UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA

EDSON MASSAKAZU DE SOUZA IGARASHI

Análise experimental e computacional do equilíbrio de fases de sistemas binários e ternários envolvendo líquidos iônicos

Lorena 2022

EDSON MASSAKAZU DE SOUZA IGARASHI

Análise experimental e computacional do equilíbrio de fases de sistemas binários e ternários envolvendo líquidos iônicos

Tese apresentada à Escola de Engenharia de Lorena da Universidade de São Paulo para obtenção do título de Doutor em Ciências do Programa de Pós-Graduação em Engenharia Química na área de concentração de Desenvolvimento de Produtos e Processos.

Orientador: Prof. Dr. Pedro Felipe Arce Castillo

Versão Corrigida

Lorena 2022 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE

> Ficha catalográfica elaborada pelo Sistema Automatizado da Escola de Engenharia de Lorena, com os dados fornecidos pelo(a) autor(a)

Igarashi, Edson Massakazu de Souza Análise experimental e computacional do equilíbrio de fases de sistemas binários e ternários envolvendo líquidos iônicos / Edson Massakazu de Souza Igarashi; orientador Pedro Felipe Arce Castillo - Versão Corrigida. - Lorena, 2022. 196 p.

Tese (Doutorado em Ciências - Programa de Pós Graduação em Engenharia Química na Área de Desenvolvimento de Produtos e Processos) - Escola de Engenharia de Lorena da Universidade de São Paulo. 2022

1. Líquido iônico. 2. Equilíbrio de fases. 3. Modelagem termodinâmica. 4. Simulação termodinâmica. I. Título. II. Castillo, Pedro Felipe Arce, orient. Aos meus pais, Gilcinéa e Edson, por tornarem possível o início desta jornada.

AGRADECIMENTOS

Primeiramente, agradeço aos meus pais, Gilcinéa e Edson, por todo apoio, incentivo e ensinamentos para que fosse possível chegar até este momento e por todos mais que ainda estão por vir.

À minha irmã, Elisa, por me mostrar que os genes da inteligência ficaram apenas para ela e eu precisaria de esforço extra para avançar nessa etapa.

À minha madrinha, Marlene, por sempre me falar para acreditar que tudo pode dar certo.

Ao meu orientador, Prof. Pedro Arce, pela paciência, pela disposição e pelos aprendizados concedidos desde o princípio.

Aos companheiros do grupo de pesquisa do Prof. Pedro, por trazerem um pouco de leveza com a companhia durante as atividades no laboratório.

A todos meus amigos, por oferecerem momentos de lazer no meio desse período conturbado.

Aos docentes envolvidos em toda minha formação, pelo exemplo dado de como gostarei de atuar.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - 88882.379271/2019–01.

Science is simply the word we use to describe a method of organizing our curiosity.

Tim Minchin

RESUMO

IGARASHI, E. M. S. Análise experimental e computacional do equilíbrio de fases de sistemas binários e ternários envolvendo líquidos iônicos. 2022. 196 p. Tese (Doutorado em Ciências) – Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, 2022.

A busca por sistemas de produção e produtos mais sustentáveis tem sido um tópico constantemente abordado em discussões, reuniões e trabalhos acadêmicos. Processos de produção, antes vistos como inofensivos, começaram a impactar o meio ambiente de maneira significativa, devido ao aumento do volume demandado de um produto ou serviço. Etapas de separação e purificação de produtos podem ser otimizadas por meio da utilização dos líquidos iônicos, que têm recebido uma atenção especial nos últimos tempos em função de suas propriedades diferenciadas que permitem a substituição de compostos poluentes como, por exemplo, compostos orgânicos voláteis ou a simplificação de processos de purificação de produtos obtidos de fontes renováveis. Esses compostos são vistos como sais fundidos, ou seja, substâncias compostas por íons orgânicos que se encontram em estado líquido em temperaturas abaixo de 100 °C. A quantidade de combinações desses íons faz com que haja uma diversidade de líquidos iônicos com diferentes propriedades para ser explorada nas mais variadas áreas do conhecimento. Nesta tese, o estudo do comportamento de líquidos iônicos à base de imidazólio no equilíbrio de fases foi proposto desde a montagem dos aparatos experimentais e a validação das metodologias adotadas, seguido pela obtenção de dados experimentais de equilíbrios líquido-vapor, a baixas pressões, em sistemas ternários envolvendo água, etanol e líquido iônico ([hmim][BF4] e [emim][EtSO4]); a altas pressões, em sistemas binários envolvendo dióxido de carbono e líquido iônico ([emim][BF4], [emim][EtSO4] e [hmim][BF4]); e equilíbrio líquidolíquido, em sistemas ternários compostos por água, 1-butanol e líquido iônico ([emim][BF4], [emim][EtSO₄] e [hmim][BF₄]), que foram submetidos a um teste de qualidade para seguirem para a modelagem e simulação termodinâmicas. Os resultados demonstraram que a metodologia experimental se mostrou adequada aos sistemas estudados nas condições propostas, uma vez que, comparativamente, foi possível reproduzir o comportamento encontrado na literatura para as mesmas condições. Os estudos dos sistemas envolvendo os líquidos iônicos retornou dados experimentais inéditos e de qualidade, segundo os testes selecionados de acordo com o equilíbrio de fases, gerando desvios baixos na modelagem com os modelos termodinâmicos utilizados. A simulação termodinâmica se apresentou como uma boa alternativa de abordagem, quando há dados suficientes e uma boa seleção de descritores moleculares, para o processamento eficiente dos dados em um intervalo de tempo menor.

Palavras-chave: Líquido iônico. Equilíbrio de fases. Modelagem termodinâmica. Simulação termodinâmica.

ABSTRACT

IGARASHI, E. M. S. Experimental and computational analysis of phase equilibria of binary and ternary systems involving ionic liquids. 2022. 196 p. Thesis (Doctoral of Science) – Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, 2022.

The search for more sustainable production systems and products has been a matter constantly addressed in discussions, meetings and academic papers. Production processes, previously considered harmless, start having a significant impact on the environment, due to the increase on the demand of a product or service. Separation and purification processes of products can be optimized through the use of ionic liquids, which have received special attention nowadays due to their distinguished properties that allow them to replace polluting compounds, such as volatile organic compounds, or simplify the purification processes for products obtained from renewable sources. These compounds are considered molten salts, i.e., substances formed of organic ions in a liquid state at temperatures below 100 °C. The number of ion combinations means that there is a variety of ionic liquids with different properties to explore in diversified areas of knowledge. In this work, the study of imidazolium-based ionic liquid behavior in the phase equilibria was proposed by setting the experimental apparatus and the validation of the employed methods, followed by obtaining experimental data on liquid-vapor equilibrium at low pressures, in ternary systems composed of water, ethanol and ionic liquid ([hmim][BF4] and [emim][EtSO₄]); at high pressures, in binary systems composed of carbon dioxide and ionic liquid ([emim][BF₄], [emim][EtSO₄] and [hmim][BF₄]); and liquid-liquid equilibrium in ternary systems composed of water, 1-butanol and ionic liquid ([emim][BF4], [emim][EtSO4] and [hmim][BF₄]), which were submitted to a quality test previously to thermodynamic modeling and simulation. The results showed that the experimental methods were suitable for the systems studied under the determined conditions, once it was possible to reproduce the behavior found in the literature for the same conditions. The studies of systems involving ionic liquids returned unpublished and quality experimental data, in accord with the tests selected according to the phase equilibrium, providing low deviations in the modeling with the thermodynamic models selected. The thermodynamic simulation showed to be a reasonable alternative approach, when there is enough data and a good set of molecular descriptors, to process the data efficiently in a shorter period of time.

Keywords: Ionic liquids. Phase equilibria. Thermodynamic modeling. Thermodynamic simulation.

LISTA DE TABELAS

Tabela 4.1 – Substâncias utilizadas nesta tese
Tabela 4.2 – Informações dos compostos utilizados nas etapas experimentais
Tabela 5.1 – Propriedades críticas dos LIs obtidas pelo método de contribuição de grupos 73
Tabela 5.2 – Faixa de pressão de vapor e densidade utilizando a EdE PR-TV73
Tabela 5.3 – Parâmetros de componente puro da EdE PR-TV-CG74
Tabela 5.4 – Valores dos grupos funcionais utilizados no método de contribuição de grupos
Tabela 5.5 – Parâmetros de componente puro das EdEs PC-SAFT e CPA75
Tabela 5.6 – Propriedades, a 298,15 K, das substâncias76
Tabela 5.7 – Frações molares utilizadas na solução e seus respectivos índices de refração e densidades para o sistema acetona (1) + metanol (2) + água (3)
Tabela 5.8 – Coeficientes da regressão da curva de calibração do sistema acetona + metanol + água78
Tabela 5.9 – Dados experimentais do ELV para o sistema ternário acetona (1) + metanol (2) + água (3) a 101,3 kPa
Tabela 5.10 – Resultados da consistência termodinâmica
Tabela 5.11 – Parâmetros de interação do modelo NRTL, $\frac{g_{ij}-g_{jj}}{R}$ (K), para o sistema ternário acetona (1) + metanol (2) + água (3) a 101,3 kPa80
Tabela 5.12 – Valores dos parâmetros de interação da EdE PR-TV-CG
Tabela 5.13 – Resultados obtidos da modelagem termodinâmica para o ELV do sistema acetona (1) + metanol (2) + água (3) a 101,3 kPa81
Tabela 5.14 – Pontos de bolha experimentais do sistema CO ₂ (1) + DME (2)83
Tabela 5.15 – Consistência termodinâmica do sistema CO ₂ (1) + DME (2)
Tabela 5.16 – Desvios na pressão de bolha (ΔP) do sistema CO ₂ + DME
Tabela 5.17 – Parâmetros de interação binária e desvios médios na pressão de bolha (ΔP) do sistema CO ₂ + DME85
Tabela 5.18 – Propriedades físicas do acetato de etila + etanol + água a 298,15 K

Tabela 5.19 -	- Curva binodal do sistema ternário acetato de etila (1) + etanol (2) + água (3)
Tabela 5.20	 Coeficientes da curva de calibração do sistema acetato de etila + etanol + água a 298,15 K
Tabela 5.21 -	- Linhas de amarração do sistema acetato de etila (1) + etanol (2) + água (3) a 298,15 K
Tabela 5.22 -	 Teste de qualidade do sistema acetato de etila (1) + etanol (2) + água (3) a 298,15 K
Tabela 5.23 -	- Coeficientes de distribuição e fatores de separação experimentais do etanol90
Tabela 5.24 –	- Parâmetros de interação binária, $g_{ij} - g_{jj}$ (cal.mol ⁻¹), do modelo NRTL para o sistema acetato de etila (1) + etanol (2) + água (3) a 298,15 K92
Tabela 5.25 -	- Valores dos parâmetros de interação da EdE PR-TV-CG92
Tabela 5.26 -	 Resultados obtidos na modelagem do ELL do sistema acetato de etila (1) + etanol (2) + água (3) a 298,15 K
Tabela 5.27 -	- Pontos críticos do sistema acetato de etila (1) + etanol (2) + água (3)95
Tabela 5.28 -	- Propriedades físicas das substâncias puras a 313,15 K96
Tabela 5.29 -	- Dados para curva de calibração, a 313,15 K, do sistema água (1) + etanol (2) + [hmim][BF ₄] (3)97
Tabela 5.30 -	- Coeficientes da regressão da curva de calibração do sistema água + etanol + [hmim][BF4]97
Tabela 5.31 -	- Coeficientes para a regressão do sistema água + etanol
Tabela 5.32 -	- ELV experimental do sistema água (1) + etanol (2) + [hmim][BF ₄] (3)99
Tabela 5.33	 Consistência termodinâmica do ELV do sistema água + etanol + [hmim][BF4]100
Tabela 5.34 -	- Parâmetros de interação binária do modelo NRTL, $\frac{g_{ij}-g_{jj}}{R}$, (K), do sistema água (1) + etanol (2) + [hmim][BF ₄] (3) a 101,3 kPa100
Tabela 5.35 -	- Valores dos parâmetros de interação da EdE PR-TV-CG101
Tabela 5.36 -	- Resultados da modelagem termodinâmica do sistema água (1) + etanol (2) + [hmim][BF ₄] (3)102
Tabela 5.37 -	- Propriedades físicas das substâncias puras a 298,15 K103

Tabela 5.38 –	- Dados para curva de calibração, a 298,15 K, do sistema água (1) + etanol (2) + [emim][EtSO ₄] (3)104
Tabela 5.39 -	- Coeficientes da regressão da curva de calibração do sistema água + etanol + [emim][EtSO ₄]105
Tabela 5.40 -	- Coeficientes para a regressão do sistema água + etanol106
Tabela 5.41	 Dados experimentais do ELV do sistema água (1) + etanol (2) + [emim][EtSO₄] (3)107
Tabela 5.42	 Consistência termodinâmica do ELV do sistema água + etanol + [emim][EtSO4]107
Tabela 5.43 –	Parâmetros de interação binária, $\frac{g_{ij}-g_{jj}}{R}$ (K), do modelo NRTL para o sistema água (1) + etanol (2) + [emim][EtSO ₄] (3) a 101,3 kPa108
Tabela 5.44 -	- Valores dos parâmetros de interação da EdE PR-TV-CG108
Tabela 5.45 -	 Resultados obtidos da modelagem termodinâmica para o ELV do sistema água (1) + etanol (2) + [emim][EtSO₄] (3) a 101,3 kPa109
Tabela 5.46 -	 Intervalos de composições, temperaturas e pressões experimentais no ponto de bolha dos sistemas CO₂ + LI
Tabela 5.47 -	- Pontos de bolha experimentais do sistema CO ₂ + [emim][BF ₄]112
Tabela 5.48 -	- Consistência termodinâmica do sistema CO ₂ + [emim][BF ₄]112
Tabela 5.49 -	- Desvios na pressão de bolha (ΔP) do sistema CO ₂ + [emim][BF ₄]113
Tabela 5.50 -	 Parâmetros de interação binária e desvios médios na pressão de bolha (ΔP) do sistema CO₂ + [emim][BF₄]113
Tabela 5.51 -	- Pontos de bolha experimentais do sistema CO ₂ + [emim][EtSO ₄]114
Tabela 5.52 -	- Consistência termodinâmica do sistema CO ₂ + [emim][EtSO ₄]115
Tabela 5.53 -	- Desvios na pressão de bolha (ΔP) do sistema CO ₂ + [emim][EtSO ₄]115
Tabela 5.54 -	 Parâmetros de interação binária e desvios médios na pressão de bolha (ΔP) do sistema CO₂ + [emim][EtSO₄]116
Tabela 5.55 -	- Pontos de bolha experimentais do sistema CO ₂ + [hmim][BF ₄]117
Tabela 5.56 -	- Consistência termodinâmica do sistema CO ₂ + [hmim][BF ₄]117
Tabela 5.57 -	- Desvios na pressão de bolha (ΔP) do sistema CO ₂ + [hmim][BF ₄]118

Tabela 5.58 – Parâmetros de interação binária e desvios médios na pressão de bolha (ΔP) do sistema CO ₂ + [hmim][BF ₄]118
Tabela 5.59 – Comparação das solubilidades do CO ₂ 121
Tabela 5.60 – Propriedades físicas das substâncias puras a 298,15 K122
Tabela 5.61 – Dados da curva binodal do sistema água (1) + 1-butanol (2) + [emim][BF ₄] (3)
Tabela 5.62 – Coeficientes da curva de calibração do sistema água + 1-butanol + [emim][BF ₄] a 298,15 K124
Tabela 5.63 – Linhas de amarração do ELL do sistema água (1) + 1-butanol (2) + [emim][BF4] (3)126
Tabela 5.64 – Teste de qualidade do sistema água (1) + 1-butanol (2) + [emim][BF ₄] (3)127
Tabela 5.65 – Coeficientes de distribuição e fatores de separação experimentais do 1- butanol
Tabela 5.66 – Parâmetros de interação binária, $g_{ij} - g_{jj}$ (cal.mol ⁻¹), do modelo NRTL para o sistema água (1) + 1-butanol (2) + [emim][BF ₄] (3)129
Tabela 5.67 – Valores dos parâmetros de interação da EdE PR-TV-CG129
Tabela 5.68 – Resultados obtidos com o modelo NRTL para o ELL do sistema água (1) + 1-butanol (2) + [emim][BF ₄] (3) a 298,15 K130
Tabela 5.69 – Resultados obtidos com o modelo PR-TV-CG para o ELL do sistema água (1) + 1-butanol (2) + [emim][BF ₄] (3) a 298,15 K131
Tabela 5.70 – Propriedades físicas das substâncias puras a 298,15 K133
Tabela 5.71 – Curva binodal do sistema água (1) + 1-butanol (2) + [emim][EtSO ₄] (3)133
Tabela 5.72 – Coeficientes da curva de calibração do sistema água + 1-butanol + [emim][EtSO ₄]134
Tabela 5.73 – Linhas de amarração do ELL do sistema água (1) + 1-butanol (2) + [emim][EtSO4] (3)135
Tabela 5.74 – Teste de qualidade do sistema água (1) + 1-butanol (2) + [emim][EtSO ₄] (3)
Tabela 5.75 – Coeficientes de distribuição e fatores de separação experimentais do 1- butanol
Tabela 5.76 – Parâmetros de interação binária, $g_{ij} - g_{jj}$ (cal.mol ⁻¹), do modelo NRTL para o sistema água (1) + 1-butanol (2) + [emim][EtSO ₄] (3)138

Tabela 5.77 – V	Valores dos parâmetros de interação da EdE PR-TV-CG138
Tabela 5.78 – R 1	Resultados obtidos com o modelo NRTL para o ELL do sistema água (1) + -butanol (2) + [emim][EtSO ₄] (3) a 298,15 K
Tabela 5.79 – R (Resultados obtidos com o modelo PR-TV-CG para o ELL do sistema água 1) + 1-butanol (2) + [emim][EtSO4] (3) a 298,15 K140
Tabela 5.80 – P	ropriedades físicas das substâncias puras a 298,15 K142
Tabela 5.81 – D (Dados da curva binodal do sistema água (1) + 1-butanol (2) + [hmim][BF4] 3)
Tabela 5.82 –	Coeficientes da curva de calibração do sistema água + 1-butanol + [hmim][BF ₄] a 298,15 K143
Tabela 5.83 –	Linhas de amarração do ELL do sistema água (1) + 1-butanol (2) + [hmim][BF ₄] (3)145
Tabela 5.84 – Te	este de qualidade da curva binodal superior do sistema água (1) + 1-butanol 2) + [hmim][BF ₄] (3)145
Tabela 5.85 – T (este de qualidade da curva binodal inferior do sistema água (1) + 1-butanol 2) + [hmim][BF ₄] (3)146
Tabela 5.86 – 9	Coeficientes de distribuição e fatores de separação experimentais do 1- butanol
Tabela 5.87 – Pa c	arâmetros de interação binária, $g_{ij} - g_{jj}$ (cal.mol ⁻¹), do modelo NRTL para o sistema água (1) + butanol (2) + [hmim][BF ₄] (3)148
Tabela 5.88 – V	alores dos parâmetros de interação da EdE PR-TV-CG148
Tabela 5.89 – R E	Resultados obtidos com o modelo NRTL para a curva binodal superior do ELL do sistema água (1) + 1-butanol (2) + [hmim][BF4] (3) a 298,15 K 150
Tabela 5.90 – F E	Resultados obtidos com o modelo NRTL para a curva binodal inferior do ELL do sistema água (1) + 1-butanol (2) + [hmim][BF4] (3) a 298,15 K 151
Tabela 5.91 – R d	tesultados obtidos com o modelo PR-TV-CG para a curva binodal superior lo ELL do sistema água (1) + 1-butanol (2) + [hmim][BF4] (3) a 298,15 K 152
Tabela 5.92 – R	Resultados obtidos com o modelo PR-TV-CG para a curva binodal inferior lo ELL do sistema água (1) + 1-butanol (2) + [hmim][BF4] (3) a 298,15 K 153
Tabela 5.93 – C	códigos SMILES dos componentes utilizados na simulação termodinâmica 155
Tabela 5.94 – D	Descritores moleculares selecionados do Dragon 7.0
Tabela 5.95 – V	Valores numéricos dos descritores moleculares dos componentes (parte 1) 157

Tabela 5.96 – Valores numéricos dos descritores moleculares dos componentes (parte 2)157
Tabela 5.97 – Resultados para as arquiteturas X-X-1 e 3-X-X-1159
Tabela 5.98 – Resultados para as arquiteturas 5-X-X-1 e 10-X-X-1160
Tabela 5.99 – Alguns desvios médios para a pressão do sistema na etapa de teste para a arquitetura 10-20-15-1
Tabela 5.100 – Alguns desvios médios para a pressão do sistema na etapa de predição para a arquitetura 10-20-15-1
Tabela A.1 – Propriedades críticas e fator acêntrico estimados pelo método de contribuição de grupos de alguns líquidos iônicos utilizados em trabalhos produzidos181
Tabela B.1 – Propriedades físicas do acetato de etila + etanol + água a 101,3 kPa ^a 183
Tabela B.2 – Curva binodal do sistema ternário acetato de etila (1) + etanol (2) + água (3) 183
Tabela B.3 – Coeficientes da curva de calibração do sistema acetato de etila + etanol + água
Tabela B.4 – Linhas de amarração do sistema acetato de etila (1) + etanol (2) + água (3)187
Tabela B.5 – Teste de qualidade do sistema acetato de etila (1) + etanol (2) + água (3)188
Tabela B.6 – Parâmetros de interação binária, $g_{ij} - g_{jj}$ (cal.mol ⁻¹), do modelo NRTL para o sistema acetato de etila (1) + etanol (2) + água (3)189
Tabela B.7 – Resultados obtidos da modelagem do ELL (NRTL) do sistema: acetato de etila (1) + etanol (2) + água (3)190
Tabela B.8 – Resultados obtidos da modelagem do ELL (PR-TV-CG) do sistema acetato de etila (1) + etanol (2) + água (3)191

LISTA DE FIGURAS

Figura 3.1 – Aplicações dos líquidos iônicos
Figura 3.2 – Estrutura química de íons comuns na obtenção de líquidos iônicos
Figura 3.3 – Constante <i>a</i> com a contribuição de grupos para a EdE PR-TV40
Figura 3.4 – Representação das redes neurais artificiais
Figura 4.1 – Aparato experimental para ELV a baixas pressões
Figura 4.2 – Esquema da unidade de laboratório de equilíbrio de fases a alta pressão57
Figura 4.3 – Aparato experimental para o ELL
Figura 4.4 – Interface para o estudo das RNA71
Figura 4.5 – Fluxograma utilizado na simulação termodinâmica dos sistemas CO ₂ + LI 72
Figura 5.1 – Isolinhas das curvas de calibração (a) η_D vs. x_i , (b) ρ vs. x_i
Figura 5.2 – Resultados da modelagem termodinâmica do sistema acetona + metanol + água
Figura 5.3 – Comparação dos dados experimentais do sistema CO ₂ (1) + DME (2) a 320 K
Figura 5.4 – Dados experimentais e modelagem termodinâmica do sistema CO ₂ + DME86
Figura 5.5 – Isolinhas do índice de refração (a) e da densidade (b) em função da composição para o sistema acetato de etila + etanol + água a 298,15 K
Figura 5.6 – Diagramas de fases para o sistema acetato de etila + etanol + água para as temperaturas 293,15, 298,15, 303,15 e 308,15 K
Figura 5.7 – Fator de separação (<i>S</i>) para o sistema acetato de etila (1) + etanol (2) + água (3)91
Figura 5.8 – Coeficiente de distribuição (D_2) para o sistema acetato de etila (1) + etanol (2) + água (3)
Figura 5.9 – Dados do ELL para o sistema acetato de etila + etanol + água a 298,15 K95
Figura 5.10 – Isolinhas do índice de refração do sistema água + etanol + [hmim][BF4]98
Figura 5.11 – Isolinhas da densidade do sistema água + etanol + [hmim][BF4]98

Figura 5.12 – Resultados da modelagem termodinâmica do sistema água + etanol + [hmim][BF4]103
Figura 5.13 – Isolinhas do índice de refração do sistema água + etanol + [emim][EtSO ₄]105
Figura 5.14 – Isolinhas da densidade do sistema água + etanol + [emim][EtSO ₄]106
Figura 5.15 – Resultados da modelagem termodinâmica do sistema água + etanol + [emim][EtSO4] a 101,3 kPa110
Figura 5.16 – Dados experimentais e modelagem termodinâmica do sistema CO ₂ + [emim][BF ₄]114
Figura 5.17 – Dados experimentais e modelagem termodinâmica do sistema CO ₂ + [emim][EtSO ₄]116
Figura 5.18 – Dados experimentais e modelagem termodinâmica do sistema CO ₂ + [hmim][BF ₄]119
Figura 5.19 – Efeito do radical alquila na solubilidade de CO ₂ a 323,15 K120
Figura 5.20 – Efeito do ânion na solubilidade de CO ₂ a 333,15 K120
Figura 5.21 – Efeito da temperatura na solubilidade de CO_2 nos sistemas CO_2 + LI121
Figura 5.22 – Formação de uma segunda fase na titulação122
Figura 5.23 – Isolinhas da curva binodal superior do (a) índice de refração e da (b) densidade em função da composição para o sistema água + 1-butanol + [emim][BF ₄] a 298,15 K
Figura 5.24 – Isolinhas da curva binodal inferior do (a) índice de refração e da (b) densidade em função da composição para o sistema água + 1-butanol + [emim][BF4] a 298,15 K
Figura 5.25 – Fator de separação (<i>S</i>) para o sistema água (1) + 1-butanol (2) + [emim][BF ₄] (3) a T = 298,15 K128
Figura 5.26 – Coeficiente de distribuição (D_2) para o sistema água (1) + 1-butanol (2) + [emim][BF ₄] (3) a T = 298,15 K128
Figura 5.27 – Dados do ELL para o sistema água + 1-butanol + [emim][BF4] a 298,15 K132
Figura 5.28 – Isolinhas do índice de refração do sistema água + 1-butanol + [emim][EtSO ₄]
Figura 5.29 – Isolinhas a densidade do sistema água + 1-butanol + [emim][EtSO4]135
Figura 5.30 – Fator de separação (S) para o sistema água (1) + 1-butanol (2) + [emim][EtSO4] (3) a 298,15 K

Figura 5.31 – Coeficiente de distribuição (D_2) para o sistema água (1) + 1-butanol (2) + [emim][EtSO ₄] (3) a 298,15 K137
Figura 5.32 – Dados do ELL para o sistema água + 1-butanol + [emim][EtSO ₄]141
Figura 5.33 – Isolinhas da curva binodal superior do (a) índice de refração e da (b) densidade em função da composição para o sistema água + 1-butanol + [hmim][BF ₄] a 298,15 K
Figura 5.34 – Isolinhas da curva binodal inferior do (a) índice de refração e da (b) densidade em função da composição para o sistema água + 1-butanol + [hmim][BF ₄] a 298,15 K144
Figura 5.35 – Fator de separação (<i>S</i>) para o sistema água (1) + 1-butanol (2) + [hmim][BF ₄] (3) a 298,15 K
Figura 5.36 – Coeficiente de distribuição (D_2) para o sistema água (1) + 1-butanol (2) + [hmim][BF ₄] (3) a 298,15 K147
Figura 5.37 – Dados do ELL para o sistema água + 1-butanol + [hmim][BF4] a 298,15 K . 154
Figura 5.38 – Resultados na etapa de aprendizado para arquiteturas X-X-1161
Figura 5.39 – Resultados na etapa de aprendizado para arquiteturas 3-X-X-1 161
Figura 5.40 – Resultados na etapa de aprendizado para arquiteturas 5-X-X-1 162
Figura 5.41 – Resultados na etapa de aprendizado para arquiteturas 10-X-X-1 162
Figura 5.42 – Pontos de bolha experimentais, pressões de bolha das EdEs PC-SAFT e CPA e das RNA do sistema CO ₂ + [emim][BF ₄]166
Figura 5.43 – Pontos de bolha experimentais, pressões de bolha das EdEs PC-SAFT e CPA e das RNA do sistema CO ₂ + [emim][EtSO ₄]166
Figura 5.44 – Pontos de bolha experimentais, pressões de bolha das EdEs PC-SAFT e CPA e das RNA do sistema CO ₂ + [hmim][BF ₄]167
Figura B.1 – Isolinhas do índice de refração (a) e da densidade (b) em função da composição para o sistema acetato de etila + etanol + água a 293,15 K 186
Figura B.2 – Isolinhas do índice de refração (a) e da densidade (b) em função da composição para o sistema acetato de etila + etanol + água a 303,15 K 186
Figura B.3 – Isolinhas do índice de refração (a) e da densidade (b) em função da composição para o sistema acetato de etila + etanol + água a 308,15 K 186
Figura B.4 – Dados do ELL para o sistema acetato de etila + etanol + água a (a) 293,15 K, (b) 303,15 K e (c) 308,15 K

Figura C.1 – Espectro de RMN ¹ H da fase líquida do sistema água + etanol + [hmim][BF ₄] 193
Figura C.2 – Espectro de RMN ¹ H da fase vapor do sistema água + etanol + [hmim][BF ₄] 193

LISTA DE ABREVIAÇÕES

ABE	Acetona-butanol-etanol				
CG	Contribuição de grupos				
CO_2	Dióxido de carbono				
CPA	Cúbica com associação (Cubic plus association)				
DM	Descritores moleculares				
DME	Dimetil éter				
DMQ	Desvio médio quadrático				
EdE	Equação de estado				
ELL	Equilíbrio líquido-líquido				
ELV	Equilíbrio líquido-vapor				
FO	Função objetivo				
IR	Índice de refração				
LI(s)	Líquido iônico (líquidos iônicos)				
MM	Massa molar				
NRTL	Non-Random, Two-Liquid				
PC-SAFT	Teoria estatística de um fluido associado de cadeia perturbada (<i>Perturbed Chain</i> - <i>Statistical Associating Fluid Theory</i>)				
PR	Peng-Robinson				
RNA	Redes neurais artificiais				
RMN	Ressonância magnética nuclear				
SRK	Soave-Redlich-Kwong				
TV	Translação de volume				
LIs Cá	tions [bmim] ⁺ 1-butil-3-metilimidazólio (1-butyl-3-methylimidazolium)				
	[emim] ⁺ 1-etil-3-metilimidazólio (<i>1-ethyl-3-methylimidazolium</i>)				

LIs	Cátions	[hmim] ⁺	1-hexil-3-metilimidazólio (1-hexyl-3-methylimidazolium)
		[omim] ⁺	1-octil-3-metilimidazólio (1-octyl-3-methylimidazolium)
	Ânions	$[BF_4]^-$	Tetrafluoroborato (Tetrafluoroborate)
		[Cl] ⁻	Cloreto
		[EtSO ₄] ⁻	Etilsulfato (<i>Ethyl sulfate</i>)
		$[PF_6]^-$	Hexafluorofosfato

SUMÁRIO

1 INTRODUÇÃO	9
2 OBJETIVOS	1
2.1 OBJETIVO PRINCIPAL	1
2.2 OBJETIVOS ESPECÍFICOS	1
3 REVISÃO DA LITERATURA 3	2
3.1 LÍQUIDOS IÔNICOS	2
3.2 CONSISTÊNCIA TERMODINÂMICA 3	5
3.3 EQUILÍBRIO DE FASES	6
3.3.1 Equilíbrio líquido-vapor (ELV)	6
3.3.2 Equilíbrio líquido-líquido (ELL)	8
3.4 MODELOS TERMODINÂMICOS	9
3.4.1 Equações de estado, regras de mistura e coeficientes de fugacidade 3	9
3.4.1.1 Equação de estado de Peng-Robinson com translação de volume e contribuição	
de grupos (PR-TV-CG)	9
3.4.1.2 Equação de estado Cubic Plus Association (CPA) 4	2
3.4.1.3 Teoria Estatística de um Fluido Associado de Cadeia Perturbada (PC-SAFT) 4	.3
3.4.2 Modelos de energia livre de Gibbs em excesso e coeficientes de atividade 4	.5
3.4.2 Modelos de energia livre de Gibbs em excesso e coeficientes de atividade 4 3.4.2.1 Modelo NRTL 4	.5
3.4.2 Modelos de energia livre de Gibbs em excesso e coeficientes de atividade 4 <i>3.4.2.1 Modelo NRTL</i> 4 3.5 SIMULAÇÃO TERMODINÂMICA 4	5 .5
3.4.2 Modelos de energia livre de Gibbs em excesso e coeficientes de atividade 4 <i>3.4.2.1 Modelo NRTL</i> 4 3.5 SIMULAÇÃO TERMODINÂMICA 4 3.5.1 Redes neurais artificiais 4	.5 .5 .6
3.4.2 Modelos de energia livre de Gibbs em excesso e coeficientes de atividade 4 <i>3.4.2.1 Modelo NRTL</i> 4 3.5 SIMULAÇÃO TERMODINÂMICA 4 3.5.1 Redes neurais artificiais 4 3.5.2 Descritores moleculares 4	.5 .6 .6
3.4.2 Modelos de energia livre de Gibbs em excesso e coeficientes de atividade 4 3.4.2.1 Modelo NRTL 4 3.5 SIMULAÇÃO TERMODINÂMICA 4 3.5.1 Redes neurais artificiais 4 3.5.2 Descritores moleculares 4 3.6 PROPRIEDADES DE COMPONENTE PURO 4	.5 .6 .8
3.4.2 Modelos de energia livre de Gibbs em excesso e coeficientes de atividade 4 3.4.2.1 Modelo NRTL 4 3.5 SIMULAÇÃO TERMODINÂMICA 4 3.5.1 Redes neurais artificiais 4 3.5.2 Descritores moleculares 4 3.6 PROPRIEDADES DE COMPONENTE PURO 4 4 METODOLOGIA 5	5 .6 .8 .8 .8 2
3.4.2 Modelos de energia livre de Gibbs em excesso e coeficientes de atividade 4 3.4.2.1 Modelo NRTL 4 3.5 SIMULAÇÃO TERMODINÂMICA 4 3.5.1 Redes neurais artificiais 4 3.5.2 Descritores moleculares 4 3.6 PROPRIEDADES DE COMPONENTE PURO 4 4 METODOLOGIA 5 4.1 EXPERIMENTAL 5	5 6 .6 .8 .8 2 2
3.4.2 Modelos de energia livre de Gibbs em excesso e coeficientes de atividade 4 3.4.2.1 Modelo NRTL 4 3.5 SIMULAÇÃO TERMODINÂMICA 4 3.5.1 Redes neurais artificiais 4 3.5.2 Descritores moleculares 4 3.6 PROPRIEDADES DE COMPONENTE PURO 4 4 METODOLOGIA 5 4.1 EXPERIMENTAL 5 4.1.1 Substâncias utilizadas 5	5 5 .6 .8 .8 2 2 2
3.4.2 Modelos de energia livre de Gibbs em excesso e coeficientes de atividade 4 3.4.2.1 Modelo NRTL 4 3.5 SIMULAÇÃO TERMODINÂMICA 4 3.5.1 Redes neurais artificiais 4 3.5.2 Descritores moleculares 4 3.6 PROPRIEDADES DE COMPONENTE PURO 4 4 METODOLOGIA 5 4.1 EXPERIMENTAL 5 4.1.1 Substâncias utilizadas 5 4.1.2 ELV experimental 5	5 6 .6 .8 .8 2 2 2 5
3.4.2 Modelos de energia livre de Gibbs em excesso e coeficientes de atividade 4 3.4.2.1 Modelo NRTL 4 3.5 SIMULAÇÃO TERMODINÂMICA 4 3.5.1 Redes neurais artificiais 4 3.5.2 Descritores moleculares 4 3.6 PROPRIEDADES DE COMPONENTE PURO 4 4 METODOLOGIA 5 4.1 EXPERIMENTAL 5 4.1.2 ELV experimental 5 4.1.2.1 ELV a baixas pressões 5	5 6 8 8 2 2 5 5
3.4.2 Modelos de energia livre de Gibbs em excesso e coeficientes de atividade 4 3.4.2.1 Modelo NRTL 4 3.5 SIMULAÇÃO TERMODINÂMICA 4 3.5.1 Redes neurais artificiais 4 3.5.2 Descritores moleculares 4 3.6 PROPRIEDADES DE COMPONENTE PURO 4 4 METODOLOGIA 5 4.1 EXPERIMENTAL 5 4.1.1 Substâncias utilizadas 5 4.1.2.1 ELV experimental 5 4.1.2.2 ELV a altas pressões 5	5 6 8 8 2 2 5 5 7
3.4.2 Modelos de energia livre de Gibbs em excesso e coeficientes de atividade 4 3.4.2.1 Modelo NRTL 4 3.5 SIMULAÇÃO TERMODINÂMICA 4 3.5.1 Redes neurais artificiais 4 3.5.2 Descritores moleculares 4 3.6 PROPRIEDADES DE COMPONENTE PURO 4 4 METODOLOGIA 5 4.1 EXPERIMENTAL 5 4.1.1 Substâncias utilizadas 5 4.1.2 ELV experimental 5 4.1.2.2 ELV a altas pressões 5 4.1.3 ELL experimental 5	5 6 8 8 2 2 5 5 7 8
3.4.2 Modelos de energia livre de Gibbs em excesso e coeficientes de atividade 4 3.4.2.1 Modelo NRTL 4 3.5 SIMULAÇÃO TERMODINÂMICA 4 3.5.1 Redes neurais artificiais 4 3.5.2 Descritores moleculares 4 3.6 PROPRIEDADES DE COMPONENTE PURO 4 4 METODOLOGIA 5 4.1 EXPERIMENTAL 5 4.1.2 ELV experimental 5 4.1.2.1 ELV a baixas pressões 5 4.1.2.2 ELV a altas pressões 5 4.1.3 ELL experimental 5 4.2 ANÁLISE DAS AMOSTRAS 6	5 6 6 8 8 2 2 2 5 5 7 8 0
3.4.2 Modelos de energia livre de Gibbs em excesso e coeficientes de atividade 4 3.4.2.1 Modelo NRTL 4 3.5 SIMULAÇÃO TERMODINÂMICA 4 3.5.1 Redes neurais artificiais 4 3.5.1 Redes neurais artificiais 4 3.5.2 Descritores moleculares 4 3.6 PROPRIEDADES DE COMPONENTE PURO 4 4 METODOLOGIA 5 4.1 EXPERIMENTAL 5 4.1.2 ELV experimental 5 4.1.2.1 ELV a baixas pressões 5 4.1.3 ELL experimental 5 4.2 ANÁLISE DAS AMOSTRAS 6 4.3 ANÁLISE DOS DADOS EXPERIMENTAIS 6	5 6 6 8 8 2 2 2 5 5 7 8 0 1

