.191}
exp. 0.165 {0.127,0.204} 0.167 0.167 {0.128,0.207}
cc obs. 0.145 {0.080,0.211} 0.148 0.145 {0.082,0.218}
exp. 0.096 {0.058,0.133} 0.098 0.096 {0.065,0.142}
CD obs. 0.164 {0.095,0.233} 0.162 0.164 {0.100,0.236}
exp. 0.225 {0.183,0.267} 0.226 0.225 {0.184,0.268}
DD obs. 0.182 {0.110,0.254} 0.185 0.182 {0.118,0.264}
0 0 0

EXACT PROBABILITY (1000 SIMUL.) = 0.0380
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