4.3.2 Consistência termodinâmica do ELV a altas pressões	63
4.3.3 Teste de qualidade dos dados experimentais do ELL	65
4.3.4 Coeficiente de distribuição (D_i) e fator de separação (S)	66
4.4 MODELAGEM TERMODINÂMICA	67
4.5 SIMULAÇÃO TERMODINÂMICA	70
5 RESULTADOS E DISCUSSÃO	73
5.1 VALIDAÇÃO DA METODOLOGIA EXPERIMENTAL	75
5.1.1 Equilíbrio líquido-vapor do sistema acetona + metanol + água	75
5.1.2 Equilíbrio líquido-vapor a altas pressões do sistema CO2 + dimetil éter	
5.1.3 Equilíbrio líquido-líquido do sistema acetato de etila + etanol + água	86
5.2 SISTEMAS CONTENDO LÍQUIDOS IÔNICOS	96
5.2.1 Equilíbrio líquido-vapor a baixas pressões dos sistemas água + etanol + L	.I 96
5.2.1.1 Sistema água + etanol + [hmim][BF4]	96
5.2.1.2 Sistema água + etanol + [emim][EtSO4]	103
5.2.2 Equilíbrio líquido-vapor a altas pressões dos sistemas CO ₂ + LI	111
$5.2.2.1 Sistema CO_2 + [emim][BF_4]$	111
5.2.2.2 Sistema $CO_2 + [emim][EtSO_4]$	114
$5.2.2.3 Sistema CO_2 + [hmim][BF_4]$	116
5.2.2.4 Análise da estrutura do LI na solubilidade do CO2	119
5.2.2.5 Análise da temperatura na solubilidade do CO2	120
5.2.2.6 Análise da pressão e temperatura na solubilidade do CO2	121
5.2.3 Equilíbrio líquido-líquido dos sistemas ternários água + 1-butanol + LI	122
5.2.3.1 Sistema água + 1-butanol + [emim][BF4]	122
5.2.3.2 Sistema água + 1-butanol + [emim][EtSO4]	133
5.2.3.3 Sistema água + 1-butanol + [hmim][BF ₄]	141
5.3 SIMULAÇÃO TERMODINÂMICA	155
5.3.1 Códigos SMILES	155
5.3.2 Descritores moleculares	155
5.3.3 Redes neurais artificiais	158
5.3.4 Modelagem termodinâmica versus simulação termodinâmica	165
6 CONCLUSÕES	168
6.1 ELV A BAIXAS PRESSÕES	168
6.2 ELV A ALTAS PRESSÕES	168
6.3 ELL	169

6.4 SIMULAÇÃO TERMODINÂMICA	
REFERÊNCIAS	170
APÊNDICE A	
APÊNDICE B	
APÊNDICE C	
APÊNDICE D	194

1 INTRODUÇÃO

A demanda por suprimentos médicos, alimentícios e de utilidades em geral aumenta constantemente com o crescimento populacional e, com isso, os diversos processos realizados para a produção desses produtos começam a impactar significativamente o meio ambiente, principalmente pela quantidade de substâncias poluentes emitidas durante e/ou após a produção (VEKARIYA, 2017). Neste cenário, são desejados processos que atendam aos critérios de desenvolvimento sustentável e da química verde para buscar uma melhor relação com o meio em que se inserem (SHELDON, 2018). Recentemente, as pesquisas sobre os líquidos iônicos foram impulsionadas (LEI *et al.*, 2017), devido à variedade de aplicações relacionadas à diversidade de propriedades que podem ser obtidas de acordo com os íons utilizados em sua síntese (WANG *et al.*, 2017) e, principalmente, pela maioria dos líquidos iônicos gerar características favoráveis a aplicações ambientalmente amigáveis (ROGERS; SEDDON, 2003).

Os líquidos iônicos são definidos como sais fundidos, ou líquidos compostos por íons, com temperatura de fusão próxima ou abaixo de 100°C (SEDDON, 1997) e apresentam a grande vantagem em modificar e otimizar suas propriedades para uma aplicação específica, principalmente pela grande variedade de combinações possíveis para sua obtenção de acordo com o cátion e o ânion escolhidos. Dessa forma, um ajuste fino de propriedades – ponto de fusão, viscosidade, densidade, solubilidade e hidrofobicidade – pode ser obtido, transformando esses componentes em uma nova classe de solventes que permitem a expansão do conhecimento em química além do baseado no comportamento de moléculas em soluções (VEKARIYA, 2017).

Como o líquido iônico estará em contato com outras substâncias, independentemente da aplicação em que se encontra, o estudo do equilíbrio de fases auxilia na compreensão da interação entre os componentes do meio para o projeto de variados processos, como a captura de CO₂ ou a produção de bioálcoois (SHARIATI; GUTKOWSKI; PETERS, 2005).

Os bioálcoois são combustíveis de baixo impacto ambiental obtidos de fontes renováveis de energia, como pela ação de microrganismos ou pela ação enzimática. O bioetanol é o biocombustível mais utilizado no mundo, produzido pela fermentação de açúcares, de amidos ou de biomassa celulósica. O biobutanol é produzido, na maioria das vezes, pela rota de fermentação acetona-butanol-etanol (ABE) e, por conta de seu alto teor energético, pode ser considerado um promissor substituto renovável para a gasolina (YADAV *et al.*, 2021; VEZA; SAID; LATIFF, 2021). O butanol e o etanol, produzidos pela via fermentativa ABE, formam

azeótropos com a água, permanecendo na fase aquosa do processo fermentativo. A separação desses álcoois por destilação simples é complexa e pouco usual, o que torna a extração líquidolíquido uma opção eficiente e, portanto, considerável na produção de tais compostos (VERMA *et al.*, 2021; ZAFARANI-MOATTAR; SHEKAARI; POURBAGHERIAN, 2020)

Em termos de sustentabilidade, os bioálcoois se destacam quando usados em processos extrativos nos quais haja a participação de solventes como os líquidos iônicos, uma vez que implicaria na simplificação do processo de separação do agente extrator na purificação dos produtos (VERMA *et al.*, 2021; ZAFARANI-MOATTAR; SHEKAARI; POURBAGHERIAN, 2020).

Com o grande interesse despertado em torno dos líquidos iônicos tanto para o meio acadêmico, pelo crescimento exponencial de pesquisas sobre o tema (LEI *et al.*, 2017), quanto para o meio industrial, pelo aumento do número de patentes com aplicações dos líquidos iônicos (KESKIN *et al.*, 2007; MORTON; HAMER, 2018), o número de aplicações cresce continuamente em um campo de pesquisa multidisciplinar. Com isso, o estudo do equilíbrio de fases em sistemas formados nessas aplicações que utilizam os líquidos iônicos passa a ser um ponto essencial para a compreensão do comportamento das substâncias envolvidas em determinada aplicação, de maneira a auxiliar no projeto de sistemas de extração, de purificação, dentre outros que envolvam líquidos iônicos (SHARIATI; GUTKOWSKI; PETERS, 2005), e também para buscar o melhor entendimento sobre a influência que a estrutura dos íons utilizados na síntese do líquido iônico têm no equilíbrio de fases com as substâncias do meio (ROTREKL *et al.*, 2017).

Dessa forma, a análise do comportamento de fases de sistemas binários e ternários de processos utilizando líquidos iônicos como substitutos de compostos que poluem consideravelmente o meio ambiente ou agentes extratores no processo de purificação de produtos sustentáveis, é proposta por meio da obtenção de dados experimentais e tratamento matemático por meio da modelagem e da simulação termodinâmicas do ELV a altas pressões, em sistemas ternários compostos por água + etanol + LI ([hmim][BF4] e [emim][EtSO4]), e a baixas pressões, em sistemas binários compostos por dióxido de carbono + LI ([emim][BF4], [emim][EtSO4] e [hmim][BF4]) e do ELL de sistemas ternários compostos por água + 1-butanol + LI ([emim][BF4], [emim][EtSO4] e [hmim][EtSO4] e [hmim][BF4]).

30

2 OBJETIVOS

2.1 OBJETIVO PRINCIPAL

O objetivo principal desta tese é o estudo do equilíbrio de fases, a baixas e a altas pressões, de sistemas binários e ternários presentes em aplicações que visam reduzir o impacto ambiental substituindo substâncias comumente empregadas pelo uso de líquidos iônicos por meio da medição experimental, teste para avaliação da qualidade dos dados experimentais, modelagem e simulação termodinâmica.

2.2 OBJETIVOS ESPECÍFICOS

Como objetivos específicos, também são avaliados:

 Predição das propriedades críticas dos líquidos iônicos pelo método de contribuição de grupos nas etapas de tratamento dos dados;

(2) Validação dos aparatos experimentais, recém-adquiridos para o Laboratório de Termodinâmica Química Aplicada - Processos de Separação, e das metodologias experimentais empregadas pelo estudo do equilíbrio líquido-vapor (ELV), a baixas pressões, do sistema ternário composto por acetona + metanol + água e, a altas pressões, do sistema binário composto por dióxido de carbono + dimetil éter, e do equilíbrio líquido-líquido (ELL) do sistema ternário composto por acetato de etila + etanol + água;

(3) Medição de dados experimentais do ELV e ELL a baixas pressões e do ELV a altas pressões;

(4) Consistência termodinâmica e teste de qualidade dos dados experimentais obtidos;

(5) Modelagem termodinâmica dos dados experimentais, considerados consistentes, utilizando modelos termodinâmicos baseados em equações de estado cúbicas, como a PR-TV-CG (Peng-Robinson com translação de volume e contribuição de grupos), e não-cúbicas, como a PC-SAFT (Teoria Estatística de um Fluido Associado de Cadeia Perturbada) e CPA (Cúbica com associação) e regras de mistura e em modelos de energia livre de Gibbs em excesso como o modelo Non-Random, Two-Liquid (NRTL);

(6) Simulação termodinâmica dos dados experimentais por meio do uso das redes neurais artificiais e descritores moleculares.

3 REVISÃO DA LITERATURA

3.1 LÍQUIDOS IÔNICOS

Com a descoberta de diversas aplicações diferenciadas que podem ser alcançadas com o uso de líquidos iônicos, o estudo desta área aumenta exponencialmente, quando comparado aos estudos de outras áreas do conhecimento (LEI *et al.*, 2017; HALLET; WELTON, 2011). Apesar do crescimento acentuado das pesquisas nos últimos anos, os líquidos iônicos são conhecidos há um bom tempo. Em 1914, o nitrato de etilamônio foi o primeiro líquido iônico a ser descoberto, por meio da reação de neutralização da etilamina com ácido nítrico concentrado. Em 1951, novas espécies foram encontradas, através da reação entre cloretos de alquilpiridínio e tricloreto de alumínio, porém suas propriedades não permitiam um fácil manuseio. Em 1992, sais à base de imidazol e tetrafluoroborato foram sintetizados, que despertaram o interesse acadêmico e industrial por conta de suas propriedades diferenciadas (WANG *et al.*, 2017).

A busca por processos ambientalmente corretos, ou processos que atendam aos critérios da química verde (SHELDON, 2018), é uma constante nos setores de pesquisa e desenvolvimento. Uma das diversas aplicações dos líquidos iônicos é o uso como solventes capazes de substituir solventes orgânicos muito utilizados que causam alto impacto ambiental tanto pela grande quantidade utilizada, quanto pela alta volatilidade que torna difícil sua contenção durante o processo (WELTON, 1999). Alternativas para a substituição dos solventes orgânicos convencionais incluem o uso de fluidos supercríticos, de catálise heterogênea (sem solvente) e de água, porém a última opção pode apresentar dificuldades no momento de dissolver alguns componentes (SEDDON, 1997). Outras aplicações para os líquidos iônicos envolvem o uso como eletrólitos em estágios iniciais, lubrificantes, catalisadores, no preparo de materiais de alta condutividade, de membranas poliméricas, na imobilização de enzimas, na síntese de nano-materiais, de drogas, na dessulfurização de combustíveis, na captura de CO₂, dentre outras como mostrado na Figura 3.1 (WANG *et al.*, 2017; KESKIN *et al.*, 2007; PLECHKOVA; SEDDON, 2007; EGOROVA; GORDEEV; ANANIKOV, 2017; IBRAHIM *et al.*, 2017; ZENG *et al.*, 2017).

Figura 3.1 - Aplicações dos líquidos iônicos.

Fonte: Modificado de CHO et al. (2021).

Apesar de reduzir a poluição atmosférica e a intoxicação por inalação ao substituir os compostos orgânicos voláteis pelos líquidos iônicos, a liberação inadequada no ambiente por vazamentos ou por erros técnicos pode se tornar outro problema ambiental. Testes em ambientes e condições variados foram feitos e foram descobertas atividades fungicida, bactericida e herbicida de acordo com a estrutura do LI, com o organismo em contato e com as condições dessas interações (CHO *et al.*, 2021; SAKINA *et al.*, 2021). Dessa maneira, se faz necessário ter cautela sobre a não-toxicidade dessas substâncias como visto em muitos trabalhos (PETKOVIC *et al.*, 2011). Além das propriedades relevantes para determinada aplicação, é importante ter em vista os aspectos relacionados ao meio ambiente como sua biodegradabilidade, formas de descarte, toxicidade, corrosividade, mesmo com suas numerosas vantagens, quando comparados aos compostos orgânicos voláteis. Essas propriedades também estão associadas à estrutura de cada LI de acordo com as características dos íons selecionados para sua síntese que se relacionam ao anel estrutural principal, aos grupos funcionais presentes (PAUCAR *et al.*, 2021) e, principalmente, às ramificações presentes no cátion pela sua maior relevância ao estudar os impactos causados em relação aos ânions (GONCALVES *et al.*, 2021).

Líquidos iônicos são considerados um subconjunto dos sais fundidos (WANG *et al.*, 2017), são formados por cátions orgânicos de baixa simetria e ânions orgânicos ou inorgânicos. Dessa maneira, há inúmeras combinações para a obtenção de diferentes líquidos iônicos cada um com propriedades específicas, algo em torno de 10¹⁸ possibilidades (HOLBREY; SEDDON, 1999). O método mais comum para síntese é por meio da reação de metátese de sais, mas outros métodos podem ser utilizados como a neutralização ácido-base (IBRAHIM, *et al.*,

2017). Na Figura 3.2, são apresentadas as estruturas químicas de alguns íons comuns na obtenção de líquidos iônicos (DONG *et al.*, 2017).

Figura 3.2 – Estrutura química de íons comuns na obtenção de líquidos iônicos.

Fonte: Dong *et al.* (2017) Legenda: • - Cátion a base de imidazólio.

Quando se faz referência a sais fundidos, logo se sugere que se trata de compostos com características corrosivas, que trabalham a altas temperaturas e que formam meios viscosos, como minerais derretidos, porém o termo líquido iônico se refere aos líquidos compostos inteiramente por íons que são fluidos em temperaturas próximas e abaixo de 100°C, havendo líquido iônico capaz de se manter em estado líquido a baixas temperaturas como -96°C. Na maioria dos casos, os líquidos iônicos são incolores e fáceis de manusear (ROGERS; SEDDON, 2003; SEDDON, 1997), além de apresentarem propriedades como a não-inflamabilidade, pressão de vapor extremamente baixa (LEI et al., 2017), oferecer um ajuste de polaridade de acordo com a sua composição e ser estável tanto na presença de ar, quanto de umidade. Wang et al. (2017) alertam sobre os cuidados que devem ser tomados para que essa estabilidade dos líquidos iônicos não seja prejudicial ao meio reacional ou ao próprio líquido iônico de acordo com a aplicação que é realizada, visto que há condições adequadas para que se evitem reações paralelas ou degradação de catalisadores, por exemplo. A relação entre a estrutura e a interação dos íons no líquido iônico é fundamental para determinar a propriedade desejada (DONG et al., 2017; MARSH; BOXALL; LICHTENTHALER, 2004). Alterações no comprimento e na ramificação do grupo alquila presentes no cátion podem modificar significativamente as propriedades do líquido iônico (MARSH; BOXALL; LICHTENTHALER, 2004), permitindo
a exploração de um amplo campo de pesquisa multidisciplinar para os líquidos iônicos (ROGERS; SEDDON, 2003, BRANCO, 2015).

No estudo do equilíbrio de fases, a variedade de LIs à base de imidazólio permite um vasto campo de estudos que vem sendo explorado há alguns anos e ainda apresenta espaços a serem preenchidos com novos dados de equilíbrio, visto que poucos grupos de pesquisas trabalham com esses conteúdos por se tratar de experimentos que requerem um longo tempo para obtenção de dados experimentais (LEI *et al.*, 2014). Para o ELV a baixas pressões de sistemas contendo água + etanol + LI, diversos ânions foram estudados para LIs que continham imidazólio com radicais etila e butila ligados em sua estrutura molecular (TSANAS *et al.*, 2014; GE *et al.*, 2008; GRACZOVA; STELTENPOHL, 2022). Para o estudo da solubilidade do CO₂ em LIs à base de imidazólio a altas pressões, foi abordada uma vasta quantidade de ânions e os efeitos de cadeia do cátion (CARVALHO et al., 2009; LEI; YUAN; ZHU, 2010; BLANCHARD; GU; BRENNECKE, 2001; AKI et al., 2004). Para o ELL de sistemas ternários compostos por água + 1-butanol + LI, muitos LIs, não apenas à base de imidazólio, se mostraram agentes extratores eficientes para separar o álcool de uma solução aquosa (DOMANSKA; KROLIKOWSKI, 2012; HA; MAI; KOO, 2010; MOTGHARE; SHENDE; WASEWAR, 2022; WASEWAR, 2022).

3.2 CONSISTÊNCIA TERMODINÂMICA

Com os estudos na área de equilíbrio de fases para diversos sistemas, a quantidade de dados experimentais encontrados é muito grande. A diversidade de experimentos realizados por diferentes pesquisadores leva a uma variedade de resultados para sistemas que se encontram nas mesmas condições e, em algumas situações, surgem discrepâncias nas informações disponibilizadas na literatura a respeito. Alvarez e Aznar (2008) exemplificam algumas diferenças encontradas através de um sistema binário estudado nas mesmas condições experimentais por diversos autores e, desta forma, é possível notar a necessidade de que os dados experimentais obtidos, em qualquer trabalho por qualquer pesquisador, devam passar por uma validação para que sejam considerados aptos a serem utilizados em etapas posteriores de estudo. Os testes de consistência termodinâmica são utilizados como meio para avaliar a validade dos dados experimentais obtidos, mas também podem ser utilizados para avaliar a validade de resultados obtidos a partir de um novo método de cálculo de propriedades proposto (VALDERRAMA; FORERO; ROJAS, 2012). Estes testes são, em sua maioria, baseados na equação de Gibbs-Duhem, que correlaciona os coeficientes de atividade dos componentes

presentes em uma mistura (CUNICO, 2015). Outras relações termodinâmicas também podem ser utilizadas, como os cálculos para os coeficientes de fugacidade (JACKSON; WILSAK, 1995). Uma vez que os dados experimentais obtidos permitem o cálculo dos coeficientes de atividade, a equação de Gibbs-Duhem deve ser obedecida. Se os dados não satisfazem à relação, não podem ser considerados corretos (VALDERRAMA; REÁTEGUI; SANGA, 2008), enquanto que os dados que atendem à equação provavelmente estão corretos. O termo "provavelmente" é utilizado, pois um conjunto de dados errôneos pode, acidentalmente, obedecer à equação, porém isto é pouco provável (PRAUSNITZ; LICHTENTHALER; AZEVEDO, 1999).

Diferentes modos de se trabalhar o desenvolvimento da equação de Gibbs-Duhem criam diferentes testes de consistência termodinâmica (JACKSON; WILSAK, 1995), assim como diferentes testes de consistência termodinâmica são gerados a partir da combinação apropriada de diferentes equações de estado e de diferentes regras de mistura com a equação de Gibbs-Duhem desenvolvida (HIZADDIN *et al.*, 2015). Entre eles, podem ser citados: teste diferencial, teste integral e teste de inclinação (MOHAMMADI; ESLAMIMANESH; RICHON, 2011). Wisniak, Ortega e Fernández (2017) analisaram diversos testes de consistência termodinâmica obtidos e utilizados ao longo dos anos expondo vantagens e desvantagens de cada um, visto a importância que informações reais têm no momento do desenvolvimento de projetos de unidades de separação ou de extração em uma cadeia de processos.

3.3 EQUILÍBRIO DE FASES

O equilíbrio de fases possui um papel importante para a compreensão do mecanismo e da cinética em reações, assim como é essencial para se projetar unidades de separação de processos de acordo com as substâncias que estão envolvidas no sistema em estudo (SHIMOYAMA *et al.*, 2008). O equilíbrio é definido como o momento em que mudanças macroscópicas deixam de ocorrer em um sistema com o passar do tempo, ou seja, quando todas as características capazes de provocar uma variação no sistema podem ser igualadas (SMITH; VAN NESS; ABBOTT, 2007).

3.3.1 Equilíbrio líquido-vapor (ELV)

Um sistema contendo fase líquida e fase vapor é considerado em equilíbrio quando a temperatura, a pressão e as composições das fases atingem valores finais, no qual, em nível

molecular, a transferência de matéria entre as fases ainda ocorre de maneira que a média das taxas dessas transferências de matéria entre as fases é a mesma ao longo do tempo.

Qualquer sistema fechado que se encontra em condições constantes de pressão e de temperatura caminha para o equilíbrio com o passar do tempo, visto que as fases presentes estão abertas entre si e a transferência de propriedades busca minimizar as diferenças existentes entre elas. Além da temperatura e da pressão constantes, em um equilíbrio de fases, o potencial químico de cada espécie presente no sistema é o mesmo para todas as fases (SMITH; VAN NESS; ABBOTT, 2007). Logo, a coexistência de três equilíbrios – o equilíbrio térmico, relacionado à temperatura; o equilíbrio mecânico, relacionado à pressão; o equilíbrio químico, relacionado a potencial químico – é necessária para que se caracterize o equilíbrio termodinâmico.

Como colocado por Sandler (2006), em um sistema isotérmico, a variação do potencial químico pode ser definida como:

$$\mu_i - \mu_i^0 = RT \ln \frac{f_i}{f_0} \tag{3.1}$$

Onde μ_i é o potencial químico do componente *i* para as condições do sistema, μ_i^0 é o potencial químico do componente *i* em um estado padrão ou inicial, *R* é a constante universal dos gases, *T* é a temperatura do sistema, f_i é a fugacidade do componente i para as condições do sistema e f_0 é a fugacidade do componente *i* referente ao estado padrão ou inicial.

A partir do equilíbrio químico, ou seja, da igualdade entre os potenciais químicos, o equilíbrio de fases, especificamente o equilíbrio líquido-vapor, pode ser representado por outro critério, visto na equação (3.2).

$$\hat{f}_i^L = \hat{f}_i^V \tag{3.2}$$

Onde os sobrescritos L (líquido) e V (vapor) representam a fase do componente i. O acento circunflexo denota que se trata de substâncias presentes em misturas ou em soluções.

O coeficiente de fugacidade para misturas ou para soluções, $\hat{\phi}$, é uma razão adimensional, definido para a fase líquida e para a fase vapor como:

$$\hat{\phi}_i^L = \frac{\hat{f}_i}{x_i P} \qquad , \qquad \hat{\phi}_i^V = \frac{\hat{f}_i}{y_i P} \tag{3.3}$$

Onde x_i e y_i representam a composição molar do componente *i* na fase líquida e na fase vapor, respectivamente, e *P* representa a pressão do sistema.

Sendo assim, a altas pressões, o equilíbrio de fases deve ser expresso em função dos coeficientes de fugacidade, ou abordagem phi-phi, como apresentado na equação (3.4).

$$x_i \hat{\phi}_i^L = y_i \hat{\phi}_i^V \tag{3.4}$$

Por outro lado, a baixas pressões, o equilíbrio de fases líquido-vapor pode ser representado em função do coeficiente de atividade e do coeficiente de fugacidade, ou abordagem gamma-phi, apresentado na equação (3.5).

$$x_i \gamma_i^L P_i^{sat} \hat{\phi}_i^{sat} P O Y_i = y_i \hat{\phi}_i^V P \tag{3.5}$$

Onde γ_i^L representa o coeficiente de atividade da fase líquida, P_i^{sat} é a pressão de saturação que pode ser obtida pela equação de Antoine e POY_i é o fator de Poynting para compensar desvios causados pela pressão na fase líquida.

É possível admitir o valor unitário aos coeficientes de fugacidade e ao fator de Poynting em sistemas submetidos a baixas pressões, ou próximas à pressão atmosférica ou de saturação. Dessa forma, a equação (3.5) é simplificada à lei de Raoult modificada, apresentada a seguir.

$$x_i \gamma_i^L P_i^{sat} = y_i P \tag{3.6}$$

3.3.2 Equilíbrio líquido-líquido (ELL)

Para o caso do equilíbrio bifásico líquido-líquido a baixas pressões (abordagem $\gamma - \gamma$) para sistemas ternários (diluente + soluto + solvente), a modelagem termodinâmica é expressa pelas seguintes relações de equilíbrio:

$$\hat{f}_i^{L_1} = \hat{f}_i^{L_2} \tag{3.7}$$

Onde os sobrescritos L_1 (líquido 1) e L_2 (líquido 2) representam as fases líquidas do componente *i*. O acento circunflexo denota que se trata de substâncias presentes em soluções.

Substituindo a definição de fugacidade na equação (3.7), tem-se:

$$x_i^{L_{1_1}} \gamma^{L_1}_{i(T,x)} = x_i^{L_{2_1}} \gamma^{L_2}_{i(T,x)}$$
(3.8)

3.4 MODELOS TERMODINÂMICOS

Para o cálculo dos coeficientes de fugacidade e de atividade são utilizados os modelos termodinâmicos propostos a seguir.

3.4.1 Equações de estado, regras de mistura e coeficientes de fugacidade

3.4.1.1 Equação de estado de Peng-Robinson com translação de volume e contribuição de grupos (PR-TV-CG)

A equação cúbica de estado de Peng-Robinson (PENG; ROBINSON, 1976), devido a sua notória aplicabilidade ao comportamento do equilíbrio de fases, é utilizada em inúmeros trabalhos disponíveis na literatura. Sua precisão ainda pode ser melhorada com a inserção de um termo para correção do valor calculado para o volume, nomeada como equação de estado de Peng-Robinson com translação de volume, PR-TV, (TSAI; CHEN, 1998), como mostrada na equação (3.9).

$$P = \frac{RT}{v+t-b} - \frac{a}{(v+t)(v+t+b)+b(v+t-b)}$$
(3.9)

A constante a segue os cálculos mostrados na Figura 3.3. As constantes b e t são calculadas seguindo as equações (3.10) e (3.11).

$$b = \sum_{i}^{c} x_{i} b_{ii} \tag{3.10}$$

$$t = \sum_{i}^{c} x_{i} t_{i} \tag{3.11}$$

Figura 3.3 – Constante *a* com a contribuição de grupos para a EdE PR-TV.

Fonte: Adaptado de Schmid e Gmehling (2012).

Para o cálculo do parâmetro a_{ii} é utilizada a equação (3.12) e para b_{ii} e t_i são utilizadas as equações (3.13) e (3.14), respectivamente.

$$a_{ii} = 0,45724 \frac{R^2 T_{c_i}^2}{P_{c_i}} \alpha_i(T)$$
(3.12)

$$b_{ii} = 0,07780 \frac{RT_{c_i}}{P_{c_i}} \tag{3.13}$$

$$t_{i} = \frac{RT_{c_{i}}}{P_{c_{i}}} \left[k_{1_{i}} + k_{2_{i}} \left(1 - T_{r_{i}}^{\frac{2}{3}} \right) + k_{3_{i}} \left(1 - T_{r_{i}}^{\frac{2}{3}} \right)^{2} \right]$$
(3.14)

A equação (3.15) permite obter $\alpha_i(T)$.

$$\alpha_i(T) = \left[1 + M_i (1 - T_{r_i}) + N_i (1 - T_{r_i}) (0, 7 - T_{r_i})\right]^2$$
(3.15)

As relações complementares às equações (3.12) a (3.15) são mostradas a seguir pelas equações (3.16) a (3.19). O cálculo para obtenção dos parâmetros de componente puro, N_i e k_{3i} depende da regressão de dados da pressão de vapor e do volume de líquido saturado e é abordado com mais detalhes na seção 3.6.

$$T_{r_i} = T / T_{c_i}$$
 (3.16)

$$k_{1i} = 0,00185 + 0,00438\omega_i + 0,36322\omega_i^2 - 0,90831\omega_i^3 + 0,55885\omega_i^4 \quad (3.17)$$

$$k_{2i} = -0,00542 - 0,51112k_{3i} + 0,04533k_{3i}^{2} + 0,07447k_{3i}^{3} - 0,03811k_{3i}^{4}$$
(3.18)

$$M_i = 0,20473 + 0,83548\omega_i - 0,18470\omega_i^2 + 0,16675\omega_i^3 - 0,09881\omega_i^4 \quad (3.19)$$

A EdE PR-TV, equação (3.9), expressa em função do fator de compressibilidade, Z = Pv/RT, assume a forma da equação (3.20).

$$Z^3 - \alpha Z^2 + \beta Z - \gamma = 0 \tag{3.20}$$

Onde:

$$\alpha = B + 3T^* - 1 \tag{3.21}$$

$$\beta = A - 3B^2 + 3T^{*2} + 2BT^* - 2B - 2T^*$$
(3.22)

$$\gamma = B^{3} + T^{*^{3}} + B^{2} - T^{*^{2}} + BT^{*^{2}} - 3BT^{*} - 2BT^{*} + AT^{*} - AB \quad (3.23)$$

As constantes A, B e T^* são calculadas de acordo com as seguintes relações:

$$A = \frac{aP}{R^2 T^2}$$
, $B = \frac{bP}{RT}$; $T^* = \frac{tP}{RT}$ (3.24)

A partir da equação cúbica de estado, equação (3.20), três raízes reais devem ser obtidas. Ao tomar a menor das raízes obtidas através da equação cúbica gerada pelos dados da fase líquida, tem-se o valor relacionado ao fator de compressibilidade do líquido saturado. Enquanto, ao tomar a maior raiz, dentre as obtidas pela equação cúbica gerada através dos dados da fase vapor, tem-se o valor relacionado ao fator de compressibilidade do vapor saturado para as mesmas condições.

Após a definição do fator de compressibilidade a ser utilizado para a fase líquida e para a fase vapor, os coeficientes de fugacidade são calculados, de acordo com a fase desejada, pelas seguintes equações:

$$ln\left(\hat{\phi}_{i}^{\ \beta}\right) = \left(Z^{\beta} + T^{\beta} - 1\right) \left\{ \frac{2}{b^{\beta}} \left[y_{i} \left(\frac{b_{i}^{\ 3/4} + b_{ij}^{\ 3/4}}{2} \right)^{4/3} + y_{j} \left(\frac{b_{j}^{\ 3/4} + b_{ij}^{\ 3/4}}{2} \right)^{4/3} \right] - 1 \right\} - ln\left(Z^{\beta} + T^{\beta} - B^{\beta}\right) + \frac{\frac{a_{i}}{b_{i}} + \frac{g^{ER}}{-0.53087}}{2\sqrt{2}TR} \left[\frac{2(y_{i}a_{ii} + y_{j}a_{ij})}{a^{\beta}} - \frac{b_{i}}{b^{\beta}} \right] ln\left[\frac{Z^{\beta} + T^{\beta} + (1 - \sqrt{2})B^{\beta}}{Z^{\beta} + T^{\beta} + (1 + \sqrt{2})B^{\beta}} \right]$$
(3.25)

3.4.1.2 Equação de estado Cubic Plus Association (CPA)

A EdE CPA foi desenvolvida por Kontogeorgis *et al.* (1996) e é composta pelo somatório de duas partes: a equação SRK, P^{SRK} , para as interações físicas entre as moléculas do meio, e o termo de associação de Wertheim, P^{assoc} , para levar em consideração a interação específica entre os sítios ativos das moléculas devido às ligações de hidrogênio (KONTOGEORGIS et.al., 2006a, 2006b).

A equação CPA, representada em termos da pressão, é mostrada a seguir:

$$P = P^{SRK} + P^{assoc} \tag{3.26}$$

$$P^{SRK} = \frac{RT}{v-b} - \frac{a(T)}{v(v+b)}$$
(3.27)

$$P^{assoc} = \frac{RT}{v} \sum_{i} x_{i} \sum_{j} \rho_{j} \sum_{A_{j}} \left[\left(\frac{1}{X_{A_{j}}} - \frac{1}{2} \right) \frac{\partial X_{A_{j}}}{\partial \rho_{i}} \right]$$
(3.28)

Para calcular os parâmetros a(T) e *b* da mistura são necessárias regras de misturas para o termo P^{SRK} , que seguem as regras clássicas de van der Waals do tipo I (KONTOGEORGIS *et al.*, 2006b), como apresentado pelas equações (3.29) a (3.31).

$$a(T) = \sum_{i} \sum_{j} x_{i} x_{j} a_{ij} \tag{3.29}$$

$$a_{ij} = (1 - k_{ij})\sqrt{a_i a_j}$$
; $a_i = a_0 [1 + c(1 - \sqrt{T_{r_i}})]^2$ (3.30)

$$b = \sum_{i} x_{i} b_{i} \tag{3.31}$$

Onde k_{ij} é o parâmetro de interação binária e a_0 , b_i e c são parâmetros de componente puro não associativos.

No termo associativo, P^{assoc} , da EdE CPA, X_{A_i} é a fração de sítios do tipo A na molécula *i* que não estabelecem nenhuma ligação de hidrogênio com os outros sites ativos, cujo valor pode ser calculado pela equação (3.32).

$$X_{A_i} = \left(1 + \rho \sum_j x_j \sum_{B_j} X_{B_j} \Delta^{A_i B_j}\right)^{-1}$$
(3.32)

A grandeza $\Delta^{A_i B_j}$ representa a intensidade da associação relacionada à energia de associação entre os sítios e é calculada usando a equação (3.33).

$$\Delta^{A_i B_j} = \frac{1}{1 - 0.475 b\rho} \left[exp\left(\frac{\varepsilon^{A_i B_j}}{RT}\right) - 1 \right] b_{ij} \beta^{A_i B_j}$$
(3.33)

Os parâmetros associativos $\varepsilon^{A_iB_j}$ e $\beta^{A_iB_j}$ representam a energia e o volume de associação, respectivamente, entre os sítios *A* da molécula *i* e *B* da molécula *j*. Para obtê-los, juntamente com os parâmetros não associativos, a_0 , b_i e *c*, são usados métodos numéricos na posse de dados de pressão de vapor e de volume específico do líquido saturado, conforme mais detalhado na seção 3.6.

Para componente puro, o cálculo da fração de sítios ativos, X_{A_i} , que não estabelecem ligação de hidrogênio é simplificado adotando alguns critérios para relacionar sítios doadores e receptores de elétrons (HUANG; RADOSZ, 1990). Neste caso, o critério de associação 4C foi escolhido para o CO₂ e o critério 2B para os LIs utilizados, devido à presença de um sítio de associação positivo e um negativo, que correspondem às cargas de cátion e ânion (HAGHTALAB; KHEIRI, 2015).

3.4.1.3 Teoria Estatística de um Fluido Associado de Cadeia Perturbada (PC-SAFT)

A equação de estado PC-SAFT (GROSS; SADOWSKI, 2000; GROSS; SADOWSKI, 2001) calcula a energia residual de Helmholtz, \tilde{a}^{res} , a partir do somatório de três termos: um referente à contribuição da cadeia da esfera rígida (\tilde{a}^{hs}), um referente à contribuição da perturbação (\tilde{a}^{pert}) e um referente à contribuição da associação (\tilde{a}^{assoc}), onde $\tilde{a} = \frac{A}{NkT}$,

sendo que T, A, N e k são a temperatura, a energia livre de Helmholtz, o número total de moléculas e a constante de Boltzmann, respectivamente.

A contribuição da cadeia rígida (\tilde{a}^{hs}) foi baseada na teoria da perturbação de primeira ordem (CHAPMAN; JACKSON; GUBBINS, 1988; CHAPMAN *et al.*, 1990) e depende da função de distribuição dos pares radiais do sistema das esferas rígidas (g^{hs}) e do número do segmento principal (\bar{m}), além de ser uma função do número de segmentos por cadeia (m). A contribuição das esferas rígidas, \tilde{a}^{hs} , e a função da distribuição radial, g_{ij}^{hs} , também dependem do diâmetro do segmento que depende da temperatura (d_i), que é função do diâmetro do segmento (σ) e do potencial de atração dos pares (ε), como mostrado na equação (3.34).

$$d_{i} = \sigma_{ii} \left[1 - 0,12. \exp\left(-3\frac{\varepsilon_{ii}}{kT}\right) \right]$$
(3.34)

A contribuição de perturbação (BARKER; HENDERSON, 1967), \tilde{a}^{pert} , é calculada pelos termos da perturbação de primeira (\tilde{a}_1) e de segunda ordem (\tilde{a}_2), que contêm regras de misturas na forma como a apresentada na equação (3.35).

$$\overline{m_{i,j}\varepsilon_{i,j}^{l}\sigma_{i,j}^{k}} = \sum_{i}^{n_{c}}\sum_{j}^{n_{c}}x_{i}x_{j}m_{i}m_{j}\left(\frac{\varepsilon_{ij}}{kT}\right)^{l}\sigma_{ij}^{k}$$
(3.35)

Regras de combinações convencionais são usadas para determinar os parâmetros de cruzamento:

$$\sigma_{ij} = \frac{1}{2} \left(\sigma_{ii} + \sigma_{jj} \right) \tag{3.36}$$

$$\varepsilon_{ij} = \sqrt{\varepsilon_{ii}\varepsilon_{jj}} (1 - k_{ij}) \tag{3.37}$$

Onde k_{ij} é o parâmetro de interação binária e m_i , σ_{ii} e ε_{ii} são os parâmetros do componente puro *i* para o modelo PC-SAFT.

Quando componentes associados são utilizados, há a necessidade de adicionar um termo referente à contribuição da associação (ARCE; AZNAR, 2007), \tilde{a}^{assoc} , que contém outros dois parâmetros de componentes puros: o parâmetro do volume de associação, κ^{AiBj} , e o parâmetro da energia de associação, ε^{AiBj} .

Os cálculos dos termos associativos seguem relações similares às apresentadas para a EdE CPA, seção 3.4.1.2. Detalhes mais específicos da PC-SAFT são encontrados na literatura (ARCE; AZNAR, 2007; GROSS; SADOWSKI, 2002).

3.4.2 Modelos de energia livre de Gibbs em excesso e coeficientes de atividade

Funções de excesso são as propriedades termodinâmicas das soluções que excedem aquelas da solução ideal às mesmas condições de pressão, temperatura e composição. Para uma solução ideal, todas as propriedades de excesso são zero. Por exemplo, G^E , a energia livre de Gibbs de excesso (BRIGNOLE; PEREDA, 2013; RENON; PRAUSNITZ, 1968; ABRAMS; PRAUSNITZ, 1975).

A uma dada temperatura fixa, a energia livre de Gibbs molar em excesso, G^E , de uma mistura depende da composição da mistura, e, em menor grau, da pressão. A pressões baixas ou moderadas, longe das condições críticas, o efeito da pressão é o suficientemente pequeno para ser desprezado, e não ser considerado durante a análise. A energia livre de Gibbs em excesso está relacionada ao coeficiente de atividade através das seguintes relações:

$$G^E = RT \sum_i n_i ln\gamma_i \tag{3.38}$$

$$RTln\gamma_i = \bar{g}_i^E = \left(\frac{\partial n_T g^E}{\partial n_i}\right)_{T,P,n_{j\neq i}}$$
(3.39)

3.4.2.1 Modelo NRTL

Renon e Prausnitz (1968) desenvolveram a equação NRTL (Non-Random, Two-Liquid) baseados no conceito de composição local para calcular o coeficiente de atividade em sistemas de miscibilidade parcial ajustando os dados experimentais com exatidão significativa. O modelo para calcular os coeficientes de atividade dos componentes em uma solução multicomponente é:

$$\frac{g^E}{RT} = \sum_i x_i \frac{\sum_j \tau_{ji} G_{ji} x_j}{\sum_k G_{ki} x_k}$$
(3.40)

$$\tau_{ji} = \frac{g_{ji} - g_{ii}}{_{RT}} \tag{3.41}$$

$$G_{ji} = \exp(-\alpha_{ji}\tau_{ji}); \quad \alpha_{ji} = \alpha_{ij}$$
(3.42)

Onde τ_{ij} e α_{ij} são os parâmetros de energia característico das interações *i-j*. O parâmetro α_{ij} está relacionado à não-aleatoriedade da mistura, isto é, os componentes na mistura se distribuem de acordo com um padrão ditado pela composição local. Quando α_{ij} é zero, a mistura é completamente aleatória.

Os coeficientes de atividade podem ser expressos como:

$$ln\gamma_i = \frac{\sum_j \tau_{ji} G_{ji} x_j}{\sum_k G_{ki} x_k} + \sum_j \frac{x_j G_{ij}}{\sum_k G_{kj} x_k} \left(\tau_{ij} - \frac{\sum_r x_r \tau_{rj} G_{rj}}{\sum_k G_{kj} x_k} \right)$$
(3.43)

Para sistemas ideais ou moderadamente ideais, NRTL não oferece muita vantagem sobre os modelos mais simples, mas, para sistemas fortemente não ideais, esta equação pode fornecer uma boa representação dos dados experimentais, embora sejam necessários dados de boa qualidade para estimar os três parâmetros.

3.5 SIMULAÇÃO TERMODINÂMICA

3.5.1 Redes neurais artificiais

As redes neurais artificiais (RNA) são ferramentas computacionais inspiradas no comportamento de neurônios naturais. As unidades, semelhantes a neurônios, organizam-se em uma forma de estrutura definida por camadas com um número definido de neurônios. A camada de entrada recebe os dados de determinadas propriedades e conjunto de variáveis que são supostamente relacionados à principal variável dependente (NASR *et al.*, 2012). As variáveis de entrada são relacionadas às variáveis de saída, sendo atribuído um certo peso e um determinado deslocamento por um específico fator bias em cada neurônio. A rede encontra uma relação entre as variáveis por meio de um laço de cálculos e por meio de alguma rotina de otimização. Em seguida, ela armazena os valores dos pesos (w) e dos biases (b) que dão o menor erro calculado entre os dados experimentais da variável dependente. Esses valores definem o modelo de RNA (TASKINEN; YLIRUUSI, 2003). A Figura 3.4 ilustra como é feita a distribuição de informações pelos neurônios ao longo das camadas. Diferentes arquiteturas podem ser obtidas a partir da combinação da quantidade de camadas e da quantidade de neurônios em cada camada a cada rotina realizada.

As RNA têm várias características únicas e vantagens para aplicações, tais como a predição de propriedades termodinâmicas de substâncias puras e do equilíbrio de fases. Um desses recursos é sua natureza adaptativa. O processo de aprendizagem através do treinamento é usado em vez da "programação" convencional comumente usada na modelagem (LONEY; SIMON; GAO, 2003). Esta característica torna as RNA muito atraentes para aplicações onde a relação entre as variáveis não é bem conhecida, mas os dados estão disponíveis para o treinamento (BOSE; LIANG, 1996; MJALLI; AL-SHEH; ALFADALA, 2007). Embora as RNA representem ferramentas matemáticas úteis, suas aplicações devem ser tomadas com cuidado. Em particular, a exigência de uma grande quantidade de dados precisos (que varia de acordo com a complexidade do problema) e o conhecimento das variáveis mais apropriadas (variáveis independentes) que possuem a maior influência na variável-alvo (variável dependente) (LIVINGSTONE; MANALLACK; TETKO, 1997). Para o caso de falta de precisão dos dados inseridos para as variáveis independentes, descritores moleculares são uma opção para caracterizar com maior qualidade o sistema estudado.

Figura 3.4 – Representação das redes neurais artificiais.

Fonte: Arquivo pessoal.

3.5.2 Descritores moleculares

Os descritores moleculares desempenham um papel fundamental em química, ciências farmacêuticas, política de proteção ambiental e pesquisas de saúde, bem como no controle de qualidade, em que as moléculas, pensadas como corpos reais, são transformadas em números, permitindo um tratamento matemático das informações químicas contidas na molécula. Todeschini e Consonni (2000) e Consonni, Todeschini e Pavan (2002) definem que o descritor molecular é o resultado final de uma lógica e procedimento matemático que transforma a informação química codificada dentro de uma representação simbólica de uma molécula em um número útil ou o resultado de algum experimento padronizado.

Neste contexto, os descritores moleculares são divididos em duas categorias principais: *medições experimentais*, tais como coeficiente de partição, refratividade molar, momento dipolar, polarização e, em geral, propriedades físico-químicas e *descritores moleculares teóricos*, que são derivados de uma representação simbólica da molécula e podem ainda ser classificados de acordo com os diferentes tipos de representação molecular.

3.6 PROPRIEDADES DE COMPONENTE PURO

Para o tratamento matemático do equilíbrio de fases, são necessários parâmetros característicos dos modelos termodinâmicos que dependem de propriedades da substância no sistema. Além disso, essas propriedades são usadas para caracterização dos dados fornecidos às redes neurais artificiais para a etapa de aprendizagem na simulação termodinâmica. Ao lidar com moléculas complexas como os LIs, a obtenção de algumas propriedades de componente puro se torna inviável dependendo das condições experimentais a que serão submetidas. Por exemplo, não é possível obter as propriedades críticas da maioria desses componentes devido à decomposição, à medida que se aproxima da temperatura de ebulição (VALDERRAMA; ROBLES, 2007).

Os métodos envolvendo a predição de propriedades a partir da estrutura molecular do componente são opções práticas que geram resultados confiáveis para as aplicações em engenharia, como o método Lydersen-Joback-Reid modificado, proposto por Valderrama e Robles (2007), para aplicação em líquidos iônicos e aperfeiçoado ao longo dos anos (VALDERRAMA; SANGA; LAZZÚS, 2008; VALDERRAMA; ROJAS, 2009; VALDERRAMA; FORERO; ROJAS, 2012; VALDERRAMA; FORERO; ROJAS, 2015). Este método possibilita a obtenção de propriedades fundamentais para abordagens

termodinâmicas, tais como: temperatura de ebulição (T_b) , temperatura (T_c) e pressão (P_c) críticas e fator acêntrico (ω) .

O cálculo dessas propriedades requer informações sobre a estrutura e a massa molecular (*MM*) da substância. Cada grupo definido na metodologia de Valderrama e Robles (2007) possui uma participação na propriedade (ΔT_{bM} , ΔT_M , ΔP_M) proporcionalmente à quantidade de vezes (*n*) em que ocorre na estrutura molecular. As equações são apresentadas a seguir:

$$T_b = 198,2 + \sum n\Delta T_{bM}$$
(3.50)

$$T_c = \frac{T_b}{A_M + B_M \sum n \Delta T_M - (\sum n \Delta T_M)^2}$$
(3.51)

$$P_c = \frac{MM}{[c_M + \sum n \Delta P_M]^2} \tag{3.52}$$

$$\omega = \frac{(T_b - 43)(T_c - 43)}{(T_c - T_b)(0, 7T_c - 43)} \log\left[\frac{P_c}{P_b}\right] - \frac{(T_c - 43)}{(T_c - T_b)} \log\left[\frac{P_c}{P_b}\right] + \log\left[\frac{P_c}{P_b}\right] - 1$$
(3.53)

Onde os parâmetros A_M , B_M e C_M valem 0,5703, 1,0121 e 0,2573, respectivamente, e $P_b = 1 atm$.

Além das propriedades críticas e do fator acêntrico, alguns modelos termodinâmicos necessitam dos parâmetros de componente puro apresentados na seção 3.4.1.

Esses parâmetros são obtidos pela modelagem da curva de saturação do componente, por meio da regressão matemática com os dados de pressão de vapor e de volume específico do líquido saturado utilizando a própria equação de estado (EdE) que se deseja obter os parâmetros. No caso dos LIs, muitas vezes, esses dados para a modelagem precisam ser preditos.

O cálculo para predição da pressão de vapor (P^{SAT}), equação (3.54), para os LIs foi proposto por Valderrama e Forero (2012) e trata-se de um método analítico baseado em equações de estado. Assim, as propriedades críticas e fator acêntrico, previamente calculados, são incluídos nessa etapa.

$$P^{SAT} = \frac{RT}{V^0 - b} exp\left[\frac{a}{2\sqrt{2}RTb} ln\left(\frac{V^0 + (1 - \sqrt{2})b}{V^0 + (1 + \sqrt{2})b}\right) - 1\right]$$
(3.54)

Onde V^0 é o volume do líquido, quando $P \rightarrow 0$, calculado pela equação de estado de Peng-Robinson, como mostrado a seguir:

$$V^{0} = \left(\frac{a}{2RT}\right) - b - \frac{b}{2}\sqrt{\left(\frac{a}{bRT} - 1\right)^{2} + 6\left(1 - \frac{a}{bRT}\right) + 1}$$
(3.55)

As constantes *a* e *b* seguem as equações (3.12) e (3.13). O termo $\alpha(T)$ presente no cálculo da constante *a* possui algumas modificações analisadas por Valderrama e Forero (2012) para os cálculos voltados para os LIs em que o índice de conectividade de massa (λ) é introduzido às relações ao invés do fator acêntrico ou para complementar a relação de acordo com cada proposta.

A equação (3.56) apresenta a relação original do método de Peng-Robinson, proposta por Soave.

$$\alpha(T) = \left[1 - k\left(1 - \sqrt{\frac{T}{T_c}}\right)\right]^2 \tag{3.56}$$

Onde:

$$k = 0,1394\lambda^2 - 1,0013\lambda + 2,9833 \tag{3.57}$$

A segunda proposta, denominada Heyen-1, apresenta um formato exponencial para $\alpha(T)$, conforme a equação (3.58).

$$\alpha(T) = exp\left[m_1\left(1 - \frac{T}{T_c}\right)\right]$$
(3.58)

Onde:

$$m_1 = 0,1065\lambda^2 - 0,7707\lambda + 2,6077 \tag{3.59}$$

E, por último, a proposta denominada Heyen-2, segue a equação (3.60).

$$\alpha(T) = exp\left\{m_2\left[1 - \left(\frac{T}{T_c}\right)^n\right]\right\}$$
(3.60)

Onde:

$$m_2 = \frac{-4,2944\omega - 1,2229\lambda + 1,3605\lambda\omega + 5,0351}{n} \tag{3.61}$$

$$n = \frac{-0.2143\lambda^2 + 1.6758\lambda - 4.6894}{-8.5888\omega - 2.4458\lambda + 2.7210\lambda\omega + 11.0351}$$
(3.62)

O índice de conectividade mássica é obtido pelo método de contribuição de grupos proposto por Valderrama e Rojas (2010), de acordo com a equação (3.63).

$$\lambda = \sum \left(\frac{1}{\sqrt{m_i m_j}}\right)_{ij} \tag{3.63}$$

Onde m_i e m_j são as massas de cada grupo funcional vizinho i e j na molécula. Neste método, a interação i-j é diferente de j-i.

Para a predição do volume específico do líquido saturado ($v^{L_{SAT}}$), o método de contribuição de grupos, equação (3.64), proposto por Qiao e colaboradores (2010) foi utilizado.

$$v^{L_{SAT}} = (A + BP + CT)^{-1} \tag{3.64}$$

Onde P é a pressão expressa em MPa, T é a temperatura em K e A, B e C são parâmetros do método que são calculados de acordo com a contribuição de cada grupo e a sua quantidade presente na molécula.

4 METODOLOGIA

4.1 EXPERIMENTAL

O estudo experimental do equilíbrio líquido-vapor e do equilíbrio líquido-líquido dos sistemas binários e ternários selecionados foi realizado para obtenção dos dados experimentais do equilíbrio de fases em determinadas condições. Esses dados experimentais foram submetidos a uma avaliação da qualidade mais apropriada de acordo com cada sistema visando a validação para que fossem utilizados na modelagem termodinâmica e na simulação termodinâmica.

Levando em consideração quão recente é a parte experimental nas pesquisas sobre equilíbrio de fases no Laboratório de Termodinâmica Química Aplicada - Processos de Separação da Escola de Engenharia de Lorena, Universidade de São Paulo, os equipamentos recém-adquiridos passaram previamente por uma validação da metodologia experimental, utilizando sistemas binário e ternários mais simples estudados por outros autores, para fins de comparação com os dados experimentais já reportados, antes de serem colocados em funcionamento com os líquidos iônicos.

4.1.1 Substâncias utilizadas

Na Tabela 4.1, são apresentadas todas as substâncias utilizadas para a execução dos experimentos de validação e dos sistemas contendo LIs tanto da parte experimental, quanto da parte computacional. Nesta, foram empregados dados de outros projetos do grupo de pesquisa do Prof. Dr. Pedro Arce, envolvendo os outros LIs ([bmim][BF4], [omim][BF4], [emim][PF6], [hmim][PF6] e [emim][Cl]) no ELV a altas pressões, para a simulação termodinâmica.

Os líquidos iônicos selecionados e os demais compostos utilizados na etapa experimental desta tese são apresentados na Tabela 4.2 com suas informações de componente. A água utilizada foi obtida pelo destilador Fanem, modelo 724/1-A.

Substância / Estrutura	Sigla	Fórmula empírica	Massa molar (g/mol)	Registro CAS*
Água H ^{∕0} ∕H	-	H ₂ O	18,02	7732-18-5
Acetato de etila H_3C C C H_2 CH_3	-	$C_4H_8O_2$	88,11	141-78-6
Acetona	-	C ₃ H ₆ O	58,08	67-64-1
Metanol H ₃ C——OH	-	CH ₄ O	32,04	67-56-1
Etanol H ₃ C C OH	-	C_2H_6O	46,07	64-17-5
1-butanol _{H₃C} – С – С – ОН	-	$C_4H_{10}O$	74,12	71-36-3
Dimetil Éter _{H3} C CH ₃	DME	C_2H_6O	46,07	115-10-6
Dióxido de carbono 0===0	CO_2	CO_2	44,01	124-38-9
Tetrafluoroborato de 1-etil-3-metilimidazólio CH_3 BF ₄ -	[emim][BF4]	$C_6H_{11}BF_4N_2$	197,97	143314-16-3
Tetrafluoroborato de 1-butil-3-metilimidazólio $(A_{N}^{N})^{CH_{3}} BF_{4}^{-}$	[bmim][BF4]	$C_8H_{15}BF_4N_2$	226,02	174501-65-6
				(continua)

Tabela 4.1 – Substâncias utilizadas nesta tese.

(conc]	lusão)
(cone	lubuoj

Substância / Estrutura	Sigla	Fórmula empírica	Massa molar (g/mol)	Registro CAS*
Tetrafluoroborato de 1-hexil-3-metilimidazólio	[hmim][BF4]	$C_{10}H_{19}BF_4N_2$	254,08	244193-50-8
CH ₂ (CH ₂) ₄ CH ₃ Tetrafluoroborato de 1-octil-3-metilimidazólio ,CH ₂ (CH ₂) ₆ CH ₃ K^+ BF ₄ -	[omim][BF ₄]	$C_{12}H_{23}BF_4N_2$	282,14	244193-52-0
Hexafluorofosfato de 1-etil-3-metilimidazólio	[emim][PF ₆]	$C_6H_{11}F_6N_2P$	256,13	155371-19-0
Hexafluorofosfato de 1-hexil-3-metilimidazólio CH ₃ PF ₆ - CH ₂ (CH ₂) ₄ CH ₃	[hmim][PF ₆]	$C_{10}H_{19}F_6N_2P$	312,24	304680-35-1
Cloreto de 1-etil-3-metilimidazólio	[emim][Cl]	C ₆ H ₁₁ ClN ₂	146,62	65039-09-0
Etilsulfato de 1-etil-3-metilimidazólio $ \begin{array}{c} $	[emim][EtSO4]	C ₈ H ₁₆ N ₂ O ₄ S	236,29	342573-75-5

Fonte: Arquivo pessoal. Nota: Registro CAS – registro único no banco de dados do Chemical Abstracts Service.

Substância	Fornecedor	Pureza (%)	Substância	Fornecedor	Pureza (%)
1-butanol	Dinâmica	99,4	DME	Synth	99,5
Acetato de etila	Dinâmica	99,8	CO_2	White Martins AS	99,5
Acetona	Neon	99,54	[emim][BF4]	China	99,6
Etanol	Synth	99,5	[hmim][BF4]	China	99,7
Metanol	J.T. Baker	99,97	[emim][EtSO ₄]	China	99,6

Tabela 4.2 – Informações dos compostos utilizados nas etapas experimentais.

Fonte: Arquivo pessoal.

4.1.2 ELV experimental

4.1.2.1 ELV a baixas pressões

O aparato experimental utilizado para o ELV a baixas pressões é composto por uma célula de recirculação da fase vapor, o ebuliômetro de Othmer modificado (OLIVEIRA, 2003; VENERAL, 2010), e os acessórios necessários para o seu funcionamento. A Figura 4.1 apresenta o sistema completo.

O sistema é composto pelo (A) banho ultratermostático Quimis, modelo Q214M2 com faixa de operação entre -20,0 e 120,0 °C e precisão de 0,1 °C, conectado ao (B) ebuliômetro de Othmer modificado, construído em vidro borossilicato, que se encontra sobre o (C) agitador magnético com aquecimento Sppencer, modelo SP108-25, e é conectado pelo condensador à direita ao (D) trap por meio da (E) linha de vácuo com quatro entradas, ambos feitos em vidro borossilicato, que é interligado à (F) bomba de vácuo e compressor Prismatec, modelo 131 tipo 2 VC. A medição da temperatura do ebuliômetro é feita por controladores de temperatura Thomas Scientific, modelo Kangaroo Traceable capaz de operar no intervalo entre -50,0 e 300,0 °C, e Benetech, modelo GM1312 do tipo J capaz de operar entre -50,0 e 300,0 °C, para a fase líquida e para a fase vapor, respectivamente. Ambos possuem precisão de 0,1 °C.

Figura 4.1 – Aparato experimental para ELV a baixas pressões.

Fonte: Arquivo pessoal.

Para operar o sistema, o banho ultratermostático foi regulado a 15,0 °C para a circulação da água de refrigeração nos condensadores do ebuliômetro de Othmer modificado. Como a capacidade do reservatório da fase líquida do ebuliômetro é de aproximadamente 400,0 mL, volumes entre 200,0 e 300,0 mL foram utilizados como carga inicial, juntamente com uma barra magnética para homogeneização do meio líquido. Ajusta-se a pressão do sistema em $101,3 \pm$ 0,1 kPa com a bomba manométrica e se inicia o aquecimento e a agitação da solução. À medida que ocorria a vaporização do líquido, o vapor circulava pelo condensador de bolas, à esquerda, se liquefazia e se depositava no reservatório até ultrapassar a capacidade máxima (aproximadamente 8,0 mL) e começar a gotejar. Nesse momento, começou a recirculação da fase vapor no sistema. O condensador espiral, à direita, auxiliou para que vestígios de vapor não chegassem à linha de vácuo, e também evitou possíveis perdas por vaporização de qualquer um dos componentes do sistema. Abaixo desse condensador, há um bulbo pelo qual foi possível fazer a contagem das gotas provenientes do reservatório do condensado da fase vapor. Além da consolidação da temperatura do meio, o número de gotas tomado periodicamente por um determinado intervalo de tempo (em geral, um minuto) se manteve constante para que o sistema estivesse em equilíbrio e a amostragem fosse feita para a medição em triplicata das amostras.

4.1.2.2 ELV a altas pressões

Para o ELV a altas pressões, o aparato experimental (Figura 4.2) é composto por uma célula de equilíbrio (CE) a altas pressões, produzida sob medida em aço inoxidável com capacidade máxima de 25 mL, provida de pistão, que é conectada a uma bomba seringa (BS), ISCO 260D com cilindro interno de 266 mL atingindo até 500 bar de pressão de trabalho, por tubos de aço inoxidável para direcionar o carregamento de gás, proveniente do cilindro (C1), para o interior da célula onde ocorre o equilíbrio de fases e também para o pistão (P) para o ajuste da pressão do sistema. O esquema de distribuição e os modelos das válvulas para controle do fluxo do gás é mostrado na Figura 4.2. A célula de equilíbrio possui duas janelas de safira, uma lateral (JL) para iluminar o interior e uma frontal (JF) para monitorar o sistema por meio de uma câmera de vídeo (CV) ligada ao monitor (M). A célula encontra-se sobre um agitador magnético (AM) para homogeneização da mistura em estudo e é conectada a um dos banhos termostáticos (BT), ETHYK, Modelo 521-2D., para controle da temperatura do interior da célula. A bomba seringa é conectada ao outro BT por meio da jaqueta metálica (JM) feita em aço inox para controlar a temperatura do gás injetado. O monitoramento das condições experimentais é feito por um transdutor e controlador PID, ICS 400, que processa as informações de sensores de temperatura, modelo STR-100, e de pressão, modelo TP25A, conectados à célula de equilíbrio.

Figura 4.2 – Esquema da unidade de laboratório de equilíbrio de fases a alta pressão.

Fonte: Arquivo pessoal.

Nota: C1: Cilindro de CO₂, BT: banho termostático; BS: bomba seringa; JM: jaqueta metálica; CE: célula de equilíbrio; JF: janela (safira) frontal; JL: janela (safira) lateral; AM: agitador magnético; P: pistão móvel; CV: câmera de vídeo; M: monitor.

Foi empregado o método sintético-estático que dispensa amostragens durante o procedimento e permite detectar visualmente o equilíbrio de fases (DOHRN; PEPER; FONSECA, 2010), para que as composições de equilíbrio sejam calculadas a partir dos dados de pressão e de temperatura do instante em que o sistema bifásico é detectado.

Para o experimento, a célula foi alimentada com uma quantidade conhecida de LI e, em seguida, uma quantidade de CO₂ foi inserida utilizando a bomba de seringa sob condições predefinidas de pressão e temperatura. A densidade do CO₂ adicionado foi calculada. A célula foi selada e a mistura foi submetida a agitação constante. A temperatura desejada no interior da célula foi ajustada e o sistema foi pressurizado até formar uma fase homogênea que devia se manter estável por pelo menos 30 minutos sob essas condições. Então, a pressão foi gradualmente reduzida a uma taxa de 0,05 a 0,2 MPa.min⁻¹ até o aparecimento de uma segunda fase no sistema (ponto de bolha). Este procedimento foi realizado em triplicata para todas as temperaturas e composições globais estudadas.

4.1.3 ELL experimental

O aparato experimental utilizado para o ELL é composto por uma célula de equilíbrio encamisada que pode ser conectada em série, como mostrado na Figura 4.3, ou em paralelo com auxílio de conectores em Y na entrada e na saída do banho ultratermostático.

O sistema da Figura 4.3 é formado pelo (A) banho ultratermostático Quimis, modelo Q214M2 com faixa de operação entre -20,0 e 120,0 °C e precisão de 0,1 °C, conectado à(s) (B) célula(s) de equilíbrio encamisada(s), construída(s) em vidro borossilicato com capacidade aproximada de 100,0 mL, que opera(m) sobre o (C) agitador magnético com aquecimento Sppencer, modelo SP108-25. O controle da temperatura é fundamental para esse tipo de análise e, para isso, são utilizados os controladores de temperatura com precisão de 0,1 °C, Thomas Scientific, modelo Kangaroo Traceable capaz de operar entre -50,0 e 300,0 °C, e Benetech, modelo GM1312 do tipo J que opera entre -50,0 e 300,0 °C.

Figura 4.3 – Aparato experimental para o ELL.

Fonte: Arquivo pessoal.

A operação dos equipamentos consistiu em ajustar o banho ultratermostático para se manter a temperatura constante no meio durante toda a análise do ELL. As células de equilíbrio foram carregadas com uma solução de composição conhecida com duas das três substâncias do equilíbrio, junto com uma barra de agitação magnética para uniformizar o meio tanto em relação à composição, quanto em relação à temperatura. Uma vez que a temperatura da solução estivesse estabilizada, iniciou-se a titulação com a terceira substância do equilíbrio, lentamente, atentando-se à turbidez formada a cada gota adicionada.

O fim da titulação ocorreu no ponto de nuvem, ou *cloud point*, que foi atingido no momento em que a turbidez do meio não se extinguiu sob a agitação e permaneceu por cerca de 30 minutos. Nesse momento, foi feita a amostragem e a medição em triplicata do índice de refração e da densidade do meio. No diagrama ternário do ELL, esse ponto compôs a curva binodal que foi obtida a partir de diferentes soluções tituladas até se atingir a turbidez mencionada. Em conjunto à obtenção da curva binodal, encontrou-se dados para a elaboração da curva de calibração que correlaciona a propriedade medida à composição da solução.

Para a construção das linhas de amarração, ou *tie-lines*, soluções de composição conhecidas foram preparadas de maneira a localizar o ponto na região bifásica do diagrama ternário. Após uma rigorosa agitação da solução, o sistema foi deixado em repouso por pelo menos duas horas, sob a temperatura controlada, para assegurar a equivalência da transferência de massa entre as fases líquidas para que o equilíbrio fosse atingido. A turbidez proporcionada pela agitação se desfez e as duas fases líquidas se apresentaram de forma límpida no equilíbrio. Então a amostragem e a medição das propriedades físicas foram feitas em triplicata para cada

fase e as composições encontradas foram interligadas no diagrama ternário, a fim de se obter uma linha de amarração.

4.2 ANÁLISE DAS AMOSTRAS

A amostragem foi executada para o ELV a baixas pressões e para o ELL, já que o método empregado no ELV a altas pressões dispensa essa etapa, usando seringas com agulhas e acondicionando a amostra em balões volumétricos para que a temperatura, por meio de banhomaria, atingisse a referência da curva de calibração.

As análises das amostras foram realizadas utilizando o refratômetro de bancada ABBE AR1000C que detecta valores no intervalo de 1,3200 a 1,7000 para o índice de refração com uma precisão de 2.10⁻³ e é capaz de operar até 50,0 °C. Tanto para o ELV a baixas pressões, quanto para o ELL se utilizou essa técnica, que mede o desvio que a luz sofre ao transitar de um meio para o outro, na obtenção de uma correlação entre a composição da solução analisada e o índice de refração.

Além do método de refratometria, se utilizou o método de densimetria para a análise da densidade dos dados experimentais dos sistemas como uma das propriedades necessárias para se identificar a composição da solução. Para isso, foi utilizado um densímetro portátil Anton-Paar, modelo DMA 35 NEX, com detecção entre 0 e 3 g.cm⁻³, capaz de operar entre 0,0 e 40,0 °C com precisão de 2.10⁻⁴ g.cm⁻³.

No estudo do ELV a baixas pressões, inicialmente, as medições foram realizadas em soluções de composições conhecidas, a fim de se obter correlações entre as composições e as propriedades medidas. Para o ELL, essas correlações foram obtidas concomitantemente à titulação da curva binodal. Dessa maneira, foram obtidas equações de quinta ordem, conforme a equação (4.1), em que $F(x_1, x_2)$ representa a propriedade física, densidade (ρ) ou índice de refração (η_D), e x_i representa a fração molar, caso se trabalhe com compostos de massas molares menores como os utilizados nos sistemas de validação, ou se substitui por frações mássicas, w_i , caso haja componentes com massas molares maiores como os líquidos iônicos.

$$F(x_{1}, x_{2}) = c_{00} + c_{10}x_{1} + c_{01}x_{2} + c_{20}x_{1}^{2} + c_{11}x_{1}x_{2} + c_{02}x_{2}^{2} + c_{30}x_{1}^{3} + c_{21}x_{1}^{2}x_{2} + c_{12}x_{1}x_{2}^{2} + c_{03}x_{2}^{3} + c_{40}x_{1}^{4} + c_{31}x_{1}^{3}x_{2} + c_{22}x_{1}^{2}x_{2}^{2} + c_{13}x_{1}x_{2}^{3} + c_{04}x_{2}^{4} + c_{50}x_{1}^{5} + c_{41}x_{1}^{4}x_{2} + c_{32}x_{1}^{3}x_{2}^{2} + c_{23}x_{1}^{2}x_{2}^{3} + c_{14}x_{1}x_{2}^{4} + c_{05}x_{2}^{5}$$

$$(4.1)$$

Os coeficientes, c_{nm} , foram obtidos pela regressão multidimensional utilizando o método de Levenberg-Marquardt no algoritmo de otimização construído no software Matlab para minimizar a função objetivo, FO_I , da equação (4.2).

$$FO_I = \left| \eta_{D_{calib}} - \eta_{D_{exp}} \right| + \left| \rho_{calib} - \rho_{exp} \right|$$
(4.2)

Exclusivamente para o processamento dos dados experimentais do ELV a baixas pressões, um segundo modelo de curva de calibração foi obtido utilizando apenas o sistema binário composto ao se retirar o LI. Como os líquidos iônicos possuem a pressão de vapor desprezível, era esperado que não fossem encontrados traços na fase vapor do equilíbrio líquido-vapor, conforme reportado por Calvar *et al.* (2008). Por isso, a curva de calibração exclusiva para a fase vapor do ELV a baixas pressões segue o modelo da equação (4.3).

$$F(x_1) = c_5 x_1^5 + c_4 x_1^4 + c_3 x_1^3 + c_2 x_1^2 + c_1 x_1 + c_0$$
(4.3)

Os coeficientes foram obtidos com uma função objetivo, similar à equação (4.2), considerando apenas a propriedade utilizada no sistema binário.

Uma vez obtidas as curvas de calibração, foram traçadas isolinhas para cada propriedade em diagramas ternários. A seguir, os experimentos de equilíbrio líquido-vapor a baixas pressões e líquido-líquido foram conduzidos, conforme descrito nas seções 4.1.1 e 4.1.3, respectivamente, para se obter as propriedades de cada fase do sistema e suas respectivas composições por meio das curvas de calibração.

4.3 ANÁLISE DOS DADOS EXPERIMENTAIS

Os dados experimentais para toda a faixa de pressão estudada foram submetidos a uma validação por meio de testes de acordo com os equilíbrios de fase. Apenas os dados termodinamicamente consistentes, ou que respeitassem os critérios de validação no caso do teste de qualidade para o ELL, foram utilizados na modelagem termodinâmica.

4.3.1 Consistência termodinâmica do ELV a baixas pressões

Como a maioria dos testes de consistência termodinâmica, para o estudo do ELV a baixas pressões, utilizou-se um método baseado na equação de Gibbs-Duhem para verificar se os dados experimentais respeitavam relações termodinâmicas básicas. O método proposto por Wisniak (1993) pode ser aplicado como um teste de área ou um teste ponto-a-ponto permitindo que não apenas sistemas binários sejam avaliados como também sistemas multicomponentes. Para o teste, foram necessários dados sobre o calor de vaporização de componentes puros que foram estimados, quando não se encontrou diretamente essa informação na literatura.

O método desenvolvido envolve dois termos definidos como L_i e W_i a partir da manipulação da equação de Gibbs-Duhem, como apresentado abaixo:

$$L_i = \frac{\sum T_k^0 x_k \Delta s_k^0}{\Delta s} - T = \frac{G^E}{\Delta s} - \frac{RTw}{\Delta s} = W_i$$
(4.4)

Onde T_k^0 , $x_k \in \Delta s_k^0$ são a temperatura de ebulição, a fração molar da fase líquida e a entropia de vaporização do componente k puro, respectivamente, T é a temperatura do sistema e R é a constante universal dos gases. G^E , Δs e w são a função em excesso de Gibbs e funções complementares definidas no desenvolvimento do método, apresentadas a seguir:

$$G^E = RT \sum x_k ln \gamma_k \tag{4.5}$$

$$\Delta s = \sum x_k \Delta s_k^0 \tag{4.6}$$

$$\mathbf{w} = \sum x_k \ln \left(\frac{y_k}{x_k}\right) \tag{4.7}$$

Onde γ_k é o coeficiente de atividade do componente k e y_k é a sua fração molar da fase vapor.

Considera-se nesse método que todas as não-idealidades do sistema estão basicamente presentes na fase líquida, para que seja possível a seguinte aproximação:

$$\gamma_k = \frac{y_k P}{x_k P_k^0} \tag{4.8}$$

Onde se tem a pressão do sistema, P, e a pressão de vapor, P_k^0 , na temperatura de operação.

Ao assumir que o calor de vaporização de cada componente é constante e que o volume molar líquido é desprezível quando comparado ao do vapor, utiliza-se a equação de Clausius-Clapeyron:

$$ln\frac{P}{P_{k}^{0}} = \frac{\Delta h_{k}^{0}(T_{k}^{0} - T)}{RT_{k}^{0}T} = \frac{\Delta s_{k}^{0}(T_{k}^{0} - T)}{RT}$$
(4.9)

Onde Δh_k^0 é o calor de vaporização do componente k puro.

A partir da equação (4.4), obtém-se os valores de L e W para o intervalo de concentração pela expressão a seguir:

$$L = \int_0^1 L_i dx_1 = \int_0^1 W_i dx_1 = W$$
(4.10)

Teoricamente, os valores de L e W devem ser iguais, algo dificilmente atingido com dados experimentais. Além dos erros experimentais, algumas considerações durante o desenvolvimento do método não permitem que se saiba qual o valor é mais preciso, L ou W. Para isso, se define o desvio, D, da seguinte maneira:

$$D = 100 \frac{|L-W|}{L+W}$$
(4.11)

O limite do valor de D é facultativo e geralmente é definido de 3 a 5 % de acordo com o calor de vaporização utilizado. Se este for estimado, adota-se o limite superior. Para que os dados sejam termodinamicamente consistentes, o valor de D deve ser menor que o limite empregado.

4.3.2 Consistência termodinâmica do ELV a altas pressões

Desenvolvido por Valderrama, Reátegui e Sanga (2008), o teste de consistência termodinâmica escolhido para os dados do ELV a altas pressões visa contornar problemas encontrados por outros testes para sistemas em que um dos componentes praticamente compõe uma das fases do equilíbrio em sua totalidade, mesmo que não possa ser considerado puro. Este

cenário é similar ao estudado no ELV de sistemas binários contendo líquidos iônicos, onde a presença do LI na fase vapor chega a ser considerada nula.

Devido a isso, na maioria dos trabalhos publicados sobre sistemas deste tipo, os dados da fase vapor não costumam ser informados. Dessa forma, o teste de consistência termodinâmica empregado é um teste integral, ou de área, embasado na equação de Gibbs-Duhem em sua forma integral, vista na equação (4.12), que utiliza os dados da fase líquida para a análise.

$$\int \frac{1}{Px_2} dP = \int \frac{(1-x_2)}{x_2(Z-1)} \frac{d\hat{\phi}_1}{\hat{\phi}_1} + \int \frac{1}{(Z-1)} \frac{d\hat{\phi}_2}{\hat{\phi}_2}$$
(4.12)

Onde x_2 é a fração molar do soluto presente no sistema binário e pode ser calculado pela relação $x_1 + x_2 = 1$. Os coeficientes de fugacidade, $\hat{\phi}_i$, e o fator compressibilidade, Z, ambos da fase líquida, são calculados utilizando um modelo termodinâmico, neste caso a EdE de Peng-Robinson, anulando o parâmetro de interação binária da regra de mistura.

Cada lado da equação (4.12) fornece um termo de área. O termo gerado pelo lado esquerdo é denominado A_P e A_{ϕ} é a denominação do termo gerado pelo lado direito, como mostrado nas equações (4.13) e (4.14).

$$A_P = \int \frac{1}{Px_2} dP \tag{4.13}$$

$$A_{\phi} = \int \frac{(1-x_2)}{x_2(Z-1)} \frac{d\hat{\phi}_1}{\hat{\phi}_1} + \int \frac{1}{(Z-1)} \frac{d\hat{\phi}_2}{\hat{\phi}_2}$$
(4.14)

Para o cálculo de A_p são utilizados apenas os dados experimentais, enquanto que para o cálculo de A_{ϕ} utiliza-se o modelo termodinâmico escolhido para se obter os valores dos coeficientes de fugacidade e do fator de compressibilidade.

A partir dessas relações, é definido o percentual individual, ΔA_i , mostrado na equação (4.15), que correlaciona as áreas calculadas para cada conjunto de dados experimental.

$$\%\Delta A = 100. \left(\frac{A_{\phi} - A_P}{A_P}\right) \tag{4.15}$$

Neste caso, para determinar a consistência termodinâmica dos dados, foi adotado o critério de que um conjunto de dados experimentais foi considerado consistente, se $\%\Delta A$ estivesse dentro do intervalo de valores -20% a 20%, enquanto foi considerado inconsistente para valores menores que -20% e maiores que 20%. Por se tratar de um método integral, ou de área, foram utilizadas técnicas de método numérico para solucionar as equações (4.13) e (4.14), ou seja, um ponto dependia do anterior para que aquele determinado segmento gerasse a área correspondente à integral. Dessa forma, o teste foi realizado nos dados experimentais dispostos em ordem crescente adotando que o primeiro dado era consistente. O teste foi aplicado para cada conjunto de dados a uma determinada temperatura.

4.3.3 Teste de qualidade dos dados experimentais do ELL

As linhas de amarração são de grande importância para o estudo do ELL e de extrações com solvente, devido à correlação que oferecem entre as composições das duas fases líquidas conjugadas. Uma vez obtidos, os dados experimentais que as delimitam devem ser suficientemente confiáveis para a descrição apropriada do comportamento do sistema. Para avaliar a confiabilidade dos dados experimentais, empregou-se o método proposto por Marcilla, Ruiz e García (1995) que é empregado como um meio para determinar a consistência termodinâmica, já que os dados experimentais para o ELL de sistemas binários ou ternários não podem ser analisados pelos testes derivados da equação de Gibbs-Duhem (CARNITI; CORI; RAGAINI, 1978).

O método proposto por Marcilla, Ruiz e García (1995) é baseado na avaliação dos dados experimentais do ELL de acordo com o balanço de massa que caracteriza o experimento. Dessa maneira, a massa total, M^{sol} , utilizada no início do ensaio para a obtenção de uma linha de amarração deve corresponder à soma das massas calculadas para as fases em equilíbrio, M^{L_1} e M^{L_2} . O balanço de massa por componente do sistema ternário é descrito pelas equações (4.16) a (4.18).

$$M^{sol}x_1^{sol} = M^{L_1}x_1^{L_1} + M^{L_2}x_1^{L_2}$$
(4.16)

$$M^{sol}x_2^{sol} = M^{L_1}x_2^{L_1} + M^{L_2}x_2^{L_2}$$
(4.17)

$$M^{sol}x_3^{sol} = M^{L_1}x_3^{L_1} + M^{L_2}x_3^{L_2}$$
(4.18)

Onde $x_i^{L_1}$, $x_i^{L_2}$, x_i^{sol} representam as composições do componente i = 1, 2, 3 nas fases líquidas, L_1 e L_2 , do equilíbrio e na solução inicial do experimento.

O sistema formado pelas equações (4.16) a (4.18) é representado, em termos matriciais, pela equação (4.19).

$$\underbrace{\begin{bmatrix} M^{sol} x_1^{sol} \\ M^{sol} x_2^{sol} \\ \underline{M^{sol} x_3^{sol}} \end{bmatrix}}_{M} = \underbrace{\begin{bmatrix} x_1^{L_1} & x_1^{L_2} \\ x_2^{L_1} & x_2^{L_2} \\ x_3^{L_1} & x_3^{L_1} \end{bmatrix}}_{B} \cdot \underbrace{\begin{bmatrix} M^{L_1} \\ M^{L_2} \end{bmatrix}}_{P}$$
(4.19)

O vetor P é calculado pela equação (4.20).

$$P = (B^T B)^{-1} B^T M (4.20)$$

Onde B^T representa a matriz transposta de $B \in (B^T B)^{-1}$ representa a inversa da matriz $B^T B$.

Resolvendo numericamente a equação (4.20), a soma dos valores obtidos para M^{L_1} e M^{L_2} é comparada ao valor de M^{sol} . O desvio geral do balanço de massa, δ , inferior a 0,5% foi definido como critério para assegurar uma boa qualidade dos dados experimentais. Esse desvio é obtido pela equação (4.21).

$$\delta(\%) = 100. \frac{|(M^{L_1} + M^{L_2}) - M^{sol}|}{M^{sol}}$$
(4.21)

4.3.4 Coeficiente de distribuição (D_i) e fator de separação (S)

Antes da modelagem termodinâmica do ELL, analisar os dados experimentais quanto à capacidade do solvente extrair o soluto do diluente é um conceito relevante aos processos industriais para verificar a efetividade da separação em soluções aquosas ou orgânicas (ROBLES *et al.*, 2020). Para isso, se utilizam os coeficientes de distribuição do diluente, D_1 , e do soluto, D_2 , de acordo com as equações (4.22) e (4.23), nessa ordem, para se calcular o fator de separação ou seletividade.

$$D_1 = \frac{x_1^{fase\,3}}{x_1^{fase\,1}} \tag{4.22}$$

$$D_2 = \frac{x_2^{fase\,3}}{x_2^{fase\,1}} \tag{4.23}$$

Onde x_1 e x_2 representam as frações molares do diluente e do soluto, respectivamente, e os sobrescritos *fase* 1 e *fase* 3 são referentes às fases ricas em diluente e em solvente.

O fator de separação, S, é definido como o quociente entre esses coeficientes de distribuição do soluto e do diluente, equação (4.24).

$$S = \frac{D_2}{D_1}$$
 (4.24)

Para que haja uma separação efetiva, se busca valores de S maiores que um.

4.4 MODELAGEM TERMODINÂMICA

Para a modelagem termodinâmica, se utiliza a regra de fases de Gibbs associada a equações de estado e a regras de mistura (MICHELSEN; MOLLERUP, 2007). A regra de fases de Gibbs, equação (4.25), auxilia na estimativa da quantidade de variáveis intensivas necessárias para solucionar matematicamente modelos termodinâmicos que expressam um estado de equilíbrio.

$$F = C - P + 2$$
 (4.25)

Onde F é o grau de liberdade ou o número de variáveis intensivas e independentes, C é o número de componentes na solução e P é o número de fases.

Para um sistema binário líquido-vapor (C = 2, P = 2), o número de graus de liberdade é 2, enquanto que, para um sistema ternário líquido-vapor (C = 3 e P = 2), o número de variáveis intensivas necessário é 3.

Há quatro métodos de cálculo, de acordo com as variáveis selecionadas: pressão de bolha (Bolha P), no qual em posse da temperatura e da fração molar na fase líquida, calcula-se a pressão e a fração molar na fase gasosa; pressão de orvalho (Orvalho P), onde dadas a temperatura e fração molar na fase gasosa, encontra-se a pressão e fração molar na fase líquida; temperatura de bolha (Bolha T), onde a partir da pressão e da fração molar na fase líquida, calcula-se a temperatura e a fração molar na fase gasosa; e temperatura de orvalho (Orvalho T), em que dados a pressão e a fração molar na fase gasosa, obtém-se a temperatura e a fração molar na fase líquida.

Para um sistema ternário líquido-líquido (C = 3 e P = 2), o número de graus de liberdade é 3. Geralmente, as variáveis intensivas usadas para encontrar a solução matemática são a temperatura e as composições de uma das fases líquidas, para que, pela modelagem termodinâmica, sejam encontradas as composições da outra fase líquida. A composição para o terceiro componente é definida a partir das composições dos outros dois componentes (SANDLER, 2006).

A correlação dos dados experimentais na modelagem termodinâmica foi feita minimizando funções objetivo, que melhor se adequassem ao equilíbrio de fases, utilizando o método de Levenberg-Marquardt (LEVENBERG, 1944; MARQUARDT, 1963).

No ELV a baixas pressões, se empregou a abordagem γ - ϕ e o método de temperatura de bolha (Bolha T) com o modelo NRTL e a EdE PR-TV-CG minimizando a função objetivo, FO_{II} , mostrada na equação (4.26).

$$FO_{II} = \sum_{i}^{N} \left[\frac{|T^{exp} - T^{calc}|}{T^{exp}} + \left| y_{1}^{exp} - y_{1}^{calc} \right| + \left| y_{2}^{exp} - y_{2}^{calc} \right| \right]_{i}$$
(4.26)

Onde *N* representa o número de pontos experimentais, *T* é a temperatura de bolha, y_i é a composição da fase vapor e os sobrescritos *exp* e *calc* representam os valores experimentais e calculados.

Os desvios são relativos para a temperatura, ΔT , e absolutos para as composições na fase vapor, Δy_1 e Δy_2 , conforme as equações (4.27) a (4.29).

$$\Delta T = 100 \sum_{i}^{N} \frac{\left|T_{i}^{exp} - T_{i}^{calc}\right|}{T_{i}^{exp}}$$
(4.27)

$$\Delta y_1 = 100 \sum_{i}^{N} \left| y_{1,i}^{exp} - y_{1,i}^{calc} \right|$$
(4.28)

$$\Delta y_2 = 100 \sum_{i}^{N} \left| y_{2,i}^{exp} - y_{2,i}^{calc} \right|$$
(4.29)

Para o ELV a altas pressões, a função objetivo (FO_{III}), equação (4.30), foi minimizada empregando as EdEs PC-SAFT e CPA com a abordagem ϕ - ϕ e o método de pressão de bolha (Bolha P).

$$FO_{III} = \sum_{i}^{N} \left[\frac{|P^{exp} - P^{calc}|}{P^{exp}} \right]_{i}$$
(4.30)

Onde *P* representa a pressão de bolha. Os desvios relativos foram calculados segundo a equação (4.31).

$$\Delta P = 100 \left[\frac{|P^{exp} - P^{calc}|}{P^{exp}} \right]$$
(4.31)

Para o ELL, se utilizou a abordagem γ - γ com o modelo NRTL e a EdE PR-TV-CG para minimizar a função objetivo, FO_{IV} , mostrada na equação (4.32).

$$FO_{IV} = \sum_{k}^{N} \sum_{j}^{2} \sum_{i}^{3} \left(x_{ijk}^{exp} - x_{ijk}^{calc} \right)^{2}$$
(4.32)

Onde *N* representa o número total de linhas de amarração para uma dada temperatura, x_i^{exp} representa a fração molar experimental, x_i^{calc} representa a fração molar calculada e os subscritos *i*, *j* e *k* representam o componente, a fase e a linha de amarração, respectivamente.

O desvio médio quadrático (DMQ) foi calculado de acordo com a equação (4.33).

$$DMQ = 100 \sum_{k}^{N} \sum_{j}^{2} \sum_{i}^{3} \frac{\left(x_{ijk}^{exp} - x_{ijk}^{calc}\right)^{2}}{6N}$$
(4.33)

Os desvios absolutos para as composições nas fases líquidas foram obtidos utilizando a equação (4.34).

$$\Delta x_i(\%) = \left| x_i^{exp} - x_i^{calc} \right| * 100 \tag{4.34}$$

Em posse dos resultados da modelagem termodinâmica, os diagramas de fases foram obtidos para uma melhor avaliação da efetividade dos modelos termodinâmicos.

4.5 SIMULAÇÃO TERMODINÂMICA

Para a simulação termodinâmica, todos os dados experimentais do ELV a altas pressões, independentemente do teste de consistência termodinâmica, foram utilizados pelas redes neurais artificiais tendo como variáveis independentes as propriedades obtidas na etapa experimental (temperatura e composição da fase líquida), propriedades críticas dos LIs e os descritores moleculares (devidamente selecionados dentre os inúmeros disponíveis) obtidos pelo software Dragon 7.0 (KODE, 2016), visando aprimorar a caracterização dos sistemas estudados fornecendo uma maior quantidade de informações baseadas principalmente na estrutura química e nas propriedades físico-químicas. O software Dragon requer a estrutura dos líquidos iônicos em termos de códigos SMILES (ARCE; VIEIRA; IGARASHI, 2018).

O comportamento de fases de sistemas contendo CO_2 e LIs foi analisado por meio do método do ponto de bolha em altas pressões para estudar a capacidade da RNA nas etapas de aprendizado, de teste e de predição, adotando a pressão do sistema como a variável dependente. As variáveis independentes foram as propriedades críticas dos LIs, a temperatura do sistema e a composição da fase líquida. Devido ao caráter preditivo do método utilizado para obtenção das propriedades críticas dos LIs, descritores moleculares foram utilizados para assegurar uma maior precisão das variáveis independentes.

Primeiramente, foram encontrados os códigos SMILES para cada molécula de LI. Em seguida, utilizando o Dragon, foram obtidos os valores numéricos para descritores moleculares selecionados.

Para as etapas de aprendizado, de teste e de predição do comportamento do ELV de sistemas $CO_2 + LI$, foi criado um arquivo em MS-Excel com seis planilhas, cada uma com uma função específica. A primeira, terceira e quinta planilhas são usadas para as etapas de aprendizado, teste e predição, respectivamente, e contêm as variáveis independentes. A segunda, quarta e sexta planilhas são usadas para as etapas de aprendizado, teste e predição, respectivamente, e contêm as variáveis independentes.

Os dados experimentais e sua quantidade foram diferentes para cada planilha. O sucesso da simulação termodinâmica consiste em utilizar dados diferentes em cada etapa. Um programa de computador (http://easyann.gvilella.me) para uma variável dependente foi desenvolvido em MatLab (Figura 4.4) pelo grupo de pesquisa do Prof. Pedro Arce para interagir com cada planilha do arquivo Excel (ARCE; VILLELA; VALDERRAMA, 2017).

Figura 4.4 – Interface para o estudo das RNA.

Fonte: Arquivo pessoal.

Na etapa de aprendizagem, o programa computacional leu os dados de entrada (variáveis independentes) e foi definida a arquitetura, que normalmente envolve uma rede neural feed-forward de retropropagação, com um determinado número de camadas para gerar as matrizes de peso e bias, armazenando esses dados para a etapa de teste.

Na etapa de teste, o programa leu as matrizes de peso e bias e os dados da terceira planilha e executou o teste por quantidade definida de vezes, armazenando todos os resultados na quarta planilha. A partir desses resultados, o desvio absoluto médio e o desvio absoluto máximo foram avaliados e foi escolhida a melhor rodada, em termos dos desvios absolutos mais baixos, para a variável dependente (pressão do sistema).

Na etapa de predição, com a melhor arquitetura, o programa computacional realizou a predição da variável dependente para os dados da quinta planilha. Os resultados desta etapa foram armazenados na sexta planilha, onde os dados experimentais da pressão do sistema foram comparados, sempre que o processo de predição foi bem sucedido. Assim, o comportamento de fases dos sistemas $CO_2 + LI$ pode ser predito, a partir de valores desconhecidos de variáveis independentes, sem ensaios experimentais adicionais.

Desta forma, a melhor arquitetura foi obtida dentre várias arquiteturas estudadas seguindo o procedimento acima, que é apresentado na Figura 4.5 em forma de fluxograma.

Figura 4.5 – Fluxograma utilizado na simulação termodinâmica dos sistemas CO₂ + LI.

5 RESULTADOS E DISCUSSÃO

As análises computacionais dos sistemas demandam propriedades e parâmetros de componente puro (seção 3.6), de acordo com o modelo termodinâmico empregado, para as etapas de consistência, de modelagem e de simulação termodinâmicas. Na Tabela 5.1, são apresentadas a pressão e a temperatura críticas, a temperatura de ebulição e o fator acêntrico preditos para os LIs pelo método de contribuição de grupos. A massa molar e a estrutura utilizada encontram-se na Tabela 4.1. Alguns exemplos adicionais calculados ao longo do desenvolvimento desta tese são apresentados na Tabela A.1 do Apêndice A.

LI	P _c (MPa)	<i>T_c</i> (K)	T _b (K)	ω
[emim][BF4]	2,36	596,21	449,52	0,8087
[bmim][BF ₄]	2,04	643,18	495,18	0,8877
[hmim][BF ₄]	1,79	690,08	541,07	0,9625
[omim][BF ₄]	1,60	736,99	586,67	1,0287
[emim][PF ₆]	1,95	674,01	508,76	0,7083
[hmim][PF ₆]	1,55	764,89	600,26	0,8697
[emim][Cl]	3,42	748,61	512,34	0,4164
[emim][EtSO ₄]	4,06	1067,53	712,72	0,3744

Tabela 5.1 – Propriedades críticas dos LIs obtidas pelo método de contribuição de grupos.

Fonte: Arquivo pessoal.

Para os parâmetros de componente puro, valores da pressão de vapor e da densidade (volume específico) do líquido saturado foram preditos entre o ponto triplo e o ponto crítico para a regressão com os modelos termodinâmicos e são apresentados na Tabela 5.2. Para os sistemas de validação, os valores foram obtidos diretamente de DIPPR (2000).

Tabela 5.2 – Faixa de pressão de vapor e densidade utilizando a EdE PR-TV.

LI	NP	Temperatura (K)		Pressão de v (MPa)	apor	Dens (g.c	idade m ⁻³)
[emim][BF ₄]	55	278,0	553,0	2,362x10 ⁻⁶	0,792	1,1041	1,2896
[emim][EtSO ₄]	135	363,0	963,0	3,091x10 ⁻⁹	0,028	0,7763	1,2825
[hmim][BF ₄]	75	278,0	648,0	6,364x10 ⁻¹⁰	0,639	0,9288	1,1640

Fonte: Arquivo pessoal.

Legenda: NP – número de valores preditos.

O ajuste dos dados foi feito minimizando a função objetivo, FO_V , equação (5.1).

$$FO_V = \sum_{i}^{NP} \left[\left(\frac{|p^{exp} - p^{cal}|}{p^{exp}} \right)^2 + \left(\frac{|\rho^{exp} - \rho^{cal}|}{\rho^{exp}} \right)^2 \right]_i$$
(5.1)

Onde *NP* é o número de pontos, P^{cal} e ρ^{cal} são a pressão e a densidade do líquido calculadas com as equações de estado e P^{exp} e ρ^{exp} podem representar tanto os dados experimentais como os encontrados diretamente na literatura para compostos mais simples, quanto os dados preditos da pressão e da densidade como no caso dos LIs.

O desvio médio relativo na pressão, DMRP (%), e na densidade do líquido, DMRL (%), foram calculados, de acordo com as equações (5.2) e (5.3).

$$DMRP(\%) = \frac{100}{NP} \sum_{i}^{NP} \left(\frac{|P^{exp} - P^{cal}|}{P^{exp}} \right)_{i}$$
(5.2)

$$DMRL(\%) = \frac{100}{NP} \sum_{i}^{NP} \left(\frac{|\rho^{exp} - \rho^{cal}|}{\rho^{exp}} \right)_{i}$$
(5.3)

Na Tabela 5.3, são apresentados os parâmetros de componente puro calculados para a EdE PR-TV-CG. Na Tabela 5.4, são mostrados os valores de área superficial relativa (Q_k) e de volume relativo (R_k) do grupo k usados no método de contribuição de grupos (SCHMID; GMEHLING, 2012; GMEHLING; LI; SCHILLER, 1993).

Tabela 5.3 – Parâmetros de componente puro da EdE PR-TV-CG.

Substância	Ν	k_3	DMRP	DMRL
1-butanol	0,5413	0,1682	0,17	0,10
Acetato de etila	0,2282	0,1879	0,98	0,50
Água	0,1156	0,0142	0,76	1,19
Etanol	0,2076	0,0269	2,93	4,32
[emim][BF ₄]	1,3052	-0,2720	3,82	2,96
[emim][EtSO ₄]	0,2543	0,0498	0,66	1,88
[hmim][BF4]	1,2992	-0,1940	4,46	0,40
Fonte: Arquivo pessoal.				

Grupo Principal	Q_k	R_k	Grupo Principal	Q_k	R_k
CH3	1,2958	0,6325	H2O	1,5576	1,7334
CH2	0,9471	0,6325	[emim][BF4]	4,0050	6,5669
OH (primário)	1,0189	1,2302	[hmim][BF4]	4,0052	6,5669
СНЗОН	0,8779	0,8585	[emim][EtSO ₄]	4,0185	4,3806
CH3CO	1,4481	1,7048			

Tabela 5.4 – Valores dos grupos funcionais utilizados no método de contribuição de grupos.

Os parâmetros de componente puro para as EdEs PC-SAFT e CPA são apresentados na Tabela 5.5.

Tabela 5.5 – Parâmetros de componente puro das EdEs PC-SAFT e CPA.

		PC	-SAFT				
Componente	m	$\frac{\sigma}{(10^{+10} \text{ m})}$	ε/k (K)	ε ^{AiBj} /k (K)	κ ^{AiBj}	DMRP	DMRL
CO_2	2,1208	2,7352	166,21	-	-	0,49	0,26
DME	2,3265	3,2302	209,46	-	-	0,32	0,38
[emim][BF ₄]	5,4214	3,4758	353,58	0,0018	1310,74	1,88	0,26
[emim][EtSO ₄]	8,4280	3,5382	383,54	0,0020	1344,89	1.91	0,10
[hmim][BF4]	6,5245	3,7156	378,21	0,0015	1348,18	1,86	0,32
		(CPA				
Componente	b (mL/mol)	a_0 (m ⁶ Pa/mol ²)	С	$rac{arepsilon^{AiBj}}{(\mathrm{K})}$	β^{AiBj}	DMRP	DMRL
CO_2	28,36	1,3247	0,65	517,85	0,0251	0,87	0,65
DME	49,57	0,8441	0,85	-	-	0,29	0,24
[emim][BF ₄]	174,853	10,5410	0,8314	2512,64	0,0925	1,26	0,18
[emim][EtSO ₄]	185,421	11,5641	0,9046	1907,56	0,0874	1,78	0,64
[hmim][BF ₄]	183,417	11,0637	0,8610	2721,54	0,0920	1,21	0,09

Fonte: Arquivo pessoal.

5.1 VALIDAÇÃO DA METODOLOGIA EXPERIMENTAL

5.1.1 Equilíbrio líquido-vapor do sistema acetona + metanol + água

Para o ELV a baixas pressões, o sistema ternário composto por acetona, metanol e água foi estudado a 298,15 K para a comparação dos dados experimentais obtidos com dados experimentais presentes na literatura (GRISWOLD; BUFORD, 1949; VERHOEYE; DE

SCHEPPER, 1973; IGLESIAS; ORGE; TOJO., 1996). As propriedades dos compostos envolvidos neste sistema são apresentadas na Tabela 5.6.

Substância	Expe	rimental ^a	Literatura			
Substancia	η_D	ρ (g.cm ⁻³)	η_D	ρ (g.cm ⁻³)		
Acetona	1,3555	0,7856	1,3555 - 1,3566 ^b	$0,7848 - 0,7855^{b}$		
Metanol	1,3265	0,7848	$1,3265 - 1,3266^{b}$	$0,7865 - 0,7880^{b}$		
Água	1,3320	0,9952	1,3328 ^c	0,9947°		

Tabela 5.6 – Propriedades, a 298,15 K, das substâncias.

Fonte: Arquivo pessoal.

Nota: ^a Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): u(T) = 0,01 K, u(P) = 0,01 kPa, $U_c(\rho) = 0,01$ kPa, U2.10⁻⁴ g.cm⁻³, $U_c(\eta_D) = 2.10^{-4}$; ^b (VERHOEYE; DE SCHEPPER, 1973);

^c (DIPPR, 2000).

Para obter a curva de calibração, soluções de composições conhecidas foram preparadas e suas propriedades físicas, densidade (ρ) e índice de refração (η_D), foram medidas, a fim de se estabelecer a relação, equação (4.1), entre cada uma dessas propriedades e suas respectivas composições, como visto na Tabela 5.7.

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	η_D	ρ (g.cm ⁻³)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	η_D	ρ (g.cm ⁻³)
0,0026	0,0424	0,9550	1,3340	0,9836	0,0172	0,2804	0,7024	1,3421	0,9260
0,0052	0,0377	0,9571	1,3346	0,9832	0,0349	0,2527	0,7124	1,3438	0,9264
0,0105	0,0284	0,9611	1,3351	0,9836	0,0718	0,1951	0,7331	1,3451	0,9272
0,0158	0,0190	0,9652	1,3355	0,9860	0,0224	0,3661	0,6114	1,3429	0,9036
0,0211	0,0095	0,9694	1,3361	0,9856	0,0458	0,3315	0,6228	1,3444	0,9048
0,0238	0,0048	0,9714	1,3363	0,9861	0,0950	0,2582	0,6468	1,3483	0,9068
0,0340	0,0410	0,9250	1,3393	0,9732	0,1483	0,1790	0,6727	1,3525	0,9064
0,0457	0,0207	0,9336	1,3411	0,9744	0,2060	0,0932	0,7008	1,3566	0,9072
0,0517	0,0104	0,9379	1,3415	0,9752	0,2367	0,0476	0,7157	1,3585	0,9076
0,0055	0,0902	0,9042	1,3369	0,9704	0,0288	0,4684	0,5029	1,3425	0,8816
0,0111	0,0805	0,9083	1,3372	0,9708	0,0589	0,4262	0,5149	1,3446	0,8828
0,0224	0,0610	0,9166	1,3382	0,9722	0,1236	0,3357	0,5407	1,3492	0,8844
0,0089	0,1448	0,8463	1,3388	0,9572	0,1952	0,2356	0,5692	1,3534	0,8844
0,0179	0,1296	0,8525	1,3396	0,9576	0,2747	0,1244	0,6009	1,3582	0,8828
0,0363	0,0986	0,8651	1,3419	0,9592	0,3179	0,0640	0,6181	1,3609	0,8823
0,0553	0,0667	0,8780	1,3435	0,9604	0,2558	0,3089	0,4353	1,3533	0,8561
0,0748	0,0339	0,8913	1,3452	0,9620	0,3664	0,1659	0,4676	1,3586	0,8562
0,0848	0,0171	0,8981	1,3465	0,9628	0,4282	0,0862	0,4856	1,3611	0,8560
0,0127	0,2075	0,7798	1,3408	0,9421	0,0364	0,5925	0,3711	1,3403	0,8548
0,0257	0,1863	0,7879	1,3422	0,9428	0,0749	0,5427	0,3824	1,3429	0,8561
0,0526	0,1428	0,8047	1,3447	0,9448	0,1595	0,4334	0,4071	1,3484	0,8568
0,0805	0,0972	0,8222	1,3451	0,9464	0,0458	0,7464	0,2078	1,3373	0,8240
0,1098	0,0497	0,8405	1,3492	0,9476	0,0951	0,6891	0,2158	1,3396	0,8244
0,1249	0,0251	0,8500	1,3465	0,9468	0,2061	0,5600	0,2339	1,3455	0,8252
0,1109	0,1339	0,7551	1,3492	0,9288	0,3375	0,4074	0,2551	1,3512	0,8252
0,1525	0,0690	0,7784	1,3534	0,9302	0,4951	0,2242	0,2807	1,3568	0,8236
0,1743	0,0351	0,7906	1,3538	0,9296	0,5864	0,1180	0,2956	1,3593	0,8222

Tabela 5.7 – Frações molares utilizadas na solução e seus respectivos índices de refração e densidades para o sistema acetona (1) + metanol (2) + água (3).

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

Os valores dos coeficientes das curvas de calibração e de correlação, R^2 , para o índice de refração, η_D , e para a densidade, ρ , são mostrados na Tabela 5.8.

Coeficiente	Va	lor	Coeficiente	Va	Valor		
	η_D	ho	coentente	η_D	ρ		
C ₀₀	1,3287	0,9990	<i>c</i> ₃₁	-5,7790	4,8808		
<i>C</i> ₁₀	0,1383	-0,1831	<i>C</i> ₂₂	-1,1855	7,9872		
<i>C</i> ₀₁	0,0763	-0,2327	<i>c</i> ₁₃	-1,0401	6,9531		
<i>C</i> ₂₀	-0,5639	0,4832	c_{04}	0,6471	1,3415		
<i>C</i> ₁₁	-0,6738	0,8700	c_{50}	3,3864	-1,0646		
<i>C</i> ₀₂	-0,2757	0,5311	c_{41}	5,1793	-2,6041		
<i>C</i> ₃₀	1,4664	-1,7880	<i>c</i> ₃₂	2,5873	-4,6420		
<i>C</i> ₂₁	3,5344	-3,4017	<i>c</i> ₂₃	0,3254	-6,2594		
<i>C</i> ₁₂	1,3890	-4,3115	<i>C</i> ₁₄	0,5211	-3,7375		
<i>C</i> ₀₃	-1,6572	-1,3793	<i>c</i> ₀₅	1,3287	-0,4671		
<i>C</i> ₄₀	-6,2814	2,3123	R^2	0,9911	0,9999		

Tabela 5.8 – Coeficientes da regressão da curva de calibração do sistema acetona + metanol + água.

Na Figura 5.1, são apresentadas as isolinhas das curvas de calibração, η_D vs. $x_i \in \rho$ vs. x_i , em que cada linha representa um valor específico de η_D ou de ρ .

Legenda: Preto: Nesta tese; Vermelho: Iglesias *et al.* (1999). Seguindo o procedimento apresentado na seção 4.1.2.1, os dados experimentais do ELV a baixas pressões foram obtidos a pressão constante (101,3 kPa), e os índices de refração e as densidades são apresentados na Tabela 5.9.

	<i>N T</i> (K)	Fase líquida					Fase vapor			
Ν		η_D	ρ (g.cm ⁻³)	<i>x</i> ₁	<i>x</i> ₂	-	η_D	ρ (g.cm ⁻³)	y_1	y_2
1	355,05	1,3378	0,9740	0,0169	0,0709		1,3568	0,8535	0,3243	0,2237
2	348,25	1,3429	0,9592	0,0519	0,0826		1,3562	0,8289	0,4343	0,2360
3	342,65	1,3459	0,8940	0,0701	0,3576		1,3472	0,8156	0,2861	0,5159
4	342,45	1,3445	0,8828	0,0592	0,4316		1,3439	0,8118	0,2339	0,6069
5	342,15	1,3481	0,9200	0,0923	0,1832		1,3533	0,8080	0,5214	0,2952
6	341,95	1,3416	0,8636	0,0406	0,5602		1,3397	0,8061	0,1716	0,7186
7	341,75	1,3494	0,9168	0,1060	0,1949		1,3541	0,8059	0,5813	0,2461
8	339,25	1,3513	0,8924	0,1468	0,2525		1,3536	0,8040	0,5814	0,2632
9	338,65	1,3514	0,8864	0,1549	0,2712		1,3533	0,8000	0,6156	0,2624
_		-								

Tabela 5.9 – Dados experimentais do ELV para o sistema ternário acetona (1) + metanol (2) + água (3) a 101,3 kPa.

Fonte: Arquivo pessoal.

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

Para assegurar que os dados apresentados acima estão de acordo com critérios de qualidade para prosseguirem à modelagem termodinâmica, o teste de consistência termodinâmica, seção 4.3.1, foi aplicado com tolerância máxima de 3,0 % de desvio e os resultados são apresentados na Tabela 5.10.

Ν	D	Consistência	Ν	D	Consistência
1	2,47	consistente	6	2,28	consistente
2	2,26	consistente	7	2,82	consistente
3	2,48	consistente	8	2,29	consistente
4	2,59	consistente	9	2,28	consistente
5	2,26	consistente			

Tabela 5.10 – Resultados da consistência termodinâmica.

Fonte: Arquivo pessoal.

Todos os pontos experimentais foram considerados termodinamicamente consistentes. O valor do desvio médio é de 2,41.

Na correlação dos dados experimentais, a modelagem termodinâmica foi feita pela minimização da função objetiva, equação (4.26), com o modelo NRTL e a EdE PR-TV-CG, utilizando o método de Levenberg-Marquardt.

Para o modelo NRTL, os parâmetros de interação são apresentados na Tabela 5.11. Os parâmetros otimizados de não-aleatoriedade do sistema, α_{12} , α_{13} e α_{23} , foram 0,2745, 0,2824 e 0,2765, respectivamente, para o sistema a 101,3 kPa.

Tabela 5.11 – Parâmetros de interação do modelo NRTL, $\frac{g_{ij}-g_{jj}}{R}$ (K), para o sistema ternário acetona (1) + metanol (2) + água (3) a 101,3 kPa.

Componente	1	2	3
1	0,0000	949,4448	956,6101
2	-253,7952	0,0000	192,4244
3	439,1859	22,7509	0,0000

Fonte: Arquivo pessoal.

Para a EdE PR-TV-CG, se utilizou os parâmetros de componente puro, $N \in k_3$, apresentados na Tabela 5.3, e valores dos grupos funcionais correspondentes aos compostos do sistema na Tabela 5.4.

Na Tabela 5.12, são mostrados os parâmetros de interação dos grupos funcionais para o sistema ternário (SCHMID; GMEHLING, 2012).

Tabela 5.12 – Valores dos parâmetros de interação da EdE PR-TV-CG.

Grupos	$A_{nm}(K)$	\mathbf{B}_{nm}	$C_{nm} (K^{-1})$	$A_{mn}(K)$	\mathbf{B}_{mn}	$C_{mn} (K^{-1})$
CH - CH ₃ OH	1733,4105	1,8057	0,0000	50,6722	-0,6378	0,0000
CH - H ₂ O	2096,9041	-1,6565	0,0000	56,5884	0,5883	0,0000
CH - CH ₃ CO	425,3132	0,6879	0,0000	284,2565	1,7731	0,0000
CH ₃ OH - H ₂ O	-387,4045	1,9621	0,0000	-168,8208	-0,6674	0,0000
CH ₃ OH - CH ₃ CO	143,8206	-0,7722	0,0000	275,5804	0,1849	0,0000
H ₂ O - CH ₃ CO	190,5628	-3,6691	0,0000	770,6086	-0.,8730	0,0000

Fonte: Arquivo pessoal.

Na Tabela 5.13, são apresentados os resultados da modelagem termodinâmica utilizando o modelo NRTL e a EdE PR-TV-CG, na abordagem γ - ϕ e no método Bolha T, e os desvios calculados para a temperatura de bolha e para as composições na fase vapor, segundo as equações (4.27) a (4.29).

N				NRTL]	PR-TV-C	G			
IN	<i>T</i> (K)	<i>y</i> ₁	y_2	<i>y</i> ₃	ΔT	Δy_1	Δy_2	Δy_3	<i>T</i> (K)	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	ΔT	Δy_1	Δy_2	Δy_3
1	357,55	0,2658	0,2223	0,5119	0,71	5,85	0,14	5,99	355,48	0,3707	0,2265	0,4028	0,12	4,64	0,28	4,92
2	347,05	0,5186	0,1606	0,3208	0,36	8,43	7,55	0,89	347,65	0,4888	0,2249	0,2863	0,17	5,45	1,11	4,34
3	342,35	0,3112	0,4944	0,1944	0,08	2,52	2,14	0,36	343,61	0,327	0,4866	0,1864	0,28	4,09	2,93	1,16
4	342,45	0,2364	0,5853	0,1783	0,01	0,25	2,16	1,91	343,84	0,2592	0,5839	0,1569	0,41	2,53	2,30	0,23
5	341,05	0,5301	0,2502	0,2197	0,33	0,86	4,50	3,63	340,85	0,549	0,2716	0,1794	0,38	2,76	2,36	0,4
6	342,05	0,1352	0,7186	0,1462	0,02	3,64	0,00	3,64	343,32	0,1766	0,711	0,1124	0,40	0,5	0,76	0,26
7	339,75	0,5507	0,2461	0,2032	0,60	3,07	0,00	3,06	342,26	0,5942	0,2377	0,1681	0,15	1,29	0,84	0,45
8	336,95	0,5701	0,2654	0,1645	0,69	1,12	0,22	0,91	338,48	0,5912	0,2564	0,1524	0,23	0,98	0,68	0,3
9	336,55	0,5657	0,2772	0,1571	0,60	5,00	1,46	3,51	335,41	0,6161	0,2606	0,1233	0,96	0,05	0,18	0,13
	Desvio médio 0,37 3,41 2,02 2,66						Desvi	o médio		0,34	2,48	1,27	1,35			

Tabela 5.13 – Resultados obtidos da modelagem termodinâmica para o ELV do sistema acetona (1) + metanol (2) + água (3) a 101,3 kPa.

Como observado na Tabela 5.13, para o modelo NRTL, o desvio médio para temperatura foi de 0,37% e 3,41%, 2,02% e 2,66% para as composições de acetona, de metanol e de água, respectivamente, enquanto que, para a EdE PR-TV-CG, foi de 0,34% para a temperatura e 2,48%, 1,27% e 1,35% para a acetona, o metanol e a água. A partir desses desvios, a precisão da EdE PR-TV-CG foi levemente superior à do modelo NRTL na modelagem termodinâmica utilizando a abordagem γ - ϕ (lei de Raoult modificada) e o método Bolha T.

Os pontos de bolha e de orvalho do sistema na modelagem termodinâmica utilizando o modelo NRTL e a EdE PR-TV-CG, apenas os considerados termodinamicamente consistentes, são mostrados na Figura 5.2, junto com os dados experimentais. Como pode ser observado, os modelos termodinâmicos foram capazes de modelar, com precisão, os dados experimentais do sistema de validação acetona + metanol + água.

Figura 5.2 – Resultados da modelagem termodinâmica do sistema acetona + metanol + água.

Fonte: Arquivo pessoal.

Legenda: pontos experimentais de bolha (•) e orvalho (▲); pontos de orvalho calculados pelo modelo NRTL (▲); pontos de orvalho calculados pela EdE PR-TV-CG (▲).

5.1.2 Equilíbrio líquido-vapor a altas pressões do sistema CO2 + dimetil éter

A unidade experimental para o ELV a altas pressões foi validada pela reprodutibilidade do equilíbrio de fases do sistema CO_2 + dimetil éter (DME), seguindo o procedimento descrito na seção 4.1.2.2. Esse sistema foi escolhido considerando a grande disponibilidade de dados experimentais na literatura.

Os dados experimentais para o ponto de bolha para diferentes composições são apresentados na Tabela 5.14.

<i>x</i> ₁	T (K)	P (MPa)	<i>x</i> ₁	T (K)	P (MPa)
	298,13	0,76		298,10	2,92
0,0153	308,16	1,01	0,5138	308,13	3,61
	320,12	1,29		320,12	4,43
	298,17	0,79		298,11	3,66
0,0298	308,13	1,05	0,6148	308,17	4,43
	320,15	1,36		320,16	5,35
0,0897	298,07	1,02		298,11	4,07
	308,13	1,33	0,7014	308,14	4,97
	320,11	1,69		320,14	6,05
	298,12	1,44		298,10	4,56
0,1852	308,17	1,81	0,7811	308,17	5,50
	320,16	2,26		320,15	6,62
	298,17	1,92		298,07	5,22
0,3113	308,13	2,46	0,8623	308,11	6,24
	320,13	3,11		320,17	7,45
	298,15	2,29		298,16	5,64
0,4059	308,12	2,91	0,9252	308,16	6,71
	320,17	3,65		320,14	7,98

Tabela 5.14 – Pontos de bolha experimentais do sistema $CO_2(1) + DME(2)$.

Fonte: Arquivo pessoal.

Nota: Incertezas padrão: u(P) = 0,01 MPa, u(T) = 0,01 K.

Os dados experimentais dos pontos de bolha obtidos a 320 K são apresentados na Figura 5.3 de maneira comparativa aos dados encontrados na literatura para o mesmo sistema nas mesmas condições (JONASSON; PERSSON; FREDENSLUND, 1995; TSANG; STREETT, 1981; LAURSEN; RASMUSSEN; ANDERSEN, 2002).

Observa-se que os dados estão de acordo com aqueles reportados na literatura. Assim, a qualidade do aparato experimental e da metodologia empregada para o estudo dos sistemas contendo LIs é assegurada, além de dispensar a retirada de amostras das fases em equilíbrio e de consumir quantidades mínimas de solvente e de soluto em cada experimento.

Figura 5.3 – Comparação dos dados experimentais do sistema $CO_2(1) + DME(2)$ a 320 K.

Pequenas variações observadas entre os resultados dos trabalhos reportados na literatura são relativamente comuns, quando se trata de medidas experimentais em altas pressões (STUART; DARIVA; OLIVEIRA, 2000).

As propriedades críticas e o fator acêntrico necessários para o teste de consistência termodinâmica dos dados experimentais foram obtidos de DIPPR (2000) e os resultados do teste para o equilíbrio de fases a altas pressões são apresentados na Tabela 5.15.

X.	298,15 K		3	308,15 K	3	320,15 K		
<i>x</i> ₁	$\Delta A\%$	Consistência	$\Delta A \%$	Consistência	$\Delta A \%$	Consistência		
0,0153	-	consistente	-	consistente	-	consistente		
0,0298	0,01	consistente	0,02	consistente	0,02	consistente		
0,0897	0,84	consistente	0,77	consistente	0,73	consistente		
0,1852	0,40	consistente	0,35	consistente	0,32	consistente		
0,3113	0,93	consistente	0,94	consistente	0,96	consistente		
0,4059	0,39	consistente	0,40	consistente	0,53	consistente		
0,5138	0,45	consistente	0,66	consistente	0,73	consistente		
0,6148	0,56	consistente	0,64	consistente	0,63	consistente		
0,7014	0,55	consistente	0,65	consistente	0,70	consistente		
0,7811	0,60	consistente	0,73	consistente	0,90	consistente		
0,8623	0,54	consistente	0,58	consistente	1,24	consistente		
0,9252	1,05	consistente	1,71	consistente	7,63	consistente		

Tabela $5.15 - \text{Consistência termodinâmica do sistema CO}_2(1) + \text{DME}(2)$.

Para o cálculo dos parâmetros de componente puro das equações de estado PC-SAFT e CPA, os dados de pressão de saturação e de densidade para o líquido saturado foram obtidos de DIPPR (2000) e seus valores calculados estão reportados na Tabela 5.5. Os resultados da modelagem termodinâmica, com os dados termodinamicamente consistentes, são apresentados na Tabela 5.16 em termos de desvio na pressão de bolha.

X.	298,15	K	308,15	δK	320,15	Κ
~1	PC-SAFT	CPA	PC-SAFT	CPA	PC-SAFT	CPA
0,0153	7,15	2,46	5,07	6,92	4,14	11,17
0,0298	6,42	3,31	7,15	4,30	3,47	11,10
0,0897	5,42	2,75	5,44	3,61	1,84	9,85
0,1852	9,44	3,58	3,76	2,87	0,66	8,11
0,3113	6,17	1,71	2,63	2,24	2,67	9,04
0,4059	3,84	0,05	2,32	1,81	2,07	7,49
0,5138	4,60	0,80	0,02	3,31	1,31	5,78
0,6148	5,54	3,53	2,33	5,04	2,28	5,98
0,7014	1,51	1,55	2,25	4,67	2,51	5,79
0,7811	0,00	0,87	0,48	2,66	1,91	5,84
0,8623	0,03	2,33	2,10	4,02	2,35	6,75
0,9252	0,73	2,42	0,21	1,58	0,24	5,64

Tabela 5.16 – Desvios na pressão de bolha (ΔP) do sistema CO₂ + DME.

Fonte: Arquivo pessoal.

Os parâmetros de interação binária, k_{ij} , para as EdEs PC-SAFT e CPA são apresentados em função da temperatura na Tabela 5.17, juntamente com os desvios médios da pressão de bolha. Demonstra-se pelos desvios baixos que os modelos termodinâmicos são adequados para a modelagem do sistema CO₂ + DME nas condições apresentadas. Na Figura 5.4, são apresentados os dados experimentais e os resultados obtidos com os modelos termodinâmicos.

Tabela 5.17 – Parâmetros de interação binária e desvios médios na pressão de bolha (ΔP) do sistema CO₂ + DME.

EdE	k _{ij}	ΔP
PC-SAFT	0,0423 + 10,1234/T	3,06
CPA	0,0733 - 10,4741/T	4,47

Figura 5.4 – Dados experimentais e modelagem termodinâmica do sistema CO₂ + DME.

Fonte: Arquivo pessoal.

5.1.3 Equilíbrio líquido-líquido do sistema acetato de etila + etanol + água

Para o ELL, o sistema formado por acetato de etila, etanol e água foi escolhido para validar a metodologia experimental descrita na seção 4.1.3. Esse sistema foi estudado a quatro temperaturas: 293,15 K, 298,15 K, 303,15 K e 308,15 K. Algumas informações são apresentadas apenas para uma das temperaturas e para as demais temperaturas são apresentadas no Apêndice B, conforme indicado. A densidade (ρ) e o índice de refração (η_D) das substâncias a 298,15 K são apresentados na Tabela 5.18 e as propriedades para as demais temperaturas na Tabela B.1.

Tabela 5.18 – Propriedades físicas do acetato de etila + etanol + água a 298,15 K.

	ho (g.cn	n ⁻³)	η_D	η_D		
Substância	Experimental ^a	Literatura ^b	Experimental ^a	Literatura		
Acetato de etila	0,8934	0,8936	1,3694	1,3696°		
Etanol	0,7855	0,7859	1,3591	1,3594 ^d		
Água	0,9943	0,9947	1,3321	1,3325 ^d		

Fonte: Arquivo pessoal.

Nota: ^a Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): u(T) = 0,01 K, u(P) = 0,01 kPa, U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴;

^b (DIPPR, 2000);

^c (PALAIOLOGOU, 1996);

^d (RIDDICK; BUNGER; SAKANO, 1986).

Os dados experimentais para a obtenção da curva binodal do sistema são apresentados na Tabela 5.19 para 298,15 K e para as demais temperaturas na Tabela B.2.

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	η_D	ρ (g.cm ⁻³)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	η_D	ρ (g.cm ⁻³)
0,8734	0,0000	0,1266	1,3703	0,9061	0,2349	0,1645	0,6006	1,3648	0,9362
0,8133	0,0248	0,1619	1,3702	0,9070	0,1916	0,1561	0,6523	1,3637	0,9423
0,7548	0,0484	0,1968	1,3701	0,9079	0,1534	0,1459	0,7007	1,3618	0,9483
0,6971	0,0705	0,2324	1,3699	0,9091	0,1162	0,1352	0,7486	1,3596	0,9542
0,6409	0,0918	0,2673	1,3696	0,9104	0,0921	0,1204	0,7875	1,3567	0,9598
0,6067	0,1042	0,2891	1,3694	0,9112	0,0682	0,1048	0,8270	1,3538	0,9654
0,5727	0,1166	0,3107	1,3692	0,9121	0,0502	0,0872	0,8626	1,3515	0,9709
0,5361	0,1302	0,3337	1,3689	0,9129	0,0322	0,0704	0,8974	1,3492	0,9763
0,4527	0,1456	0,4017	1,3683	0,9181	0,0268	0,0524	0,9208	1,3458	0,9806
0,3692	0,1617	0,4691	1,3676	0,9232	0,0225	0,0338	0,9437	1,3431	0,9849
0,3250	0,1664	0,5086	1,3668	0,9267	0,0207	0,0166	0,9627	1,3402	0,9886
0,2804	0,1722	0,5474	1,3660	0,9300	0,0188	0,0000	0,9812	1,3369	0,9923

Tabela 5.19 – Curva binodal do sistema ternário acetato de etila (1) + etanol (2) + água (3).

Fonte: Arquivo pessoal.

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

Os coeficientes da curva de calibração, equação (4.1), são apresentados na Tabela 5.20 para os dados a 298,15 K e na Tabela B.3 para as demais temperaturas.

Coeficiente	Va	lor	Coeficiente	Va	lor
	η_D	ρ	Coeffetence	η_D	ρ
<i>C</i> ₀₀	1,3796	1,0035	C ₃₁	2401,1	411,2242
c_{10}	-6,4788	-1,1839	C ₂₂	7733,6	1214,7
<i>c</i> ₀₁	-0,5511	-0,3395	<i>C</i> ₁₃	3603,5	640,0797
<i>c</i> ₂₀	237,5547	32,8575	<i>C</i> ₀₄	6386,9	669,8420
<i>c</i> ₁₁	45,8405	9,8121	<i>C</i> ₅₀	-327,7402	-22,0052
<i>c</i> ₀₂	44,0620	5,4350	C_{41}	-1089,1	-151,0597
<i>c</i> ₃₀	-746,1631	-85,7034	C ₃₂	-5422,1	-879,5513
<i>c</i> ₂₁	-1371,8	-260,0682	<i>C</i> ₂₃	-9712,9	-1614,0
<i>C</i> ₁₂	-1615,9	-199,4046	<i>C</i> ₁₄	-5009,1	-1040,4
<i>c</i> ₀₃	-523,0357	-62,5103	<i>C</i> ₀₅	-12351,0	-1340,3
<i>C</i> ₄₀	838,8632	75,8818	R^2	0,9999	0,9999

Tabela 5.20 – Coeficientes da curva de calibração do sistema acetato de etila + etanol + água a 298,15 K.

As isolinhas do sistema foram plotadas no diagrama ternário e são apresentadas na Figura 5.5 para a temperatura de 298,15 K e nas Figuras B.1, B.2 e B.3 para as temperaturas de 293,15 K, 303,15 K e 308,15 K, respectivamente.

Figura 5.5 – Isolinhas do índice de refração (a) e da densidade (b) em função da composição para o sistema acetato de etila + etanol + água a 298,15 K.

Fonte: Arquivo pessoal.

Para as linhas de amarração, as medições foram tomadas em triplicata e a média foi utilizada para calcular as composições de cada fase por meio da curva de calibração. Os resultados, em termos de frações molares, são apresentados na Tabela 5.21 para a temperatura de 298,15 K e na Tabela B.4 para as demais temperaturas, onde *N* representa o número da linha de amarração.

	_	Fase O	rgânica	(L_1)		Fase Aquosa (L_2)					
Ν	η_D	ρ (g.cm ⁻³)	$x_{1}^{L_{1}}$	$x_{2}^{L_{1}}$	$x_{3}^{L_{1}}$	η_D	ρ (g.cm ⁻³)	$x_{1}^{L_{2}}$	$x_{2}^{L_{2}}$	$x_{3}^{L_{2}}$	
1	1,3648	0,9368	0,2324	0,1621	0,6054	1,3578	0,9592	0,0973	0,1204	0,7823	
2	1,3667	0,9273	0,3231	0,1646	0,5124	1,3540	0,9664	0,0613	0,1033	0,8354	
3	1,3677	0,9215	0,4000	0,1548	0,4452	1,3500	0,9734	0,0393	0,0804	0,8803	
4	1,3683	0,9177	0,4658	0,1418	0,3925	1,3469	0,9783	0,0282	0,0623	0,9095	
5	1,3695	0,9109	0,6140	0,1020	0,2839	1,3455	0,9812	0,0313	0,0473	0,9214	
6	1,3702	0,9067	0,7870	0,0394	0,1737	1,3418	0,9863	0,0224	0,0271	0,9505	

Tabela 5.21 – Linhas de amarração do sistema acetato de etila (1) + etanol (2) + água (3) a 298,15 K.

Fonte: Arquivo pessoal.

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

A representação da curva binodal e das linhas de amarração é apresentada em um prisma triangular para as quatro temperaturas na Figura 5.6, onde as inclinações das linhas de amarração para cada temperatura e os pontos críticos preditos são observados (ALDERS, 1959). O comportamento encontrado para este sistema é consistente ao encontrado na literatura (RESA *et al.*, 2006), de maneira que a metodologia experimental empregada permite expandir os estudos do ELL para sistemas mais complexos.

Figura 5.6 – Diagramas de fases para o sistema acetato de etila + etanol + água para as temperaturas 293,15, 298,15, 303,15 e 308,15 K.

Fonte: Arquivo pessoal.

Os dados experimentais foram submetidos ao teste de qualidade como descrito na seção 4.3.3. Os resultados da análise pelo método proposto por Marcilla, Ruiz e García (1995) aparecem na Tabela 5.22 para os dados experimentais a 298,15 K e na Tabela B.5 para as demais temperaturas.

Observa-se que o maior desvio encontrado foi de 0,70% para apenas uma linha de amarração à temperatura de 293,15 K e o desvio médio entre todos os dados foi 0,14%. Dessa

forma, todos os dados experimentais respeitam o critério de desvio inferior a 2,0% para que apresentem uma boa qualidade e sejam utilizados na modelagem termodinâmica.

	Co	mposição to	tal da soluçã	ĭo		1 <i>d</i> -	9 (a)
N	M ^{sol}	x_1^{sol}	x_2^{sol}	x_3^{sol}	M^{L_1}	M^{L_2}	δ (%)
1	18,8542	0,1291	0,1308	0,7402	4,4716	14,3803	0,01
2	17,9654	0,1374	0,1207	0,7419	5,2116	12,7573	0,02
3	16,3615	0,1494	0,1021	0,7485	4,9796	11,3920	0,06
4	18,7428	0,1588	0,0875	0,7537	5,6109	13,1125	0,10
5	14,6905	0,1812	0,0583	0,7605	3,7657	10,9626	0,26
6	16,0536	0,1988	0,0328	0,7684	3,7077	12,3018	0,27

Tabela 5.22 – Teste de qualidade do sistema acetato de etila (1) + etanol (2) + água (3) a 298,15 K.

Fonte: Arquivo pessoal.

Conforme a seção 4.3.4, os coeficientes de distribuição e o fator de separação experimentais foram calculados com os dados validados pelo teste de qualidade (Tabela 5.23).

	T = 293,15 K			T = 303,15 K				
D_1	D_2	S	<i>D</i> ₁	<i>D</i> ₂	S			
0,19	0,59	3,1	0,25	0,59	2,4			
0,08	0,49	5,8	0,17	0,54	3,2			
0,08	0,42	5,5	0,14	0,52	3,8			
0,06	0,44	7,2	0,09	0,51	5,8			
0,04	0,36	8,4	0,07	0,52	7,4			
			0,05	0,45	8,4			
			0,04	0,46	10,7			
	T = 298,15 K			T = 308,15 K				
D_1	D_2	S	<i>D</i> ₁	D_2	S			
0,42	0,74	1,8	0,16	0,54	3,5			
0,19	0,63	3,3	0,14	0,51	3,6			
0,10	0,52	5,3	0,08	0,38	4,8			
0,06	0,44	7,3	0,04	0,32	8,3			
0,05	0,46	9,1	0,04	0,26	6,7			
0,03	0,69	24,2	0,02	0,27	11,2			
Fonte: Arquivo p	essoal.							

Tabela 5.23 – Coeficientes de distribuição e fatores de separação experimentais do etanol.

O fator de separação maior que um, S > 1, para as quatro temperaturas, indica que o etanol (soluto) contido no acetato de etila (diluente) pode ser extraído pela água (solvente), como visto nas Figuras 5.7 e 5.8 para os valores de S e D_2 , respectivamente, em função da fração molar de etanol na fase orgânica $(x_2^{L_1})$, rica em acetato de etila.

Figura 5.7 – Fator de separação (S) para o sistema acetato de etila (1) + etanol (2) + água (3).

Fonte: Arquivo pessoal. Legenda: ■ (293,15 K); ● (298,15 K); ▲ (303,15 K); ▼ (308,15 K).

Figura 5.8 – Coeficiente de distribuição (D_2) para o sistema acetato de etila (1) + etanol (2) + água (3).

Fonte: Arquivo pessoal. Legenda: ■ (293,15 K); ● (298,15 K); ▲ (303,15 K); ▼ (308,15 K).

Na modelagem termodinâmica, os dados experimentais do ELL foram correlacionados utilizando a abordagem γ - γ com o modelo NRTL e a EdE PR-TV-CG para se obter os coeficientes de atividade.

Os parâmetros de interação binária do modelo NRTL são apresentados na Tabela 5.24 para a temperatura de 298,15 K e para as demais temperaturas na Tabela B.6. O valor do parâmetro de não-aleatoriedade, α_{ij} , otimizado foi de 0,3406, 0,2664, 0,2243 e 0,2907 para as temperaturas de 293,15, 298,15, 303,15 e 308,15 K, respectivamente.

Tabela 5.24 – Parâmetros de interação binária, $g_{ij} - g_{jj}$ (cal.mol⁻¹), do modelo NRTL para o sistema acetato de etila (1) + etanol (2) + água (3) a 298,15 K.

Componente	1	2	3
1	0,0000	0,0080	1,0192
2	0,0998	0,0000	1,0088
3	8,4394	1,010	0,0000

Fonte: Arquivo pessoal.

Para a modelagem termodinâmica utilizando a equação de estado PR-TV-CG, os parâmetros de interação binária, A_{nm}, B_{nm}, C_{nm}, A_{mn}, B_{mn} e C_{mn} (Figura 3.3), apresentados na Tabela 5.25, foram obtidos utilizando a rotina de otimização de Levenberg-Marquardt para a minimização da função objetivo, equação (4.32).

Tabela 5.25 – Valores dos parâmetros de interação da EdE PR-TV-CG.

Grupos	A _{nm} (K)	B _{nm}	$C_{nm} (K^{-1})$	A _{mn} (K)	\mathbf{B}_{mn}	C _{mn} (K ⁻¹)
CH - OH	323,502	1,604	0,000	-634,504	14,907	0,000
CH - H ₂ O	-972,741	-3,612	0,000	-954,332	-3,812	0,000
CH - CCOO	1901,714	9,501	0,000	1803,304	28,335	0,000
OH - H ₂ O	1491,506	1,665	0,000	39,815	0,807	0,000
OH - CCOO	-757,248	-4,041	0,000	-804,535	7,325	0,000
H ₂ O - CCOO	1267,503	-3,412	0,000	-983,114	-3,716	0,000

Fonte: Arquivo pessoal.

Os desvios absolutos para as composições nas fases líquidas obtidas na modelagem termodinâmica são apresentados na Tabelas 5.26 para a modelagem termodinâmica a 298,15 K e nas Tabelas B.7 (NRTL) e B.8 (PR-TV-CG) para as demais temperaturas. Os desvios para ambas as fases foram obtidos utilizando a equação (4.34).

Para o modelo NRTL, considerando as quatro temperaturas trabalhadas, o desvio médio para composição em fração molar do acetato de etila, do etanol e da água, na fase orgânica, foi de 1,11%, 0,54% e 1,37% e, na fase aquosa, foi de 0,64%, 0,49% e 1,04%.

Com a equação PR-TV-CG, os desvios médios absolutos das composições em fração molar do acetato de etila, do etanol e da água, foram de 0,04%, 0,05% e 0,09% na fase orgânica e 0,05%, 0,03% e 0,04% na fase aquosa, respectivamente.

Em termos do desvio médio quadrático, equação (4.33), o obtido para o modelo NRTL foi 0,0199, enquanto para a EdE de PR-TV-CG foi de 0,0000.

	NRTL											
NT			Fase	e orgânica					Fas	e aquosa		
N 1 2 3 4 5 6 N 1 2 3 4 5 4 5 6	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$\Delta x_1 (\%)$	Δx_2 (%)	$\Delta x_3 (\%)$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$\Delta x_1 (\%)$	Δx_2 (%)	$\Delta x_3 (\%)$
1	0,2234	0,1662	0,6104	0,90	0,41	0,50	0,0937	0,1277	0,7785	0,36	0,73	0,38
2	0,3255	0,1654	0,5092	0,24	0,08	0,32	0,0625	0,1038	0,8337	0,12	0,05	0,17
3	0,3977	0,1517	0,4506	0,23	0,31	0,54	0,0396	0,0820	0,8783	0,03	0,16	0,20
4	0,4459	0,1304	0,4237	1,99	1,14	3,12	0,0286	0,0642	0,9072	0,04	0,19	0,23
5	0,6072	0,0961	0,2966	0,68	0,59	1,27	0,0316	0,0491	0,9193	0,03	0,18	0,21
6	0,7841	0,0403	0,1756	0,29	0,09	0,19	0,0227	0,0262	0,9510	0,03	0,09	0,05
						PR-TV-0	CG					
N		Fase orgânica							Fas	e aquosa		
IN	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$\Delta x_1 (\%)$	Δx_2 (%)	$\Delta x_3 (\%)$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$\Delta x_1 (\%)$	Δx_2 (%)	$\Delta x_3 (\%)$
1	0,2320	0,1618	0,6062	0,04	0,03	0,08	0,0974	0,1208	0,7818	0,01	0,04	0,05
2	0,3227	0,1642	0,5131	0,04	0,04	0,07	0,0612	0,1038	0,8350	0,01	0,05	0,04
3	0,3996	0,1543	0,4461	0,04	0,05	0,09	0,0394	0,0807	0,8799	0,01	0,03	0,04
4	0,4653	0,1414	0,3933	0,05	0,04	0,08	0,0281	0,0628	0,9091	0,01	0,05	0,04
5	0,6135	0,1019	0,2846	0,05	0,01	0,07	0,0314	0,0477	0,9209	0,01	0,04	0,05
6	0,7866	0,0383	0,1751	0,04	0,11	0,14	0,0227	0,0274	0,9499	0,03	0,03	0,06

Tabela $5.26 - \text{Resultados obtidos na modelagem do ELL do sistema acetato de etila (1) + etanol (2) + água (3) a 298,15 K.$

O diagrama de fases obtido é do Tipo 1 (TREYBAL, 1980), conforme visto nas Figura 5.9 para a temperatura de 298,15 K e nas Figuras B.4, B.5 e B.6 para as demais temperaturas. Nestas figuras, são apresentadas as composições totais das soluções que deram origem às linhas de amarração e o ponto crítico predito usando o método de Alders (1959), baseado na interpolação das linhas de amarração. As composições dos pontos críticos são apresentadas na Tabela 5.27.

Figura 5.9 – Dados do ELL para o sistema acetato de etila + etanol + água a 298,15 K.

Tabela 5.27 - Pontos críticos do sistema acetato de etila (1) + etanol (2) + água (3).

<i>T</i> (K)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
 293,15	0,0851	0,1254	0,7895
298,15	0,1238	0,1387	0,7375
303,15	0,1004	0,1203	0,7793
 308,15	0,1191	0,1293	0,7516

Fonte: Arquivo pessoal.

De acordo com os resultados, os modelos termodinâmicos mostram uma boa precisão na modelagem do ELL do sistema acetato de etila + etanol + água, uma vez que as linhas de amarração calculadas praticamente se sobrepõem às experimentais.

5.2 SISTEMAS CONTENDO LÍQUIDOS IÔNICOS

5.2.1 Equilíbrio líquido-vapor a baixas pressões dos sistemas água + etanol + LI

No ELV a baixas pressões, era esperada a ausência de líquido iônico na fase vapor, conforme Calvar *et al.* (2008), devido à pressão de vapor desprezível do LI. Para assegurar a qualidade dos dados, duas amostras foram coletadas, no equilíbrio de fases do sistema água + etanol + [hmim][BF₄], para uma análise de espectrometria por ressonância magnética nuclear de hidrogênio (RMN ¹H), utilizando o equipamento Varian, modelo Mercury 300MHz, e água deuterada (D₂O) como solvente, detectando o LI apenas na amostra da fase líquida e apenas presença do perfil característico do etanol na fase vapor, conforme mostrado nas Figuras C.1 e C.2 localizadas Apêndice C.

5.2.1.1 Sistema água + etanol + [hmim][BF4]

O sistema composto por água, etanol e tetrafluoroborato de 1-hexil-3-metilimidazólio, [hmim][BF₄], foi estudado a 313,15 K e a 101,3 kPa. A temperatura foi selecionada devido à solubilidade entre as substâncias envolvidas. A temperaturas mais baixas, em determinadas proporções, a imiscibilidade entre a água e o LI provoca a separação do meio em duas fases líquidas.

A densidade e o índice de refração das substâncias envolvidas são apresentados na Tabela 5.28.

_	Substância	ρ (g.cm ⁻³)	η_D
_	Água	0,9884	1,3315
	Etanol	0,7821	1,3601
	[hmim][BF4]	1,1400	1,4278

Tabela 5.28 – Propriedades físicas das substâncias puras a 313,15 K.

Fonte: Arquivo pessoal.

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): u(T) = 0,01 K, U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴;

As composições das soluções preparadas para a curva de calibração e suas respectivas propriedades são apresentadas na Tabela 5.29 e, na Tabela 5.30, são apresentados os valores obtidos para os coeficientes, equação (4.1), calculados para o ajuste dos dados da calibração e o coeficiente de correlação de cada curva.

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	η_D	ρ (g.cm ⁻³)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	η_D	ρ (g.cm ⁻³)
0,0000	1,0000	0,0000	1,3543	0,7882	0,7965	0,1474	0,0562	1,3735	0,9996
0,0000	0,0000	1,0000	1,4207	1,1229	0,8087	0,0582	0,1331	1,3886	1,0546
0,2802	0,7000	0,0198	1,3639	0,8384	0,8221	0,1521	0,0258	1,3610	0,9674
0,2975	0,6605	0,0420	1,3707	0,8688	0,8402	0,1554	0,0044	1,3514	0,9389
0,3393	0,5650	0,0957	1,3822	0,9351	0,8428	0,0780	0,0793	1,3879	1,0338
0,3947	0,4382	0,1671	1,3929	0,9949	0,8511	0,1400	0,0089	1,3543	0,9522
0,4670	0,5184	0,0146	1,3631	0,8593	0,8544	0,1054	0,0402	1,3663	0,9977
0,4718	0,2619	0,2663	1,4010	1,0452	0,8739	0,1078	0,0183	1,3565	0,9788
0,4879	0,4815	0,0306	1,3695	0,8896	0,8894	0,0549	0,0558	1,3700	1,0271
0,5229	0,1451	0,3320	1,4051	1,0793	0,8910	0,1060	0,0030	1,3465	0,9541
0,5360	0,3967	0,0672	1,3769	0,9389	0,8980	0,0738	0,0282	1,3591	0,9958
0,5947	0,2934	0,1119	1,3870	0,9958	0,8989	0,0950	0,0060	1,3484	0,9636
0,6003	0,3887	0,0110	1,3615	0,8820	0,9151	0,0726	0,0123	1,3506	0,9807
0,6203	0,3570	0,0227	1,3667	0,9048	0,9319	0,0493	0,0188	1,3529	0,9968
0,6645	0,2869	0,0486	1,3714	0,9503	0,9334	0,0648	0,0018	1,3416	0,9674
0,6678	0,1647	0,1675	1,3918	1,0376	0,9384	0,0579	0,0037	1,3428	0,9693
0,7003	0,2915	0,0082	1,3589	0,9029	0,9487	0,0439	0,0074	1,3440	0,9826
0,7115	0,0878	0,2008	1,3969	1,0793	0,9591	0,0296	0,0113	1,3439	0,9864
0,7155	0,2059	0,0785	1,3809	0,9958	0,9693	0,0299	0,0008	1,3355	0,9769
0,7176	0,2655	0,0169	1,3633	0,9238	0,9717	0,0266	0,0017	1,3370	0,9807
0,7550	0,2095	0,0355	1,3666	0,9579	0,9765	0,0201	0,0034	1,3369	0,9826
0,7751	0,1115	0,1134	1,3855	1,0357	0,9814	0,0135	0,0051	1,3384	0,9921
0,7780	0,2159	0,0061	1,3555	0,9238	1,0000	0,0000	0,0000	1,3311	0,9864
0,7922	0,1954	0,0124	1,3597	0,9389					

Tabela 5.29 – Dados para curva de calibração, a 313,15 K, do sistema água (1) + etanol (2) + [hmim][BF4] (3).

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

Coeficiente	Valo	or	Coeficiente	Valor		
	η_D	ρ	coefference	Valor η_D η_D c_{31} 6,909 -21 c_{22} 6,35 0,4 c_{13} 5,133 34 c_{04} -0,04174 13 c_{50} -1,202 2,7 c_{41} -3,667 10 c_{23} -4,339 9,9 c_{23} -5,047 -12 c_{14} -3,131 -20 c_{05} 0,01819 -5,	ρ	
C _{nn}	1,421	1,123	C ₃₁	6,909	-21,35	
<i>c</i> ₁₀	-0,3068	0,3391	<i>C</i> ₂₂	6,35	0,4399	
c_{01}	-0,000341	-1,152	<i>C</i> ₁₃	5,133	34,29	
<i>c</i> ₂₀	1,426	-3,158	c_{04}	-0,04174	13,96	
<i>c</i> ₁₁	0,7383	0,2912	<i>c</i> ₅₀	-1,202	2,146	
<i>C</i> ₀₂	-0,1893	5,595	c_{41}	-3,667	10,44	
<i>c</i> ₃₀	-3,402	6,93	C ₃₂	-4,339	9,981	
<i>c</i> ₂₁	-4,03	11,6	C ₂₃	-5,047	-12,97	
<i>c</i> ₁₂	-2,52	-15,48	c_{14}	-3,131	-20,02	
c_{03}	0,1464	-13,72	c_{05}^{-1}	0,01819	-5,022	
C ₄₀	3,395	-6,392	R^2	0,9924	0,9978	

Tabela 5.30 – Coeficientes da regressão da curva de calibração do sistema água + etanol + [hmim][BF₄].

As isolinhas obtidas para cada uma das propriedades são mostradas nas Figuras 5.10 e 5.11 para o índice de refração e para a densidade, respectivamente.

Figura 5.10 – Isolinhas do índice de refração do sistema água + etanol + [hmim][BF4].

Fonte: Arquivo pessoal.

Figura 5.11 – Isolinhas da densidade do sistema água + etanol + [hmim][BF4].

Fonte: Arquivo pessoal.

A curva de calibração para a fase vapor foi elaborada com o sistema água e etanol medindo a densidade a partir de soluções de composições conhecidas, por ser necessário apenas

uma propriedade, quando se trata de uma mistura binária. Os coeficientes da equação (4.3) são apresentados na Tabela 5.31, juntamente com o coeficiente de correlação.

$F(\mathbf{r}_{i})$	Coeficiente									
1 (11)	<i>C</i> ₀	C_1	<i>C</i> ₂	<i>C</i> ₃	C4	R^2				
ρ	0,7682	0,1538	-0,2199	0,5313	-0,2718	0,9997				
Fonte: Arguivo pessoal.										

Tabela 5.31 – Coeficientes para a regressão do sistema água + etanol.

O procedimento experimental para a obtenção dos dados experimentais do equilíbrio é descrito na seção 4.1.2.1. Os dados do sistema são apresentados na Tabela 5.32.

		_	Fa	se líquid	la			Fase vapor				
N	T (K)	η_D	ρ (g.cm ⁻³)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	η_D	ρ (g.cm ⁻³)	<i>y</i> ₁	<i>y</i> ₂		
1	352,75	1,3773	0,9118	0,3714	0,5594	0,0692	1,3579	0,8024	0,2673	0,7327		
2	353,45	1,3834	0,9385	0,3096	0,5865	0,1039	1,3574	0,7967	0,2221	0,7779		
3	355,15	1,3911	0,9744	0,2841	0,5635	0,1524	1,3526	0,8005	0,2525	0,7475		
4	357,05	1,3788	0,9724	0,6375	0,2862	0,0763	1,3583	0,8251	0,4192	0,5808		
5	357,25	1,3819	0,9804	0,6125	0,2960	0,0915	1,3582	0,8213	0,3969	0,6031		
6	357,65	1,3857	0,9951	0,6073	0,2814	0,1113	1,3531	0,8251	0,4192	0,5808		
7	358,35	1,3795	0,9912	0,7066	0,2161	0,0773	1,3580	0,8346	0,4712	0,5288		
8	358,55	1,3897	1,0179	0,6457	0,2213	0,133	1,3578	0,8270	0,4301	0,5699		
9	359,25	1,3787	1,0003	0,7543	0,1731	0,0726	1,3584	0,8384	0,4906	0,5094		
10	360,15	1,3948	1,0319	0,5923	0,2292	0,1785	1,3580	0,8308	0,4510	0,5490		
11	360,75	1,3797	1,0087	0,7756	0,1492	0,0752	1,3590	0,8422	0,5093	0,4907		
12	362,85	1,3780	1,0199	0,8345	0,0971	0,0684	1,3566	0,8593	0,5858	0,4142		
13	363,85	1,3778	1,0243	0,8513	0,0805	0,0682	1,3568	0,8782	0,6602	0,3398		
14	366,05	1,3705	1,0247	0,9037	0,0436	0,0527	1,3533	0,9105	0,7720	0,2280		

Tabela 5.32 - ELV experimental do sistema água (1) + etanol (2) + [hmim][BF₄] (3).

Fonte: Arquivo pessoal.

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

A avaliação dos dados experimentais foi feita por meio do teste de consistência termodinâmica apresentado na seção 4.3.1. Em particular, para o caso de sistemas que contenham um líquido iônico, devido à sua pressão de vapor extremamente baixa, é possível adotar que o calor de vaporização e, por consequência, a entropia de vaporização, na equação (4.4), seja nula. Foi adotado que o desvio, *D*, equação (4.11), tolerado seria de até 3,0 % como critério de consistência. Os resultados do teste de consistência termodinâmica são apresentados na Tabela 5.33.

Ν	D	Consistência	Ν	D	Consistência
1	1,18	consistente	8	1,26	consistente
2	0,74	consistente	9	1,44	consistente
3	0,54	consistente	10	0,99	consistente
4	1,22	consistente	11	1,48	consistente
5	1,15	consistente	12	1,71	consistente
6	1,14	consistente	13	1,83	consistente
7	1,34	consistente	14	2,27	consistente

Tabela 5.33 - Consistência termodinâmica do ELV do sistema água + etanol + [hmim][BF4].

Para a modelagem termodinâmica, os dados experimentais considerados termodinamicamente consistentes foram submetidos à otimização pela minimização da função objetivo, equação (4.26), e o algoritmo de Levenberg-Marquardt utilizando o modelo NRTL e a EdE PR-TV-CG.

Os parâmetros de interação binária otimizados do modelo NRTL são apresentados na Tabela 5.34. Os parâmetros de não-aleatoriedade (α_{ij}) otimizados foram 0,2564, 0,3745 e 0,3808 para α_{12} , α_{13} e α_{23} , respectivamente, do sistema água (1) + etanol (2) + [hmim][BF₄] (3).

Tabela 5.34 – Parâmetros de interação binária do modelo NRTL, $\frac{g_{ij}-g_{jj}}{R}$, (K), do sistema água (1) + etanol (2) + [hmim][BF₄] (3) a 101,3 kPa.

Componente	1	2	3
1	0,0000	366,9304	244,7453
2	135,5762	0,0000	864,4407
3	613,0846	-171,8094	0,0000

Fonte: Arquivo pessoal.

Para a EdE PR-TV-CG, os parâmetros de componente puro, apresentados na Tabela 5.3, e os valores dos grupos funcionais, Tabela 5.4, foram utilizados. Os parâmetros de interação dos grupos funcionais do sistema são apresentados na Tabela 5.35.

Grupos	$A_{nm}\left(K ight)$	\mathbf{B}_{nm}	$C_{nm} (K^{-1})$	$A_{mn}\left(K ight)$	\mathbf{B}_{mn}	$C_{mn} (K^{-1})$
CH - OH	1809.5154	-0.4856	0,0000	725.6665	-0.9051	0,0000
CH - H ₂ O	2096.9651	-1.6565	0,0000	56.5880	0.5883	0,0000
CH - [hmim][BF4]	-1410,0045	38.3982	0,0000	-2680.1032	82.3692	0,0000
OH - H ₂ O	-789.4862	2.8178	0,0000	478.2804	-0.5389	0,0000
OH - [hmim][BF4]	3141.0972	-86.7976	0,0000	80571.0321	-220.3307	0,0000
H ₂ O - [hmim][BF ₄]	2926.0745	-357.9107	0,0000	-2388.0132	73.1987	0,0000

Tabela 5.35 – Valores dos parâmetros de interação da EdE PR-TV-CG.

Os resultados da modelagem termodinâmica, utilizando o modelo NRTL e a EdE PR-TV-CG com a abordagem γ - ϕ (Lei de Raoult modificada) e o método de Bolha T, são apresentados na Tabela 5.36 juntamente aos desvios para a temperatura de bolha e as composições na fase vapor. Os desvios para a temperatura são relativos, enquanto que para a composição da fase vapor são absolutos.

Dentre os desvios com o modelo NRTL, se verifica um desvio absoluto médio de 1,30% para as composições na fase vapor, sendo o maior desvio no ponto 13, de 2,61%, e o menor de 0,00% nos pontos 5 e 10. Para a temperatura de bolha, o desvio relativo médio foi de 0,16%, tendo o ponto 1 com o maior desvio, de 0,55%, e os pontos 8 e 13 com o menor, de 0,00%.

Com a EdE PR-TV-CG, o desvio médio absoluto para as composições na fase vapor foi de 0,92%, sendo o maior desvio de 1,71% no ponto 14 e o menor de 0,20% no ponto 5. O desvio relativo médio na temperatura de bolha foi de 0,12%, com o menor de 0,03% no ponto 11 e o maior de 0,33% no ponto 4.

Como os desvios médios para o modelo NRTL foram ligeiramente maiores do que os obtidos usando a EdE PR-TV-CG, se verifica que os modelos termodinâmicos são eficientes para realizar a modelagem termodinâmica do sistema ternário contendo [hmim][BF4].

A Figura 5.12 apresenta o diagrama de fases Txy contendo os dados experimentais dos pontos de bolha e de orvalho e os obtidos pela modelagem termodinâmica. Verifica-se que os desvios das temperaturas são semelhantes para ambos os modelos e os desvios das composições são expressos pela maior angulação das retas que unem os pontos experimentais com os pontos modelados.

N			NRTL						PR-TV-C	G		
IN	<i>T</i> (K)	<i>y</i> ₁	<i>y</i> ₂	ΔT	Δy_1	Δy_2	<i>T</i> (K)	<i>y</i> ₁	<i>y</i> ₂	ΔT	Δy_1	Δy_2
1	350,81	0,2552	0,7448	0,55	1,21	1,21	353,34	0,2721	0,7279	0,17	0,48	0,48
2	352,39	0,2098	0,7902	0,30	1,23	1,23	353,82	0,2382	0,7618	0,10	1,61	1,61
3	354,33	0,2285	0,7715	0,23	2,40	2,40	355,58	0,2438	0,7562	0,12	0,87	0,87
4	356,94	0,4045	0,5955	0,03	1,47	1,47	358,23	0,4025	0,5975	0,33	1,67	1,67
5	357,00	0,3969	0,6031	0,07	0,00	0,00	357,47	0,3989	0,6011	0,06	0,20	0,20
6	357,19	0,4155	0,5845	0,13	0,37	0,37	357,82	0,4087	0,5913	0,05	1,05	1,05
7	357,27	0,4469	0,5531	0,30	2,43	2,43	358,53	0,4632	0,5368	0,05	0,80	0,80
8	358,55	0,4119	0,5881	0,00	1,82	1,82	358,73	0,4434	0,5566	0,05	1,33	1,33
9	359,07	0,4781	0,5219	0,05	1,25	1,25	359,53	0,4943	0,5057	0,08	0,37	0,37
10	359,61	0,451	0,549	0,15	0,00	0,00	360,39	0,4532	0,5468	0,07	0,22	0,22
11	360,24	0,4926	0,5074	0,14	1,67	1,67	360,85	0,5146	0,4854	0,03	0,53	0,53
12	361,98	0,5751	0,4249	0,24	1,07	1,07	363,37	0,6008	0,3992	0,14	1,50	1,50
13	363,85	0,6341	0,3659	0,00	2,61	2,61	364,33	0,6542	0,3458	0,13	0,60	0,60
14	365,68	0,7652	0,2348	0,10	0,68	0,68	367,15	0,7549	0,2451	0,30	1,71	1,71
		Desvio méd	dio	0,16	1,30	1,30		Desvio méc	lio	0,12	0,92	0,92

 $Tabela \ 5.36 - Resultados \ da \ modelagem \ termodin \\ \hat{a}mica \ do \ sistema \ \\ \hat{a}gua \ (1) + etanol \ (2) + [hmim] [BF_4] \ (3).$

Figura 5.12 – Resultados da modelagem termodinâmica do sistema água + etanol + [hmim][BF4].

Fonte: Arquivo pessoal.

Legenda: pontos experimentais de bolha (•) e orvalho (▲); pontos de orvalho calculados pelo modelo NRTL (▲); pontos de orvalho calculados pela EdE PR-TV-CG (▲).

0,25

(H M IM][B F 4]

0,7

1,00 3

350

Pela Figura 5.12, as curvas de orvalho da modelagem termodinâmica são muito semelhantes. Há um leve desvio dos pontos dessa curva com o modelo NRTL a baixas temperaturas. No geral, os modelos termodinâmicos são adequados para a modelagem termodinâmica do sistema ternário água + etanol + [hmim][BF₄] com a abordagem γ - ϕ .

5.2.1.2 Sistema água + etanol + [emim][EtSO4]

As propriedades das substâncias do sistema ternário são apresentadas na Tabela 5.37.

Tabela 5.37 – Propriedades físicas das substâncias puras a 298,15 K.

Substância	ρ (g.cm ⁻³)	η_D
Água	0,9952	1,3320
Etanol	0,7901	1,3575
[emim][EtSO ₄]	1,2440	1,4767

Fonte: Arquivo pessoal.

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): u(T) = 0,01 K, U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

As curvas de calibração do sistema água + etanol + [emim][EtSO4] foram construídas à pressão de 101,3 kPa e na temperatura de referência de 298,15 K, as soluções preparadas para elaborá-las são apresentadas na Tabela 5.38, juntamente com as suas propriedades.

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	η_D	ρ (g.cm ⁻³)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	η_D	ρ (g.cm ⁻³)
0,0000	0,0000	1,0000	1,4767	1,2440	0,7393	0,1557	0,1050	1,4135	1,0860
0,0000	1,0000	0,0000	1,3590	0,7860	0,8259	0,0728	0,1013	1,4139	1,1080
1,0000	0,0000	0,0000	1,3337	1,0320	0,8500	0,0400	0,1100	1,4155	1,1220
0.0361	0,8657	0,0982	1,3995	0.9120	0.8100	0.0500	0,1400	1,4225	1,1360
0.0500	0.8500	0.1000	1.3946	0.9120	0.7600	0.0800	0.1600	1.4283	1.1370
0.0888	0.8084	0.1027	1.3968	0.9140	0.7100	0.1100	0.1800	1.4315	1,1380
0.1200	0.7800	0.1000	1.3952	0.9160	0.6900	0.1200	0.1900	1.4330	1.1380
0 1576	07376	0 1048	1 3968	0.9280	0,6700	0.1300	0 2000	1 4356	1 1 3 9 0
0,1900	0,7570	0,1000	1 4001	0.9400	0,6500	0,1350	0,2000	1,1356	1 1400
0,1200	0,7100	0,1000	1,1001	0.9540	0,6300	0,1350	0,2100	1,1305	1,1100
0,2277	0,0047	0,1004	1,4002	0,0520	0,0300	0,1-00	0,2500	1,4370	1,1420
0,2300	0,0500	0,1000	1,4005	0,9320	0,3800	0,1550	0,2030	1,4424	1,1400
0,2994	0,5943	0,1062	1,4042	0,9680	0,2646	0,7354	0,0000	1,3628	0,8260
0,3250	0,5750	0,1000	1,4030	0,9720	0,4473	0,5527	0,0000	1,3627	0,8500
0,3669	0,5258	0,1073	1,4071	0,9820	0,5812	0,4188	0,0000	1,3614	0,8760
0,4000	0,5000	0,1000	1,4034	0,9800	0,6834	0,3166	0,0000	1,3595	0,9020
0,4459	0,4441	0,1100	1,4098	1,0080	0,7640	0,2360	0,0000	1,3570	0,9220
0,5000	0,4000	0,1000	1,4080	1,0060	0,8293	0,1707	0,0000	1,3524	0,9440
0,5323	0,3593	0,1084	1,4107	1,0260	0,8831	0,1169	0,0000	1,3454	0,9600
0,5700	0,3300	0,1000	1,4085	1,0240	0,9283	0,0717	0,0000	1,3399	0,9740
0,6048	0,2885	0,1067	1,4110	1,0300	0,9668	0,0332	0,0000	1,3378	0,9880
0,6680	0,2250	0,1070	1,4129	1,0680	,	·	·	·	·

Tabela 5.38 – Dados para curva de calibração, a 298,15 K, do sistema água (1) + etanol (2) + [emim][EtSO₄] (3).

Fonte: Arquivo pessoal.

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

A partir dos dados apresentados na Tabela 5.38, uma regressão multidimensional para determinar os coeficientes dos polinômios de 5^a ordem da equação (4.1) foi realizada para obtenção das curvas de calibração. Os valores dos coeficientes de regressão e de correlação estão dispostos na Tabela 5.39.

Coeficiente	Va	lor	Coeficiente	Valor		
	η_D	ρ	Coefficiente	η_D	ρ	
<i>C</i> ₀₀	1,477	1,244	C ₃₁	-83,57	-856,1	
<i>C</i> ₁₀	0,2743	4,249	<i>C</i> ₂₂	227,2	1599	
<i>c</i> ₀₁	-3,052	-19,55	<i>C</i> ₁₃	546,6	3523	
C ₂₀	1,783	-24,37	C_{04}	226,7	1348	
<i>C</i> ₁₁	0,4769	21,98	c_{50}	-35,01	-38,61	
<i>C</i> ₀₂	50	307,1	C_{41}	22,61	491,5	
C ₃₀	-24,35	25,52	C ₃₂	-58,82	-311,9	
<i>C</i> ₂₁	47,93	332,5	C ₂₃	-375,7	-2520	
<i>C</i> ₁₂	-203,6	-1371	<i>C</i> ₁₄	-356,7	-2251	
<i>C</i> ₀₃	-176	-1060	C_{05}	-97,72	-575,5	
<i>C</i> ₄₀	57,16	33	R^2	0,9985	0,9982	

Tabela 5.39 – Coeficientes da regressão da curva de calibração do sistema água + etanol + [emim][EtSO₄].

As curvas de isolinhas para o índice de refração e para a densidade no diagrama ternário são mostradas nas Figuras 5.13 e 5.14, respectivamente.

Figura 5.13 – Isolinhas do índice de refração do sistema água + etanol + [emim][EtSO4].

Figura 5.14 – Isolinhas da densidade do sistema água + etanol + [emim][EtSO4].

Fonte: Arquivo pessoal.

Como mencionado no sistema água + etanol + [hmim][BF4], apresentado na seção anterior, na fase vapor não há a presença do LI. Dessa forma, uma curva de calibração para o sistema binário água + etanol foi elaborada a partir de soluções de composições conhecidas desses dois compostos e suas respectivas densidades, equação (4.3). Os coeficientes obtidos e o coeficiente de correlação dos dados são apresentados na Tabela 5.40.

Tabela 5.40 – Coeficientes para a regressão do sistema água + etanol.

$F(\chi_{1})$	Coeficiente						
I (<i>x</i> ₁)	<i>c</i> ₀	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	C_4	R^2	
ρ	0,7864	0,06277	0,4385	-0,7785	0,5107	0,9926	
Ender And 1							

Fonte: Arquivo pessoal.

Em posse das curvas de calibração, as propriedades obtidas para os dados do ELV foram correlacionadas às suas composições pela minimização da função objetivo, equação (4.2). A temperatura de equilíbrio, o índice de refração, a densidade e as composições obtidas são apresentadas na Tabela 5.41.
	T (K)		Fase líquida					Fase vapor			
N		η_D	ρ (g.cm ⁻³)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	η_D	ρ (g.cm ⁻³)	y_1	<i>y</i> ₂	
1	376,05	1,4301	1,1480	0,6842	0,1268	0,1890	1,3580	0,9240	0,7098	0,2902	
2	375,15	1,4360	1,1660	0,6783	0,1339	0,1878	1,3639	0,9020	0,6130	0,3870	
3	368,05	1,4355	1,1320	0,5729	0,3101	0,1170	1,3681	0,8620	0,4371	0,5629	
4	360,85	1,4295	1,0840	0,5311	0,3519	0,1170	1,3680	0,8420	0,3492	0,6508	
5	355,75	1,4113	1,0160	0,4688	0,4221	0,1091	1,3629	0,8280	0,2876	0,7124	
6	354,75	1,4066	0,9740	0,3389	0,5586	0,1025	1,3625	0,8240	0,2700	0,7300	
7	355,95	1,4045	0,9445	0,3937	0,4917	0,1146	1,3629	0,8490	0,3580	0,6420	
8	357,65	1,4007	1,0140	0,4149	0,4840	0,1011	1,3634	0,8540	0,4019	0,5981	
9	360,25	1,3963	1,0360	0,4485	0,4523	0,0992	1,3645	0,8820	0,5251	0,4749	

Tabela 5.41 – Dados experimentais do ELV do sistema água (1) + etanol (2) + [emim][EtSO₄] (3).

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

Os dados experimentais do equilíbrio líquido vapor do sistema água + etanol + [emim][EtSO₄] a 101,3 kPa foram submetidos ao teste L-W de consistência termodinâmica e estão dispostos na Tabela 5.42. O critério estabelecido para consistência foi de desvio máximo tolerado de 5%, uma vez que as propriedades do [emim][EtSO₄] foram preditas, como apresentado na Tabela 5.1.

Tabela 5.42 – Consistência termodinâmica do ELV do sistema água + etanol + [emim][EtSO4].

N	D	Consistência	Ν	D	Consistência
1	3,42	consistente	6	0,93	consistente
2	3,50	consistente	7	1,01	consistente
3	2,09	consistente	8	1,08	consistente
4	1,18	consistente	9	1,26	consistente
5	1,35	consistente			

Fonte: Arquivo pessoal.

Todos os pontos experimentais foram considerados termodinamicamente consistentes de acordo com o teste L-W. O desvio máximo encontrado de 3,50% e o desvio médio de 1,76%. Com esses dados, a modelagem termodinâmica foi realizada com o modelo NRTL e com a EdE PR-TV-CG.

Para o modelo NRTL, os parâmetros de interação binária otimizados são apresentados na Tabela 5.43. Os parâmetros de não-aleatoriedade, α_{12} , α_{13} e α_{23} , otimizados foram 0,2673, 0,3527 e 0,3784, respectivamente.

Tabela 5.43 – Parâmetros de interação binária, $\frac{g_{ij}-g_{jj}}{R}$ (K), do modelo NRTL para o sistema água (1) + etanol (2) + [emim][EtSO₄] (3) a 101,3 kPa.

Componente	1	2	3
1	0,0000	19,0915	-202,9461
2	544,4406	0,0000	-672,6925
3	-654,2193	-738,8490	0,0000

Fonte: Arquivo pessoal.

Para a EdE PR-TV-CG, os parâmetros de interação dos grupos funcionais do sistema, Tabela 5.44, foram calculados utilizando os parâmetros de componente puro, Tabela 5.3, e os valores dos grupos funcionais, Tabela 5.4.

Tabela 5.44 – Valores dos parâmetros de interação da EdE PR-TV-CG.

Grupos	$A_{nm}(K)$	\mathbf{B}_{nm}	$C_{nm} (K^{-1})$	$A_{mn}(K)$	B_{mn}	$C_{mn} (K^{-1})$
CH - OH	2205,7063	10,8056	0,0000	901,3352	-2,1074	0,0000
CH - H ₂ O	1303,6215	20,6522	0,0000	1166,2065	-8,3068	0,0000
CH - [emim][EtSO4]	1134,1066	8,1063	0,0000	1703,6074	31,8064	0,0000
OH - H ₂ O	2640,2003	-12,6058	0,0000	1979,1740	-8,1074	0,0000
OH - [emim][EtSO4]	1083,0748	-7,4632	0,0000	580,3632	-3,0410	0,0000
H ₂ O - [emim][EtSO ₄]	45,6185	6,0548	0,0000	2436,6074	31,0562	0,0000

Fonte: Arquivo pessoal.

Na Tabela 5.45, estão dispostos os valores da temperatura e das composições da fase vapor, obtidos na modelagem termodinâmica utilizando a abordagem γ - ϕ e o método Bolha T. Também são apresentados os desvios relativos das temperaturas de bolha e os desvios absolutos das composições da fase vapor.

N			NF	RTL			 PR-TV-CG					
IN	<i>T</i> (K)	y_1	y_2	ΔT	Δy_1	Δy_2	<i>T</i> (K)	y_1	y_2	ΔT	Δy_1	Δy_2
1	375,62	0,7055	0,2945	0,11	0,43	0,43	376,01	0,6646	0,3354	0,01	4,52	4,52
2	375,15	0,6926	0,3074	0,00	7,96	7,96	373,16	0,6349	0,3651	0,53	2,19	2,19
3	362,01	0,4371	0,5629	1,64	0,00	0,00	367,76	0,4379	0,5621	0,08	0,08	0,08
4	360,85	0,4027	0,5973	0,00	5,35	5,35	363,62	0,3782	0,6225	0,77	2,88	2,88
5	358,64	0,3505	0,6495	0,81	6,29	6,29	358,78	0,2983	0,7023	0,85	1,04	1,04
6	356,04	0,2714	0,7286	0,36	0,14	0,14	356,34	0,2631	0,7369	0,45	0,69	0,69
7	357,81	0,3091	0,6909	0,52	4,89	4,89	355,09	0,3482	0,6518	0,24	0,98	0,98
8	356,96	0,3117	0,6883	0,19	9,02	9,02	355,63	0,3916	0,6084	0,56	1,03	1,03
9	357,35	0,3294	0,6706	0,81	19,57	19,57	357,61	0,5038	0,4962	0,73	2,13	2,13
	Desvio médio			0,49	5,96	5,96]	Desvio mé	dio	0,47	1,73	1,73

Tabela 5.45 – Resultados obtidos da modelagem termodinâmica para o ELV do sistema água (1) + etanol (2) + [emim][EtSO4] (3) a 101,3 kPa.

A partir dos desvios apresentados na Tabela 5.45, se verifica um elevado desvio absoluto médio, 5,96%, das composições da fase vapor para o modelo NRTL, sendo que o maior desvio encontrado, para o ponto 9, foi de 19,57% e o menor de 0,00%, para o ponto 3. Enquanto, para a temperatura, o desvio relativo médio encontrado foi de 0,49%, com o máximo no ponto 3, 1,64%, e o mínimo para os pontos 2 e 4, 0,00%.

Com a EdE PR-TV-CG, o desvio absoluto médio foi 1,73% para as composições na fase vapor, sendo 4,2% o maior desvio absoluto no ponto 1 e 0,08% o menor no ponto 3. Os desvios relativos da temperatura de bolha foram de 0,47% para a média do conjunto, de 0,01% para o menor no ponto 1 e de 0,85% para o maior ponto 5.

No diagrama Txy (Figura 5.15), se verifica que os desvios das temperaturas são mais evidentes no modelo NRTL, pelo maior afastamento entre os pontos experimentais e os modelados, e que os desvios das composições são expressos pela maior angulação entre as retas que unem os pontos experimentais e os modelados. Portanto, a EdE PR-TV-CG é ligeiramente mais eficiente para realizar a modelagem termodinâmica do sistema ternário contendo [emim][EtSO₄].

Figura 5.15 – Resultados da modelagem termodinâmica do sistema água + etanol + [emim][EtSO4] a 101,3 kPa.

Fonte: Arquivo pessoal.

Legenda: pontos experimentais de bolha (•) e orvalho (▲); pontos de orvalho calculados pelo modelo NRTL (▲); pontos de orvalho calculados pela EdE PR-TV-CG (▲).

5.2.2 Equilíbrio líquido-vapor a altas pressões dos sistemas CO2 + LI

Com os sistemas compostos por $CO_2 + LIs$, se busca identificar a capacidade dos líquidos iônicos em capturar o CO_2 para aplicações em processos de separação. A partir dos pontos experimentais de sistemas binários com três diferentes líquidos iônicos, foram conduzidas análises da solubilidade do CO_2 em função da molalidade, da pressão de bolha e da estrutura do LI em relação ao tipo de cátion e de ânion.

Seguindo o procedimento descrito na seção 4.1.2.2, o método sintético-estático permitiu detectar o equilíbrio de fases visualmente, enquanto a pressão do sistema era reduzida gradualmente. As medições do equilíbrio foram tomadas no momento em que as primeiras bolhas surgiram no meio. Os intervalos da composição de CO₂, da temperatura e da pressão adotados são mostrados na Tabela 5.46.

 $\label{eq:composições, temperaturas e pressões experimentais no ponto de bolha dos sistemas CO_2 + LI.$

Sistema: CO ₂ +	<i>x</i> _{CO2}	<i>T</i> (K)	P (MPa)
[emim][BF ₄]	0,0252 - 0,4025	303,15 - 323,15	0,33 - 6,98
[emim][EtSO ₄]	0,0242 - 0,3740	303,15 - 323,15	$0,\!11-8,\!90$
[hmim][BF ₄]	0,0307 - 0,4243	303,15 - 323,15	0,26 - 5,62
E			

Fonte: Arquivo pessoal.

5.2.2.1 Sistema $CO_2 + [emim][BF_4]$

Na Tabela 5.47, são apresentados os valores das medidas experimentais obtidas para o sistema CO_2 + [emim][BF₄]. As frações molares de CO_2 também são apresentadas em termos de molalidade (mol CO2 / kg LI).

<i>xco</i> ²	Molalidade (mol CO ₂ / kg LI)	<i>T</i> (K)	P (MPa)	<i>xco</i> ₂	Molalidade (mol CO ₂ / kg LI)	<i>T</i> (K)	P (MPa)
		303,14	0,33			303,08	4,47
0,0252	0,1306	313,12	0,42	0,2761	1,9266	313,16	4,88
		323,13	0,55			323,17	5,35
0,0754		303,12	1,06			303,15	4,87
	0,4119	313,10	1,26	0,3084	2,2525	313,13	5,32
		323,14	1,49			323,13	5,83
		303,16	1,92			303,11	5,37
0,1257	0,7262	313,12	2,20	0,3509	2,7307	313,10	5,87
		323,10	2,54			323,12	6,39
		303,12	2,84			303,10	6,02
0,1776	1,0908	313,11	3,21	0,4025	3,4027	313,08	6,43
,		<u>323,1</u> 0	3,61			323,10	6,98
		303,16	3,61				
0,2231	1,4506	313,18	4,03				

Tabela 5.47 – Pontos de bolha experimentais do sistema CO₂ + [emim][BF₄].

Nota: Incertezas padrão: u(P) = 0.01 MPa, u(T) = 0.01 K.

323,15

Para a consistência termodinâmica, as propriedades críticas e o fator acêntrico foram preditos (Tabela 5.1) e os resultados do teste são apresentados na Tabela 5.48.

4.46

	303,15 K		3	313,15 K	323,15 K		
x_{CO_2}	<i>∆A</i> %	Consistência	<i>∆A</i> %	Consistência	<i>∆A</i> %	Consistência	
0,0252	-	consistente	-	consistente	-	consistente	
0,0754	1,33	consistente	0,99	consistente	0,78	consistente	
0,1257	0,71	consistente	0,61	consistente	0,52	consistente	
0,1776	0,29	consistente	0,29	consistente	0,27	consistente	
0,2231	0,09	consistente	0,08	consistente	0,11	consistente	
0,2761	0,14	consistente	0,23	consistente	0,30	consistente	
0,3084	0,23	consistente	0,40	consistente	0,41	consistente	
0,3509	0,38	consistente	0,35	consistente	0,37	consistente	
0,4025	0,41	consistente	0,36	consistente	0,38	consistente	

Tabela 5.48 – Consistência termodinâmica do sistema CO₂ + [emim][BF₄].

Fonte: Arquivo pessoal.

Os parâmetros de componente puro das EdEs PC-SAFT e CPA foram calculados a partir das faixas de pressão de vapor e de densidade preditas (Tabela 5.2) e foram apresentados na Tabela 5.5. Os resultados da modelagem termodinâmica, em termos de desvio na pressão de bolha, equação (4.31), com os dados termodinamicamente consistentes são apresentados na Tabela 5.49.

Ŷ	303,15	Κ	313,15	K	323,15 K		
×C02	PC-SAFT	СРА	PC-SAFT	СРА	PC-SAFT	CPA	
0,0252	16,57	16,30	16,25	12,90	9,12	9,30	
0,0754	3,64	4,03	0,10	3,47	3,35	3,07	
0,1257	1,60	2,19	0,46	2,81	1,64	1,22	
0,1776	0,41	0,51	2,75	0,47	0,60	0,05	
0,2231	1,09	0,22	2,96	0,31	0,56	0,37	
0,2761	1,74	0,15	2,35	1,09	1,23	0,14	
0,3084	0,47	1,89	1,67	1,92	1,81	0,10	
0,3509	0,20	3,29	1,32	2,49	2,46	0,22	
0,4025	1,79	2,29	1,40	2,73	2,53	0,49	

Tabela 5.49 – Desvios na pressão de bolha (ΔP) do sistema CO₂ + [emim][BF₄].

Os parâmetros de interação binária, k_{ij} , para as EdEs PC-SAFT e CPA são apresentados em função da temperatura na Tabela 5.50, juntamente com os desvios médios da pressão de bolha. Pelos desvios médios, as duas equações de estado foram capazes de correlacionar os dados experimentais com uma precisão significativa.

Tabela 5.50 – Parâmetros de interação binária e desvios médios na pressão de bolha (ΔP) do sistema CO₂ + [emim][BF₄].

EdE	k_{ij}	ΔP
PC-SAFT	0,1621 - 22,4081/T	2,97
CPA	0,1095 + 12,8017/T	2,74

Fonte: Arquivo pessoal.

Na Figura 5.16, são apresentados os dados experimentais e os resultados obtidos com os modelos termodinâmicos em um diagrama PTx tridimensional, onde nota-se que os modelos termodinâmicos conseguem descrever o perfil característico dos pontos experimentais com maior precisão a pressões mais baixas, mas ainda apresenta desvios baixos para todo o intervalo estudado.

Figura 5.16 – Dados experimentais e modelagem termodinâmica do sistema $CO_2 + [emim][BF_4].$

Fonte: Arquivo pessoal.

5.2.2.2 Sistema $CO_2 + [emim][EtSO_4]$

Na Tabela 5.51, são apresentados os dados experimentais do ponto de bolha para diferentes composições de CO₂.

<i>x</i> _{CO2}	Molalidade (mol CO ₂ / kg LI)	<i>T</i> (K)	P (MPa)	<i>x</i> _{CO2}	Molalidade (mol CO ₂ / kg LI)	<i>T</i> (K)	P (MPa)
0.0010	0.40.70	303,12	0,11	0.0046		303,13	1,77
0,0242	0,1050	313,11	0,37	0,2246	1,2259	313,10	2,19
		323,10	0,65			323,09	2,57
0,0746		303,14	0,36	0,2743		303,12	2,68
	0,3412	313,09	0,79		1,5996	313,10	2,84
		323,09	1,04			323,14	3,45
		303,12	0,69			303,13	3,90
0,1247	0,6029	313,10	1,20	0,3254	2,0414	313,17	4,21
		323,13	1,50			323,11	5,42
		303,17	1,14			303,17	5,33
0,1763	0,9058	313,09	1,74	0,3740	2,5284	313,16	6,61
		323,12	2,09			323,08	8,90

Tabela 5.51 – Pontos de bolha experimentais do sistema CO₂ + [emim][EtSO₄].

Fonte: Arquivo pessoal.

Nota: Incertezas padrão: u(P) = 0,01 MPa, u(T) = 0,01 K.

115

Utilizando as propriedades críticas e o fator acêntrico preditos, o teste de consistência termodinâmica forneceu os resultados mostrados na Tabela 5.52.

Yee		303,15 K	3	13,15 K	3	323,15 K		
~CO2	<i>∆A</i> %	Consistência	<i>∆A</i> %	Consistência	<i>∆A</i> %	Consistência		
0,0242	-	consistente	-	consistente	-	consistente		
0,0746	12,82	consistente	5,44	consistente	1,99	consistente		
0,1247	8,53	consistente	1,15	consistente	0,27	consistente		
0,1763	1,80	consistente	-0,17	consistente	-0,33	consistente		
0,2246	0,16	consistente	-0,64	consistente	-0,81	consistente		
0,2743	-0,40	consistente	-0,60	consistente	-0,49	consistente		
0,3254	-0,68	consistente	-0,32	consistente	0,30	consistente		
0,3740	0,21	consistente	1,54	consistente	2,32	consistente		

Tabela 5.52 – Consistência termodinâmica do sistema CO₂ + [emim][EtSO₄].

Fonte: Arquivo pessoal.

Os resultados da modelagem termodinâmica com as EdEs PC-SAFT e CPA são apresentados na Tabela 5.53 em termos de desvio na pressão de bolha.

<i>x_{CO2}</i>	303,15	303,15 K			313,15 K			323,15 K	
	PC-SAFT	CPA		PC-SAFT	CPA		PC-SAFT	CPA	
0,0242	6,52	2,18		7,20	6,52		6,24	8,45	
0,0746	7,21	4,21		7,70	12,48		5,17	3,31	
0,1247	6,32	7,46		5,41	4,70		5,14	2,95	
0,1763	6,03	5,40		4,85	4,12		4,58	3,91	
0,2246	4,76	3,08		2,22	4,27		3,28	2,11	
0,2743	4,52	9,34		3,57	4,08		1,71	3,66	
0,3254	3,82	3,04		3,92	3,60		1,40	3,50	
0,3740	3,35	2,71		2,44	2,39		2,38	1,86	

Tabela 5.53 – Desvios na pressão de bolha (ΔP) do sistema CO₂ + [emim][EtSO₄].

Fonte: Arquivo pessoal.

Os parâmetros de interação binária, k_{ij} , em função da temperatura, e os desvios médios da pressão de bolha são dispostos na Tabela 5.54. Pelos desvios médios, as equações de estado possuem capacidades similares de correlacionar os dados experimentais do sistema CO₂ + [emim][BF₄].

Na Figura 5.17, são apresentados os dados experimentais e os resultados obtidos com os modelos termodinâmicos em um diagrama PTx tridimensional, onde se nota a diferença no perfil de solubilidade do CO₂ com a mudança do ânion em relação ao sistema com o [emim][BF₄].

Tabela 5.54 – Parâmetros de interação binária e desvios médios na pressão de bolha (ΔP) do sistema CO₂ + [emim][EtSO₄].

EdE	k_{ij}	ΔP
PC-SAFT	0,1843 - 34,1174/T	4,57
CPA	0,1738 + 4,7045/T	4,56

_

Figura 5.17 – Dados experimentais e modelagem termodinâmica do sistema CO₂ + [emim][EtSO₄].

Fonte: Arquivo pessoal.

5.2.2.3 Sistema CO₂ + [hmim][BF₄]

Para o sistema CO₂ + [hmim][BF₄], os pontos de bolha para diferentes composições de CO₂ são apresentados na Tabela 5.55, inclusive, em termos de molalidade.

<i>x</i> _{<i>CO</i>₂}	Molalidade (mol CO ₂ / kg LI)	<i>T</i> (K)	P (MPa)	x_{CO_2}	Molalidade (mol CO ₂ / kg LI)	<i>T</i> (K)	P (MPa)
		303,10	0,26			303,09	1,97
0,0307	0,1247	313,16	0,35	0,2759	1,4996	313,12	2,45
		323,10	0,40			323,15	2,86
		303,14	0,52			303,10	2,51
0,0796	0,3404	313,09	0,62	0,3274	1,9158	313,16	3,09
		323,11	0,72			323,16	3,68
	0,5581	303,13	0,75	0,3751	2,3625	303,12	3,05
0,1242		313,10	0,94			313,16	3,76
		323,17	1,13			323,10	4,58
		303,12	1,11			303,10	3,69
0,1759	0,8401	313,11	1,39	0,4243	2,9007	313,09	4,55
		323,10	1,66			323,16	5,62
		303,11	1,52				
0,2261	1,1499	313,08	1,90				
		323,09	2,21				

Tabela 5.55 – Pontos de bolha experimentais do sistema CO₂ + [hmim][BF₄].

Nota: Incertezas padrão: u(P) = 0,01 MPa, u(T) = 0,01 K.

Utilizando as propriedades preditas dos LIs, o teste de consistência termodinâmica foi realizado e os resultados são apresentados na Tabela 5.56. Todos os pontos foram considerados termodinamicamente consistentes de acordo com o critério de desvio máximo estabelecido.

<i>x_{CO2}</i>	303,15 K		3	513,15 K	3	323,15 K		
	<i>∆A</i> %	Consistência	<i>∆A</i> %	Consistência	<i>∆A</i> %	Consistência		
0,0307	-	consistente	-	consistente	-	consistente		
0,0796	5,27	consistente	3,21	consistente	2,47	consistente		
0,1242	1,75	consistente	1,10	consistente	0,84	consistente		
0,1759	0,66	consistente	0,36	consistente	0,23	consistente		
0,2261	0,34	consistente	0,17	consistente	0,11	consistente		
0,2759	0,07	consistente	-0,03	consistente	0,00	consistente		
0,3274	-0,08	consistente	-0,15	consistente	0,25	consistente		
0,3751	-0,31	consistente	0,09	consistente	0,73	consistente		
0,4243	-0,31	consistente	0,78	consistente	0,96	consistente		

Tabela 5.56 - Consistência termodinâmica do sistema CO₂ + [hmim][BF₄].

Os parâmetros de componente puro para as substâncias foram apresentados na Tabela 5.5 para as equações de estado utilizadas na modelagem termodinâmica. Para a correlação dos dados experimentais, foi utilizada a abordagem ϕ - ϕ e o método de Bolha P, minimizando a função objetivo, equação (4.30), pelo método de Levenberg-Marquardt. Os resultados da modelagem são apresentados em termos do desvio na pressão de bolha, equação (4.31), na Tabela 5.57.

20	303,15 K			313,15 K			323,15 K	
<i>x</i> _{CO2}	PC-SAFT	CPA		PC-SAFT	CPA	_	PC-SAFT	CPA
0,0307	7,59	6,95		1,08	0,75		11,55	11,42
0,0796	4,01	3,70		2,28	1,05		1,67	1,19
0,1242	0,92	0,53		1,46	0,53		4,25	5,00
0,1759	1,71	0,92		0,47	2,22		3,88	4,90
0,2261	2,53	1,07		0,64	2,62		0,40	1,67
0,2759	2,78	1,65		1,52	2,23		1,51	0,04
0,3274	2,77	2,40		1,67	1,67		2,10	0,15
0,3751	2,97	2,77		1,69	1,55		2,41	1,25
0,4243	3,83	2,38		0,78	2,27		1,40	2,29

Tabela 5.57 – Desvios na pressão de bolha (ΔP) do sistema CO₂ + [hmim][BF₄].

Fonte: Arquivo pessoal.

Os parâmetros de interação binários obtidos pelas EdEs PC-SAFT e CPA são apresentados em função da temperatura, assim como os desvio médios na pressão de bolha, na Tabela 5.58. Como visto nos sistemas do ELV a altas pressões anteriores, ambas EdEs geraram resultados similares em relação aos desvios.

Tabela 5.58 – Parâmetros de interação binária e desvios médios na pressão de bolha (ΔP) do sistema CO₂ + [hmim][BF₄].

EdE	k_{ij}	ΔP
PC-SAFT	0,1954 - 27,4851/T	2,59
CPA	0,1302 + 12,1041/T	2,41

Fonte: Arquivo pessoal.

_

Na Figura 5.18, o diagrama PTx em 3D demonstra o quanto os resultados dos modelos termodinâmicos selecionados se correlacionam aos dados experimentais.

Figura 5.18 – Dados experimentais e modelagem termodinâmica do sistema CO₂ + [hmim][BF₄].

5.2.2.4 Análise da estrutura do LI na solubilidade do CO2

Com os resultados dos três sistemas, foram estabelecidas algumas relações entre a capacidade de captura de CO_2 pelo líquido iônico e a sua estrutura, por exemplo, a influência do radical alquila do cátion e do ânion, da temperatura e da pressão.

Nos sistemas em que os LIs possuem o mesmo ânion, [Rmim][BF4], a influência do radical alquila do cátion é demonstrada (Figura 5.19) pelo favorecimento da solubilidade do CO₂ perante o aumento da cadeia carbônica do radical a 323,15 K.

A influência do ânion na capacidade de captura do dióxido de carbono pelo LI, Figura 5.20, demonstra que, para pressões até 6,0 MPa, a solubilidade de CO_2 é semelhante para os dois ânions, enquanto, acima de 6,0 MPa, o LI com ânion $[BF_4]^-$ exibe uma solubilidade significativamente maior à tendência apresentada pelo LI com o ânion $[EtSO_4]^-$.

Figura 5.19 – Efeito do radical alquila na solubilidade de CO₂ a 323,15 K.

Figura 5.20 – Efeito do ânion na solubilidade de CO₂ a 333,15 K.

Fonte: Arquivo pessoal.

5.2.2.5 Análise da temperatura na solubilidade do CO₂

Na Figura 5.21, os dados experimentais exibem uma leve redução da solubilidade CO_2 , a pressões de 1,11 e 3,69 MPa, quando a temperatura aumenta para os sistemas $CO_2 + LI$. Por outro lado, o aumento da pressão provoca o aumento da solubilidade de CO_2 nos LIs, a altas pressões.

Figura 5.21 – Efeito da temperatura na solubilidade de CO₂ nos sistemas CO₂ + LI.

5.2.2.6 Análise da pressão e temperatura na solubilidade do CO₂

Para avaliar o desempenho dos LIs, as solubilidades são expressas em concentração molal (mols de CO₂ absorvidos por quilograma de LI). Os resultados, apresentados na Tabela 5.59, mostram que o [emim][EtSO₄] possui maior capacidade de dissolver o CO₂, a pressão e temperatura menores (1,10 MPa, 303,15 K), enquanto o [hmim][BF₄] é mais eficiente com o aumento das condições (3,55 MPa, 323,15 K). Em todos os casos, o [emim][BF₄] tem a menor capacidade na captura de CO₂.

LI	P = 1,10 N	/IPa, T = 303,15 K	P = 3,55 MPa, T = 323,15 K		
	x_{CO_2}	Molalidade (mol CO ₂ / kg LI)	<i>x</i> _{CO2}	Molalidade (mol CO ₂ / kg LI)	
[emim][BF ₄]	0,0754	0,4119	0,1776	1,0908	
[emim][EtSO4]	0,1763	0,9058	0,2743	1,5996	
[hmim][BF4]	0,1759	0,8401	0,3274	1,9158	

Tabela 5.59 - Comparação das solubilidades do CO2.

Fonte: Arquivo pessoal.

Nota: Incertezas padrão: u(P) = 0,01 MPa, u(T) = 0,01 K.

5.2.3 Equilíbrio líquido-líquido dos sistemas ternários água + 1-butanol + LI

Para a obtenção da curva binodal do ELL dos sistemas ternários contendo LI, em algumas soluções, o ponto para encerrar a titulação apresentou uma complexidade maior a nível de detecção visual, uma vez que a solução não apresentava diferença na transparência. Ao adicionar uma gota, discretamente, uma segunda fase se formava no meio. Nessas ocasiões, o término da titulação foi definido como o momento em que uma segunda fase diminuta permanecesse no meio, mesmo sob agitação. Para as titulações com água e com LI, a segunda fase se formava na parte inferior da célula de equilíbrio, enquanto, para as titulações com o 1-butanol, se formava na parte superior, como visto na Figura 5.22.

Figura 5.22 – Formação de uma segunda fase na titulação.

Fonte: Arquivo pessoal.

5.2.3.1 Sistema água + 1-butanol + [emim][BF₄]

O sistema ternário composto por água, 1-butanol e tetrafluoroborato de 1-etil-3metilimidazólio, [emim][BF4], foi estudado à temperatura de 298,15 K. As propriedades físicas dos componentes puros para tais condições experimentais são apresentadas na Tabela 5.60.

Tabela 5.60 – Propriedades físicas das substâncias puras a 298,15 K.

Substância	Densidade (g.cm ⁻³)	Índice de refração
Água	0,9940	1,3330
1-butanol	0,8057	1,3979
[emim][BF4]	1,2833	1,4144

Fonte: Arquivo pessoal.

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): u(T) = 0,01 K, U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

Os dados experimentais da curva binodal são apresentados na Tabela 5.61.

Curva binodal superior Curva binodal inferior W_2 *W*₃ ρ (g.cm⁻³) W_1 ρ (g.cm⁻³) W_1 η_D W_2 W_3 η_D 0,8604 0,0312 0,9688 0,0000 1,3971 0,8236 0,0467 0,0929 1,4074 1,2243 0,0359 0,9566 0,0075 1,3969 0,8242 0,0563 0,0965 0,8472 1,4063 1,2209 0,0402 0,9436 0,0162 1,3967 0,8249 0,0889 0,1074 0,8037 1,4021 1,2063 0,0460 0,9318 0,0223 1,3963 0,1147 0,7743 1,4011 0,8250 0,1110 1,1932 0,0563 0,9123 0,0315 1,3959 0,7450 1,3990 0,8313 0,1331 0,1219 1,1834 0,0614 0,9021 0,0365 1,3958 0,7157 1,3970 0,8311 0,1551 0,1292 1,1742 0,0674 0,8909 0,0418 1,3955 0,8334 0,1772 0,1365 0,6863 1,3946 1,1669 0,0785 0,8695 0,0520 1,3951 0,8382 0,2007 0,1388 0,6605 1,3928 1,1564 0,0896 0,8481 0,0623 1,3946 0,8433 0,2241 0,1412 0,6347 1,3907 1,1479 0,0982 0,0632 1,3942 0,8475 0,6089 1,3887 0,8386 0,2476 0,1435 1,1398 0,1061 0,0655 1,3944 0,8480 0,1459 1,3873 0,8284 0,2710 0,5831 1,1352 1,3847 0,1226 0,8088 0,0687 1,3932 0,8585 0,2951 0,1491 0,5559 1,1246 0,1391 0,7891 0,0718 1,3926 0,8662 0,1523 0,5286 1,3827 0,3191 1,1174 0,1395 0,7915 0,0690 1,3924 0,8650 0,3431 0,1555 0,5013 1,3807 1,1106 0,1491 0,7816 0,0693 1,3921 0,8669 0,3672 0,1587 0,4741 1,3786 1,1013 0,1587 0,7717 0,0697 1,3921 0,8689 0,3877 0,1578 0,4544 1,3772 1,0988 1,3912 0,0599 0,1570 0,4348 0,1691 0,7710 0,8688 0,4082 1,3756 1,0937 0,1795 0,7703 0,0501 1,3908 0,8677 0,4288 0,1561 0,4152 1,3745 1,0847 0,1900 0,0404 1,3904 0,7697 0,8648 0,4549 0,1524 0,3927 1,3720 1,0826 0,2004 0,7690 0,0306 1.3890 0,8581 0,4802 0,1479 0,3719 1,3709 1.0738 0,2044 0,7752 0,0204 1,3898 0,8577 0,5264 0,1369 0,3367 1,3667 1,0670 0,2083 0,7815 0,0102 1,3896 0,8550 0,3015 1,3634 0,5726 0,1259 1,0575 0,2192 0,7809 0,0000 1,3896 0,8470 0,6188 0,1149 0,2663 1,3616 1,0494 0,0312 0,9688 0,2527 1,3601 0,0000 1,3971 0,8236 0,6362 0,1111 1,0462 Curva binodal inferior 0,6735 0,1021 0,2244 1,3526 1.0397 1,3539 0,7224 0,0957 0,1820 1,0286 ρ (g.cm⁻³) W_1 W_2 W_3 η_D 0.0000 0.0906 0.1264 1,3493 0,0755 0,9245 1,4136 1,2473 0,7830 1.0135 0,0198 1,3471 0,0836 0,8965 1,4106 1,2376 0,8152 0,0876 0,0972 1,0068 0,0230 0,0849 0,8920 1,4100 1,2361 0,8474 0,0845 0,0681 1,3450 0,9991 0,0256 0,0859 0,8885 1,4096 1,2355 0,8796 0,0815 0,0389 1,3433 0,9899 0,0275 0,0857 0,8868 1,4084 1,2344 0,9214 0,0786 0,0000 1,3406 0,9792 0,0371 1,4084 1,2293 0,0893 0,8736

Tabela 5.61 - Dados da curva binodal do sistema água (1) + 1-butanol (2) + [emim][BF₄] (3).

Fonte: Arquivo pessoal.

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

Seguindo o procedimento adotado no sistema de validação do equipamento, apresentado na seção 5.1.3, os dados da curva binodal foram submetidos ao processo de otimização para obtenção das curvas de calibração no formato da equação (4.1), cujos coeficientes são apresentados na Tabela 5.62.

Curv	a binodal supe	rior	Curva binodal inferior			
Coeficiente	Va	alor	Coeficiente	Valor		
	$\eta_D x 10^4$	$ ho x 10^5$	Coefficiente	$\eta_D x 10^4$	$ ho x 10^4$	
C _{nn}	-0,9554	5,3159	Cnn	0,0005	0,0031	
c_{10}	-3,3122	34,7950	<i>C</i> ₁₀	-0,0061	0,01902	
c_{01}	-5,3219	22,8630	c_{01}	0,0281	-0,1216	
<i>c</i> ₂₀	2,7081	-112,0900	<i>C</i> ₂₀	-0,0037	0,0086	
<i>c</i> ₁₁	15,6970	-115,0300	<i>C</i> ₁₁	0,1450	-0,4878	
<i>C</i> ₀₂	11,7340	-38,5580	<i>C</i> ₀₂	-0,4005	1,9138	
<i>c</i> ₃₀	3,2157	196,1500	<i>C</i> ₃₀	0,0318	-0,0816	
<i>c</i> ₂₁	-12,5540	278,8700	<i>C</i> ₂₁	-0,0751	0,2230	
<i>c</i> ₁₂	-27,2860	137,9800	<i>C</i> ₁₂	-1,0802	4,0783	
<i>c</i> ₀₃	-12,8000	31,6220	<i>C</i> ₀₃	2,5800	-14,2830	
C_{40}	-5,2458	-181,9200	C ₄₀	-0,0288	0,0717	
<i>c</i> ₃₁	-4,3201	-326,4400	<i>C</i> ₃₁	-0,1957	0,5452	
<i>C</i> ₂₂	17,7870	-225,7400	C ₂₂	0,8457	-2,5927	
<i>C</i> ₁₃	20,5960	-69,9130	<i>C</i> ₁₃	3,0222	-13,8190	
c_{04}	6,9122	-12,4460	C ₀₄	-7,4317	51,3440	
c_{50}	-1,0539	73,2110	C ₅₀	0,0079	-0,0183	
c_{41}	7,9180	149,9400	<i>C</i> ₄₁	0,1054	-0,2914	
<i>C</i> ₃₂	-0,2868	133,7600	<i>C</i> ₃₂	0,2921	-0,7713	
C ₂₃	-7,7535	58,7920	<i>C</i> ₂₃	-2,1512	6,4265	
C ₁₄	-5,7001	12,1620	<i>C</i> ₁₄	-1,9677	16,0640	
<i>C</i> ₀₅	-1,4791	1,8340	<i>C</i> ₀₅	7,0355	-72,2160	
<i>R</i> ²	0,9909	0,9903	R^2	0,9991	0,9998	

Tabela 5.62 – Coeficientes da curva de calibração do sistema água + 1-butanol + [emim][BF4] a 298,15 K.

Fonte: Arquivo pessoal.

As isolinhas para o sistema água + 1-butanol + [emim][BF₄] foram plotadas no diagrama ternário e são apresentadas nas Figuras 5.23 e 5.24 para a curva binodal superior e inferior, respectivamente, para a temperatura de 298,15 K.

Figura 5.23 – Isolinhas da curva binodal superior do (a) índice de refração e da (b) densidade em função da composição para o sistema água + 1-butanol + [emim][BF4] a 298,15 K.

Fonte: Arquivo pessoal.

Figura 5.24 – Isolinhas da curva binodal inferior do (a) índice de refração e da (b) densidade em função da composição para o sistema água + 1-butanol + [emim][BF₄] a 298,15 K.

Tonte. Anquivo pessoai.

A partir da relação entre as propriedades e as composições fornecida pela curva de calibração, as linhas de amarração foram obtidas ao se preparar diferentes soluções dentro da região bifásica do diagrama ternário e aguardar o equilíbrio entre as fases líquidas por pelo menos duas horas para que as propriedades de cada uma das fases fossem medidas, como indicado na Tabela 5.63.

126		

		Fase	aquosa ((L_1)		Fase orgânica (L_2)					
N	η_D	ρ (g.cm ⁻³)	$w_{1}^{L_{1}}$	$W_{2}^{L_{1}}$	$W_{3}^{L_{1}}$	η_D	ρ (g.cm ⁻³)	$w_{1}^{L_{2}}$	$W_{2}^{L_{2}}$	$W_{3}^{L_{2}}$	
1	1,3397	0,9812	0,9000	0,0875	0,0125	1,3852	0,8570	0,2015	0,7702	0,0281	
2	1,3407	0,9884	0,8891	0,0789	0,0320	1,3854	0,8609	0,2015	0,7625	0,0360	
3	1,3424	0,9946	0,8689	0,0783	0,0529	1,3860	0,8623	0,1941	0,7639	0,0420	
4	1,3484	1,0129	0,7933	0,0856	0,1212	1,3862	0,8632	0,1921	0,7633	0,0446	
5	1,3510	1,0211	0,7610	0,0881	0,1510	1,3862	0,8638	0,1915	0,7625	0,0460	
6	1,3526	1,0259	0,7413	0,0900	0,1688	1,3865	0,8636	0,1883	0,7647	0,0470	
7	1,3548	1,0329	0,7133	0,0923	0,1945	1,3864	0,8639	0,1885	0,7639	0,0476	
8	1,3603	1,0437	0,6411	0,1133	0,2456	1,3863	0,8639	0,1902	0,7630	0,0469	
9	1,3660	1,0568	0,5690	0,1296	0,3015	1,3870	0,8663	0,1825	0,7627	0,0549	
10	1,3716	1,0711	0,4970	0,1433	0,3597	1,3877	0,8690	0,1733	0,7625	0,0642	
11	1,3787	1,0919	0,4074	0,1539	0,4387	1,3896	0,8663	0,1452	0,7852	0,0697	
12	1,3848	1,1134	0,3325	0,1543	0,5132	1,3901	0,8642	0,1373	0,7944	0,0683	
13	1,3870	1,1215	0,3048	0,1542	0,5410	1,3908	0,8601	0,1260	0,8098	0,0642	
14	1,3882	1,1262	0,2904	0,1531	0,5565	1,3911	0,8606	0,1213	0,8117	0,0670	
15	1,3918	1,1365	0,2453	0,1588	0,5960	1,3917	0,8575	0,1124	0,8236	0,0640	
16	1,3975	1,1668	0,1797	0,1351	0,6852	1,3931	0,8399	0,0842	0,8774	0,0384	
17	1,3999	1,1780	0,1527	0,1281	0,7192	1,3950	0,8275	0,0510	0,9236	0,0254	

Tabela 5.63 – Linhas de amarração do ELL do sistema água (1) + 1-butanol (2) + [emim][BF₄] (3).

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

A qualidade dos dados experimentais foi verificada pelo teste de qualidade como descrito na seção 4.3.3. Os resultados são apresentados na Tabela 5.64, onde se observa que o desvio de cada linha de amarração foi menor que 0,45%, sendo que o desvio geral do balanço de massa foi 0,12%. A partir dos desvios obtidos, os dados experimentais, à temperatura de 298,15 K, apresentam uma boa qualidade para serem utilizados na análise dos coeficientes de distribuição e seletividade e na modelagem termodinâmica.

Os valores experimentais dos coeficientes de distribuição e do fator de separação foram listados na Tabela 5.65. O fator de separação do sistema, maior que um (S > 1) para ambas as temperaturas, indica que é possível extrair o 1-butanol contido na água usando líquido iônico [emim][BF₄].

N.7	Cor	nposição to	tal da soluç	ão		11/2	S (0())
Ν	M ^{sol}	W_1^{sol}	W_2^{sol}	W_3^{sol}	M^{L_1}	M^{L_2}	0(%)
1	21,5263	0,3182	0,6554	0,0264	3,6012	17,9095	0,07
2	23,4151	0,3065	0,6536	0,0399	3,6106	19,7029	0,43
3	22,6235	0,3048	0,6512	0,044	3,7132	18,9055	0,02
4	22,7481	0,2945	0,6482	0,0573	3,8707	18,8836	0,03
5	24,9654	0,2912	0,6459	0,0629	4,3487	20,6448	0,11
6	23,4159	0,2886	0,6436	0,0678	4,2278	19,2099	0,09
7	20,4187	0,2842	0,6412	0,0746	3,7267	16,6887	0,02
8	22,6338	0,2775	0,6384	0,0841	4,3556	18,2920	0,06
9	21,6574	0,2691	0,6248	0,1061	4,7485	16,9396	0,14
10	23,6231	0,2506	0,6078	0,1416	5,8759	17,7154	0,13
11	20,5287	0,2302	0,5866	0,1832	6,4470	14,0802	0,01
12	23,6234	0,2052	0,5648	0,2300	8,5038	15,1352	0,07
13	20,4174	0,199	0,5494	0,2516	8,0804	12,3200	0,08
14	22,2549	0,1922	0,5262	0,2816	9,6892	12,5911	0,11
15	23,2615	0,1812	0,4915	0,3273	11,5655	11,6605	0,15
16	23,0841	0,1394	0,4234	0,4372	14,1968	8,9451	0,25
17	24,6319	0,1251	0,3246	0,5503	18,6129	6,0716	0,21

Tabela 5.64 – Teste de qualidade do sistema água (1) + 1-butanol (2) + [emim][BF4] (3).

Tabela 5.65 – Coeficientes de distribuição e fatores de separação experimentais do 1-butanol.

Ν	D_1	D_2	S	Ν	D_1	D_2	S
1	0,22	8,80	39,3	10	0,35	5,32	15,3
2	0,23	9,66	42,6	11	0,36	5,10	14,3
3	0,22	9,76	43,7	12	0,41	5,15	12,5
4	0,24	8,92	36,8	13	0,41	5,25	12,7
5	0,25	8,65	34,4	14	0,42	5,30	12,7
6	0,25	8,50	33,4	15	0,46	5,19	11,3
7	0,26	8,28	31,3	16	0,47	6,49	13,9
8	0,30	6,73	22,7	17	0,33	7,21	21,6
9	0,32	5,89	18,3				

Os valores de S e D_2 foram dispostos graficamente nas Figuras 5.25 e 5.26, respectivamente, em função da fração mássica de 1-butanol na fase aquosa $(w_2^{L_1})$. Nota-se que todos os valores de S são maiores que 1,0 (Figura 5.25), o que indica que a extração de 1-butanol da solução 1-butanol + água é possível utilizando o [emim][BF4] como agente extrator.

Figura 5.25 – Fator de separação (S) para o sistema água (1) + 1-butanol (2) + [emim][BF₄] (3) a T = 298,15 K.

Fonte: Arquivo pessoal.

Figura 5.26 – Coeficiente de distribuição (D_2) para o sistema água (1) + 1-butanol (2) + [emim][BF₄] (3) a T = 298,15 K.

Fonte: Arquivo pessoal.

Os dados dos sistemas ternários contendo LIs foram correlacionados utilizando os modelos NRTL e PR-TV-CG para o cálculo dos coeficientes de atividade para a modelagem termodinâmica empregando a abordagem γ - γ .

Os parâmetros de interação binária do NRTL são apresentados na Tabela 5.66 e o valor do parâmetro de não-aleatoriedade, α_{ij} , otimizado foi de 0,3753.

Tabela 5.66 – Parâmetros de interação binária, $g_{ij} - g_{jj}$ (cal.mol⁻¹), do modelo NRTL para o sistema água (1) + 1-butanol (2) + [emim][BF₄] (3).

Componente	1	2	3
1	0,0000	4,5098	-4,1084
2	1,1568	0,0000	0,9862
3	-4,6058	0,9736	0,0000

Fonte: Arquivo pessoal.

Para a EdE PR-TV-CG, os parâmetros de componente puro, N e k_3 , foram calculados, conforme descrito na seção 3.6, e seus valores são apresentados na Tabela 5.3. Os parâmetros de interação binária, A_{nm}, B_{nm}, C_{nm}, A_{mn}, B_{nm} e C_{mn} (Figura 3.3) são apresentados na Tabela 5.67.

Tabela 5.67 – Valores dos parâmetros de interação da EdE PR-TV-CG.

Grupos	A _{nm} (K)	B _{nm}	C _{nm} (K ⁻¹)	A _{mn} (K)	B _{mn}	C_{mn} (K ⁻¹)
CH - OH	882,812	12,841	0,000	-794,351	5,952	0,000
CH - H ₂ O	394,503	28,636	0,000	-963,462	-1,967	0,000
CH - [emim][BF4]	553,728	28,704	0,000	-94,011	-1,504	0,000
OH - H ₂ O	-196,806	28,117	0,000	550,737	1,331	0,000
OH - [emim][BF4]	2513,614	10,932	0,000	1,636	17,041	0,000
H ₂ O - [emim][BF ₄]	-482,721	-1,441	0,000	-363,945	-1,962	0,000

Fonte: Arquivo pessoal.

Os desvios absolutos para as composições na fase líquida aquosa e orgânica obtidas na modelagem termodinâmica são apresentadas nas Tabelas 5.68 e 5.69 para os modelos NRTL e PR-TV-CG, respectivamente.

N.T.		Fase aquosa						Fase orgânica					
Ν	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	Δw_1 (%)	Δw_2 (%)	$\Delta w_3~(\%)$	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	Δw_1 (%)	Δw_2 (%)	Δw_3 (%)	
1	0,8995	0,0880	0,0125	0,05	0,05	0,00	0,2257	0,7456	0,0288	2,42	2,46	0,07	
2	0,8886	0,0793	0,0321	0,05	0,04	0,01	0,2262	0,7373	0,0366	2,47	2,52	0,06	
3	0,8683	0,0787	0,0530	0,06	0,04	0,01	0,2134	0,7445	0,0422	1,93	1,94	0,02	
4	0,7911	0,0861	0,1228	0,22	0,05	0,16	0,2117	0,7441	0,0443	1,96	1,92	0,03	
5	0,7572	0,0885	0,1543	0,38	0,04	0,33	0,2034	0,7520	0,0446	1,19	1,05	0,14	
6	0,7363	0,0903	0,1735	0,50	0,03	0,47	0,1983	0,7566	0,0451	1,00	0,81	0,19	
7	0,7042	0,0922	0,2035	0,91	0,01	0,90	0,1915	0,7645	0,0440	0,30	0,06	0,36	
8	0,6238	0,1124	0,2638	1,73	0,09	1,82	0,1923	0,7652	0,0425	0,21	0,22	0,44	
9	0,5954	0,1356	0,2690	2,64	0,60	3,25	0,1752	0,7659	0,0588	0,73	0,32	0,39	
10	0,5138	0,1491	0,3371	1,68	0,58	2,26	0,1616	0,7728	0,0655	1,17	1,03	0,13	
11	0,4194	0,1602	0,4204	1,20	0,63	1,83	0,1439	0,7849	0,0712	0,13	0,03	0,15	
12	0,3358	0,1595	0,5047	0,33	0,52	0,85	0,1458	0,7843	0,0699	0,85	1,01	0,16	
13	0,3057	0,1590	0,5353	0,09	0,48	0,57	0,1355	0,7988	0,0657	0,95	1,10	0,15	
14	0,2917	0,1581	0,5502	0,13	0,50	0,63	0,1299	0,8017	0,0685	0,86	1,00	0,15	
15	0,2373	0,1623	0,6005	0,80	0,35	0,45	0,1270	0,8071	0,0658	1,46	1,65	0,18	
16	0,1977	0,1382	0,6640	1,80	0,31	2,12	0,0726	0,8898	0,0377	1,16	1,24	0,07	
17	0,1475	0,1320	0,7205	0,52	0,39	0,13	0,0573	0,9170	0,0257	0,63	0,66	0,03	
	Desvio médio			0,77	0,28	0,93	D	esvio méd	io	1,14	1,12	0,16	

Tabela $5.68 - \text{Resultados obtidos com o modelo NRTL para o ELL do sistema água (1) + 1-butanol (2) + [emim][BF_4] (3) a 298,15 K.$

N.7		Fase aquosa						Fase orgânica					
IN	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	Δw_1 (%)	Δw_2 (%)	Δw_3 (%)	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	Δw_1 (%)	Δw_2 (%)	$\Delta w_3 (\%)$	
1	0,8998	0,0880	0,0122	0,02	0,05	0,03	0,2023	0,7740	0,0237	0,08	0,38	0,44	
2	0,8877	0,0793	0,0330	0,14	0,04	0,10	0,2012	0,7619	0,0368	0,03	0,06	0,08	
3	0,8609	0,0768	0,0622	0,80	0,15	0,93	0,1946	0,7657	0,0397	0,05	0,18	0,23	
4	0,7865	0,0849	0,1286	0,68	0,07	0,74	0,1920	0,7631	0,0449	0,01	0,02	0,03	
5	0,7603	0,0893	0,1504	0,07	0,12	0,06	0,1915	0,7641	0,0444	0,00	0,16	0,16	
6	0,7383	0,0903	0,1713	0,30	0,03	0,25	0,1878	0,7624	0,0498	0,05	0,23	0,28	
7	0,7144	0,0941	0,1915	0,11	0,18	0,30	0,1889	0,7653	0,0458	0,04	0,14	0,18	
8	0,6412	0,1143	0,2445	0,01	0,10	0,11	0,1898	0,7619	0,0484	0,04	0,11	0,15	
9	0,5663	0,1281	0,3057	0,27	0,15	0,42	0,1821	0,7610	0,0569	0,04	0,17	0,20	
10	0,4955	0,1432	0,3613	0,15	0,01	0,16	0,1732	0,7635	0,0633	0,01	0,10	0,09	
11	0,4053	0,1525	0,4422	0,21	0,14	0,35	0,1455	0,7874	0,0671	0,03	0,22	0,26	
12	0,3335	0,1564	0,5101	0,10	0,21	0,31	0,1374	0,7949	0,0677	0,01	0,05	0,06	
13	0,3058	0,1552	0,5391	0,10	0,10	0,19	0,1257	0,8094	0,0649	0,03	0,04	0,07	
14	0,2905	0,1526	0,5569	0,01	0,05	0,04	0,1209	0,8114	0,0677	0,04	0,03	0,07	
15	0,2462	0,1596	0,5942	0,09	0,08	0,18	0,1126	0,8247	0,0627	0,02	0,11	0,13	
16	0,1801	0,1354	0,6845	0,04	0,03	0,07	0,0843	0,8789	0,0367	0,01	0,15	0,17	
17	0,1531	0,1287	0,7182	0,04	0,06	0,10	0,0507	0,9213	0,0280	0,03	0,23	0,26	
	D	esvio méd	io	0,18	0,09	0,26	D	esvio méd	io	0,03	0,14	0,17	

Tabela 5.69 – Resultados obtidos com o modelo PR-TV-CG para o ELL do sistema água (1) + 1-butanol (2) + [emim][BF4] (3) a 298,15 K.

Para o modelo NRTL, o desvio médio para a fração mássica da água, do 1-butanol e do [emim][BF4], na fase aquosa, foi de 0,77%, 0,28% e 0,93% e, na fase orgânica, foi de 1,14%, 1,12% e 0,16%.

Com a equação PR-TV-CG, os desvios médios absolutos das composições em fração mássica da água, do 1-butanol e do [emim][BF4] foram de 0,18%, 0,09% e 0,26% na fase aquosa e 0,03%, 0,14% e 0,17% na fase orgânica, respectivamente.

Em termos dos desvios médios quadráticos (DMQ), o obtido com o modelo NRTL foi 0,0111, enquanto com a equação PR-TV-CG foi de 0,0005.

O diagrama de fases obtido é do Tipo 2 (TREYBAL, 1980), conforme visto nas Figura 5.27 para a temperatura de 298.15 K.

Figura 5.27 – Dados do ELL para o sistema água + 1-butanol + [emim][BF₄] a 298,15 K.

As propriedades físicas dos componentes puros do sistema ternário composto por água, 1-butanol e etilsulfato de 1-etil-3-metilimidazólio, [emim][EtSO₄], à temperatura de 298,15 K são apresentadas na Tabela 5.70.

Tabela 5.70 – Propriedades físicas das substâncias puras a 298,15 K.

Substância	Densidade (g.cm ⁻³)	Índice de refração
Água	0,9940	1,3330
1-butanol	0,8057	1,3979
[emim][EtSO ₄]	1,2356	1,4783

Fonte: Arquivo pessoal.

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): u(T) = 0,01 K, U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

Tabela 5.71 - Curva binodal do sistema água (1) + 1-butanol (2) + [emim][EtSO₄] (3).

<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	η_D	ρ (g.cm ⁻³)	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	η_D	ρ (g.cm ⁻³)
0,9179	0,0821	0,0000	1,3380	0,9781	0,4031	0,2945	0,3024	1,3958	1,0111
0,8924	0,0773	0,0303	1,3428	0,9863	0,3824	0,3238	0,2938	1,3964	1,0047
0,8732	0,0726	0,0543	1,3452	0,9930	0,3622	0,3521	0,2857	1,3970	0,9963
0,8253	0,0726	0,1021	1,3521	1,0055	0,3226	0,4067	0,2707	1,3983	0,9824
0,7815	0,0729	0,1457	1,3583	1,0152	0,3023	0,4356	0,2621	1,3991	0,9750
0,7432	0,0756	0,1812	1,3646	1,0228	0,2887	0,4700	0,2413	1,3982	0,9634
0,7236	0,0765	0,1999	1,3674	1,0276	0,2756	0,4958	0,2286	1,3988	0,9552
0,7112	0,0773	0,2115	1,3690	1,0301	0,2645	0,5241	0,2114	1,3980	0,9460
0,6553	0,0951	0,2496	1,3751	1,0368	0,2489	0,5538	0,1973	1,3972	0,9378
0,6284	0,1027	0,2689	1,3783	1,0392	0,2371	0,5843	0,1786	1,3964	0,9275
0,6000	0,1084	0,2916	1,3821	1,0447	0,2253	0,6174	0,1573	1,3955	0,9163
0,5545	0,1327	0,3128	1,3867	1,0449	0,2114	0,6548	0,1339	1,3942	0,9033
0,5136	0,1658	0,3206	1,3907	1,0406	0,2031	0,6941	0,1028	1,3924	0,8875
0,4833	0,1951	0,3216	1,3928	1,0353	0,1930	0,7325	0,0745	1,3910	0,8737
0,4559	0,2260	0,3182	1,3936	1,0281	0,1920	0,7732	0,0348	1,3886	0,8563
0,4300	0,2559	0,3141	1,3947	1,0212	0,1939	0,8061	0,0000	1,3858	0,8420

Fonte: Arquivo pessoal.

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

Os coeficientes das curvas de calibração obtidas a partir dos dados da curva binodal são reportados na Tabela 5.72.

Coeficiente	Va	llor	Coeficiente	Valor		
Coeffetence	η_D	ρ	Coeffetence	η_D	ρ	
<i>C</i> ₀₀	17,6262	74,9339	C ₃₁	772,0756	228,0767	
c_{10}	-106,5056	-453,7244	C ₂₂	1494,1	-1084,5	
c_{01}	-86,1693	-178,1518	<i>C</i> ₁₃	1065,5	-1060,8	
<i>c</i> ₂₀	274,1791	1136,3	<i>C</i> ₀₄	232,4508	-260,8911	
<i>c</i> ₁₁	473,7228	620,4962	C ₅₀	-54,8592	-249,4554	
<i>C</i> ₀₂	241,3267	41,9057	<i>C</i> ₄₁	-232,6635	45,2873	
<i>c</i> ₃₀	-348,1212	-1450,0	C ₃₂	-660,7798	595,8826	
<i>c</i> ₂₁	-925,7640	-707,4872	<i>C</i> ₂₃	-699,4252	773,5438	
<i>c</i> ₁₂	-1084,8	435,3807	<i>C</i> ₁₄	-383,6542	458,6060	
<i>C</i> ₀₃	-341,1699	240,1937	<i>C</i> ₀₅	-60,0336	82,3480	
<i>C</i> ₄₀	218,9293	942,1816	<i>R</i> ²	0,9998	0,9999	

Tabela 5.72 – Coeficientes da curva de calibração do sistema água + 1-butanol + [emim][EtSO4].

A partir da curva de calibração, os diagramas ternários contendo as isolinhas do sistema água + 1-butanol + [emim][EtSO₄] foram elaborados para o índice de refração (Figura 5.28) e para a densidade (Figura 5.29).

Figura 5.28 – Isolinhas do índice de refração do sistema água + 1-butanol + [emim][EtSO4].

Figura 5.29 – Isolinhas a densidade do sistema água + 1-butanol + [emim][EtSO4].

Fonte: Arquivo pessoal.

	1. 1	1	~	~	. 1		T 1 1	
AC	linhag	de	amarracao	630	anrecentadae	na	Tabela	5 / K
റാ	mmas	uu	amanacao	sau	aprosontauas	па	raucia	J. I J.

Tabela 5.73 – Linhas de amarração do ELL do sistema água (1) + 1-butanol (2) + [emim][EtSO₄] (3).

	_	Fase	aquosa ((L_1)		Fase orgânica (L_2)					
Ν	η_D	ρ (g.cm ⁻³)	$w_{1}^{L_{1}}$	$w_{2}^{L_{1}}$	$w_{3}^{L_{1}}$	η_D	ρ (g.cm ⁻³)	$w_{1}^{L_{2}}$	$w_{2}^{L_{2}}$	$W_{3}^{L_{2}}$	
1	1,3977	1,0041	0,3708	0,3391	0,2901	1,3933	0,8905	0,2008	0,6906	0,1086	
2	1,3953	1,0308	0,4489	0,2256	0,3255	1,3926	0,8848	0,2036	0,7024	0,0940	
3	1,3880	0,8584	0,7448	0,0792	0,1762	1,3634	1,0256	0,1966	0,7658	0,0376	
4	1,3901	0,8736	0,5997	0,1243	0,2761	1,3817	1,0377	0,2012	0,7280	0,0708	
5	1,3892	0,8726	0,6511	0,1006	0,2483	1,3751	1,0348	0,2069	0,7294	0,0637	
6	1,3892	0,8604	0,6748	0,0908	0,2344	1,3733	1,0343	0,1856	0,7673	0,0471	
7	1,3913	0,8763	0,5438	0,1467	0,3095	1,3872	1,0381	0,1950	0,7250	0,0800	
8	1,3562	1,0091	0,8013	0,0756	0,1231	1,3887	0,8546	0,1889	0,7807	0,0304	
9	1,3523	1,0042	0,8304	0,0703	0,0993	1,3855	0,8491	0,2007	0,7853	0,0141	
10	1,3454	0,9933	0,8712	0,0731	0,0557	1,3851	0,8462	0,1993	0,7924	0,0083	

Fonte: Arquivo pessoal.

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

Os resultados do teste de Marcilla, Ruiz e Garcia (1995) para os dados experimentais são apresentados na Tabela 5.74. Destaca-se que desvio geral do balanço de

massa foi de 0,18% mostrando que a qualidade dos dados obtidos é boa o suficiente para que sigam à etapa de modelagem termodinâmica.

N	Cor	nposição to	tal da soluç	ão		M	S (0)	
N	M ^{sol}	W_1^{sol}	W_2^{sol}	W_3^{sol}	M^{D_1}	M^{D_2}	0(%)	
1	24,8165	0,2296	0,6253	0,1451	4,5978	20,2022	0,07	
2	25,0191	0,2387	0,6327	0,1286	3,6514	21,3610	0,03	
3	25,0847	0,2504	0,6358	0,1138	4,8956	20,3682	0,41	
4	25,8472	0,2589	0,6386	0,1025	3,8017	22,0222	0,09	
5	25,5924	0,2702	0,6402	0,0896	3,6367	21,9613	0,02	
6	24,2678	0,2789	0,6412	0,0799	4,5684	19,7408	0,17	
7	24,2205	0,2975	0,6435	0,0592	3,5125	20,7478	0,38	
8	24,3173	0,3089	0,6457	0,0454	4, 7265	19,6544	0,26	
9	24,1841	0,3212	0,6486	0,0302	4,6265	19,5602	0,01	
10	23,5703	0,3345	0,6512	0,0143	4,7119	18,9362	0,33	

Tabela 5.74 - Teste de qualidade do sistema água (1) + 1-butanol (2) + [emim][EtSO₄] (3).

Fonte: Arquivo pessoal.

Os valores experimentais do coeficiente de distribuição e do fator de separação são listados na Tabela 5.75. O fator de separação do sistema, maior que um para ambas as temperaturas, indica que é possível extrair 1-butanol (soluto) contido na água (diluente) usando líquido iônico [emim][EtSO₄] (solvente).

Tabela 5.75 – Coeficientes de distribuição e fatores de separação experimentais do 1-butanol.

Ν	D_1	D_2	S	Ν	D_1	D_2	S
1	0,54	2,04	3,8	6	0,28	8,45	30,7
2	0,45	3,11	6,9	7	0,36	4,94	13,8
3	0,26	9,67	36,6	8	0,24	10,33	43,8
4	0,34	5,86	17,5	9	0,24	11,17	46,2
5	0,32	7,25	22,8	10	0,23	10,84	47,4

Fonte: Arquivo pessoal.

Os valores de *S* e D_2 estão representados nas Figuras 5.30 e 5.31, respectivamente, em função da fração mássica de 1-butanol na fase aquosa $(w_2^{L_1})$. Na Figura 5.30, nota-se que todos os valores de *S* são maiores que 1,0, indicando que a extração de 1-butanol da solução 1-butanol

+ água é possível utilizando o [emim][EtSO₄] como agente extrator. Na Figura 5.31, os coeficientes de distribuição, D_2 , também são maiores que 1,0.

Figura 5.30 – Fator de separação (*S*) para o sistema água (1) + 1-butanol (2) + [emim][EtSO₄] (3) a 298,15 K.

Fonte: Arquivo pessoal.

Fonte: Arquivo pessoal.

A modelagem termodinâmica foi feita utilizando os mesmos modelos para todos os sistemas ternários contendo LIs. No sistema água + 1-butanol + [emim][EtSO₄], os parâmetros de interação binária do modelo NRTL são apresentados na Tabela 5.76 e o valor do parâmetro de não-aleatoriedade, α_{ij} , otimizado foi de 0,3837.

Componente	1	2	3
1	0,0000	5,5672	-17,6998
2	4,2067	0,0000	0,0415
3	-3,2548	-2,298	0,0000

Tabela 5.76 – Parâmetros de interação binária, $g_{ij} - g_{jj}$ (cal.mol⁻¹), do modelo NRTL para o sistema água (1) + 1-butanol (2) + [emim][EtSO₄] (3).

Os parâmetros de interação binária do modelo PR-TV-CG são apresentados na Tabela 5.77.

Tabela 5.77 – Valores dos parâmetros de interação da EdE PR-TV-CG.

Grupos	$A_{nm}(K)$	\mathbf{B}_{nm}	$C_{nm} (K^{-1})$	$A_{mn}(K)$	B_{mn}	$C_{mn} (K^{-1})$
CH - OH	-53,021	9,685	0,000	-166,507	16,332	0,000
CH - H ₂ O	-969,638	-2,831	0,000	-892,262	-1,857	0,000
CH - [emim][EtSO4]	2459,706	28,262	0,000	1319,432	-2,826	0,000
OH - H ₂ O	874,127	13,837	0,000	1135,805	-2,204	0,000
OH - [emim][EtSO4]	2314,109	1,141	0,000	2114,184	19,163	0,000
H ₂ O - [emim][EtSO ₄]	-481,762	0,706	0,000	-199,664	-2,402	0,000

Fonte: Arquivo pessoal.

Os resultados da modelagem termodinâmica para as composições mássicas das duas fases e os desvios absolutos para as mesmas são apresentados nas Tabelas 5.78 e 5.79 para os modelos NRTL e PR-TV-CG, respectivamente.

Com o modelo NRTL, o desvio médio foi de 1,77%, 0,34% e 1,95% na fase aquosa e de 0,85%, 1,03% e 0,22% na fase orgânica para a fração mássica, respectivamente, da água, do 1-butanol e do [emim][EtSO₄].

Com a equação PR-TV-CG, os desvios médios absolutos das composições em fração mássica da água, do 1-butanol e do [emim][EtSO₄] foram de 0,24%, 0,07% e 0,26% na fase aquosa e 0,02%, 0,05% e 0,07% na fase orgânica.

O desvio médio quadrático (DMQ), para o modelo NRTL, foi 0,0153, e, para a equação PR-TV-CG, foi 0,0001.

N.7		Fase aquosa					Fase orgânica					
Ν	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	Δw_1 (%)	Δw_2 (%)	Δw_3 (%)	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	Δw_1 (%)	Δw_2 (%)	$\Delta w_3 (\%)$
1	0,3730	0,3460	0,2810	0,22	0,69	0,91	0,1986	0,6916	0,1098	0,22	0,10	0,12
2	0,4539	0,2288	0,3173	0,50	0,32	0,82	0,2033	0,7010	0,0957	0,03	0,14	0,17
3	0,7421	0,0807	0,1772	0,27	0,15	0,10	0,1825	0,7816	0,0358	1,41	1,58	0,18
4	0,5963	0,1294	0,2743	0,34	0,51	0,18	0,2121	0,7101	0,0778	1,09	1,79	0,70
5	0,6426	0,1027	0,2547	0,85	0,21	0,64	0,1953	0,7450	0,0597	1,16	1,56	0,40
6	0,6783	0,0909	0,2308	0,35	0,01	0,36	0,1798	0,7728	0,0474	0,58	0,55	0,03
7	0,5568	0,1466	0,2967	1,30	0,01	1,28	0,1979	0,7177	0,0845	0,29	0,73	0,45
8	0,8602	0,0822	0,0577	5,89	0,66	6,54	0,1800	0,7895	0,0305	0,89	0,88	0,01
9	0,9085	0,0778	0,0137	7,81	0,75	8,56	0,1868	0,7998	0,0135	1,39	1,45	0,06
10	0,8695	0,0742	0,0563	0,17	0,11	0,06	0,1849	0,8071	0,0080	1,44	1,47	0,03
	Desvio médio 1,77 0,34 1,95						Des	vio médio	0,85	1,03	0,22	

Tabela 5.78 – Resultados obtidos com o modelo NRTL para o ELL do sistema água (1) + 1-butanol (2) + [emim][EtSO₄] (3) a 298,15 K.

NZ	Fase aquosa					Fase orgânica						
Ν	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	Δw_1 (%)	Δw_2 (%)	Δw_3 (%)	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	Δw_1 (%)	Δw_2 (%)	Δw_3 (%)
1	0,3715	0,3389	0,2896	0,07	0,02	0,05	0,2010	0,6907	0,1083	0,02	0,01	0,03
2	0,4503	0,2258	0,3238	0,14	0,02	0,17	0,2038	0,7026	0,0936	0,02	0,02	0,04
3	0,7462	0,0781	0,1756	0,14	0,11	0,06	0,1968	0,7657	0,0374	0,02	0,01	0,02
4	0,6019	0,1241	0,2740	0,22	0,02	0,21	0,2015	0,7285	0,0700	0,03	0,05	0,08
5	0,6538	0,1003	0,2458	0,27	0,03	0,25	0,2070	0,7292	0,0638	0,01	0,02	0,01
6	0,6768	0,0902	0,2330	0,20	0,06	0,14	0,1858	0,7673	0,0468	0,02	0,00	0,03
7	0,5418	0,1454	0,3129	0,20	0,13	0,34	0,1951	0,7248	0,0802	0,01	0,02	0,02
8	0,7985	0,0748	0,1268	0,28	0,08	0,37	0,1886	0,7770	0,0344	0,03	0,37	0,40
9	0,8277	0,0694	0,1028	0,27	0,09	0,35	0,2008	0,7852	0,0139	0,01	0,01	0,02
10	0,8656	0,0716	0,0629	0,56	0,15	0,72	0,1997	0,7926	0,0077	0,04	0,02	0,06
	D	esvio méd	io	0,24	0,07	0,26	Desvio médio		0,02	0,05	0,07	

Tabela 5.79 – Resultados obtidos com o modelo PR-TV-CG para o ELL do sistema água (1) + 1-butanol (2) + [emim][EtSO₄] (3) a 298,15 K.

O diagrama de fases do sistema água + 1-butanol e [emim][EtSO₄], Figura 5.32, é do tipo I (TREYBAL, 1980). As composições totais das soluções que deram origem às linhas de amarração são destacadas no diagrama, além do ponto crítico predito, usando o método de Alders (1959), cuja composição é $w_1 = 0,2197$; $w_2 = 0,6257$; $w_3 = 0,1546$.

Figura 5.32 – Dados do ELL para o sistema água + 1-butanol + [emim][EtSO₄].

5.2.3.3 Sistema água + 1-butanol + [hmim][BF4]

Na Tabela 5.80, são apresentadas as propriedades dos compostos do sistema ternário água, 1-butanol e tetrafluoroborato de 1-hexil-3-metilimidazólio, [hmim][BF₄], a 298,15 K.

Os dados experimentais das curvas binodais são mostrados na Tabela 5.81.

Tabela 5.80 – Propriedades físicas das substâncias puras a 298,15 K.

Substância	Densidade (g.cm ⁻³)	Índice de refração
Água	0,9940	1,3330
1-butanol	0,8057	1,3979
[hmim][BF4]	1,1503	1,4280

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): u(T) = 0,01 K, U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

Tabela 5.81 – Dados da curva binodal do sistema água (1) + 1-butanol $(2) + [hmim][BF_4] (3)$.

Curva binodal superior					Curva binodal inferior					
<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	η_D	ρ (g.cm ⁻³)	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	η_D	ρ (g.cm ⁻³)	
0,9153	0,0847	0,0000	1,3376	1,0161	0,9308	0,0000	0,0692	1,3387	1,0179	
0,8812	0,0984	0,0204	1,3405	1,0140	0,8958	0,0261	0,0781	1,3413	1,0246	
0,8481	0,1174	0,0345	1,3430	1,0114	0,8736	0,0423	0,0841	1,3429	1,0273	
0,8239	0,1326	0,0435	1,3449	1,0095	0,8374	0,0648	0,0978	1,3457	1,0296	
0,7920	0,1524	0,0556	1,3473	1,0072	0,8074	0,0741	0,1185	1,3483	1,0297	
0,7727	0,1648	0,0625	1,3488	1,0057	0,7748	0,0875	0,1377	1,3510	1,0285	
0,7361	0,1797	0,0843	1,3519	1,0207	0,7582	0,0948	0,1470	1,3523	1,0273	
0,6861	0,2040	0,1099	1,3559	0,9769	0,7281	0,1089	0,1630	1,3548	1,0247	
0,6339	0,2407	0,1254	1,3598	0,9937	0,6845	0,1141	0,2014	1,3588	1,0199	
0,5806	0,2849	0,1345	1,3635	0,9874	0,6412	0,1263	0,2325	1,3626	1,0149	
0,5454	0,3184	0,1362	1,3659	0,9824	0,6035	0,1407	0,2558	1,3657	1,0107	
0,5151	0,3465	0,1384	1,3679	0,9774	0,5511	0,1546	0,2943	1,3703	1,0077	
0,4813	0,3784	0,1403	1,3702	0,9711	0,5105	0,1622	0,3274	1,3740	1,0054	
0,4552	0,4025	0,1423	1,3719	0,9656	0,4505	0,1654	0,3841	1,3796	1,0085	
0,4213	0,4319	0,1468	1,3743	0,9643	0,3902	0,1674	0,4424	1,3853	1,0194	
0,3951	0,4674	0,1375	1,3757	0,9507	0,3570	0,1602	0,4828	1,3887	1,0292	
0,3657	0,5062	0,1281	1,3773	0,9421	0,3258	0,1478	0,5264	1,3921	1,0419	
0,3424	0,5361	0,1215	1,3786	0,9534	0,2975	0,1174	0,5852	1,3957	1,0431	
0,3195	0,5761	0,1045	1,3796	0,9232	0,2745	0,1023	0,6232	1,3984	1,0698	
0,2998	0,6028	0,0974	1,3807	0,9192	0,2542	0,0904	0,6555	1,4007	1,0983	
0,2806	0,6347	0,0847	1,3815	0,9115	0,2315	0,0731	0,6955	1,4034	1,1018	
0,2672	0,6582	0,0746	1,3821	0,8785	0,2163	0,0521	0,7316	1,4055	1,1138	
0,2418	0,6935	0,0647	1,3834	0,8945	0,1984	0,0362	0,7654	1,4077	1,1302	
0,2264	0,7259	0,0477	1,3839	0,8872	0,1765	0,0184	0,8051	1,4103	1,1524	
0,2041	0,7654	0,0305	1,3848	0,8760	0,1643	0,0000	0,8357	1,4121	1,1621	
0,1965	0,8021	0,0014	1,3845	0,8720						
0,1868	0,8132	0,0000	1,3850	0,8771						

Fonte: Arquivo pessoal.

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.
As curvas calibração foram obtidas pela regressão dos dados das curvas binodais e os coeficientes são apresentados na Tabela 5.82.

	Curva binoc	lal superior	Curva binoc	Curva binodal inferior			
Coeficiente	Val	or	Val	or			
	η_D	ρ	η_D	ρ			
C ₀₀	6,8465	63,4910	1,6182	-30,1791			
<i>C</i> ₁₀	-3,8732	-34,8930	-2,9709	49,1595			
C_{01}	-3,6888	-35,5360	0,3554	-22,6948			
<i>C</i> ₂₀	8,7702	7,7423	13,9951	-25,4974			
<i>C</i> ₁₁	16,8110	15,7946	6,5882	90,7074			
<i>C</i> ₀₂	7,9680	79,7350	-7,1635	12,0371			
<i>C</i> ₃₀	-9,9111	-8,6440	-24,2648	5,0339			
<i>C</i> ₂₁	-28,7140	-26,6690	-73,9260	42,7384			
<i>C</i> ₁₂	-27,3880	-26,8970	65,9526	-15,2580			
<i>C</i> ₀₃	-8,5929	-8,9249	-7,9791	3,3995			
C_{40}	5,5872	48,4150	16,9058	-42,2607			
<i>C</i> ₃₁	21,7730	20,1910	119,3087	-10,8074			
C ₂₂	31,4050	30,7916	28,9737	14,3430			
<i>C</i> ₁₃	198,0204	20,2956	-126,5253	32,6534			
C_{04}	46,2142	49,7062	11,7945	-25,2984			
C ₅₀	-1,2564	-10,8562	-3,9523	12,8143			
C ₄₁	-61,7943	-57,5927	-51,8539	57,5729			
<i>C</i> ₃₂	-120,0707	-11,8964	-84,7865	-30,3650			
<i>C</i> ₂₃	-11,4360	-11,8141	40,9606	-26,6217			
<i>C</i> ₁₄	-53,5254	-57,0124	25,6209	-18,4457			
<i>C</i> ₀₅	-91,0989	-11,0872	75,4311	38,7246			
R^2	0,9999	0,9874	0,9999	0,9931			

Tabela 5.82 – Coeficientes da curva de calibração do sistema água + 1-butanol + [hmim][BF₄] a 298,15 K.

Fonte: Arquivo pessoal.

A partir das correlações obtidas entre as composições e as propriedades, as isolinhas para a curva binodal superior e inferior são mostradas nas Figuras 5.33 e 5.34, respectivamente.

Figura 5.33 – Isolinhas da curva binodal superior do (a) índice de refração e da (b) densidade em função da composição para o sistema água + 1-butanol + [hmim][BF4] a 298,15 K.

Figura 5.34 – Isolinhas da curva binodal inferior do (a) índice de refração e da (b) densidade em função da composição para o sistema água + 1-butanol + [hmim][BF₄] a 298,15 K.

Fonte: Arquivo pessoal.

As linhas de amarração do sistema água + 1-butanol + [hmim][BF₄] foram obtidas para a região bifásica do equilíbrio e são apresentadas na Tabela 5.83.

Por meio do teste de qualidade, descrito na seção 4.3.3, nota-se que os dados experimentais estão de acordo com os critérios estabelecidos de confiabilidade para serem utilizados na modelagem termodinâmica. Como apresentado nas Tabelas 5.84 e 5.85, os desvios encontrados não ultrapassam 0,42% e o desvio médio calculado para a curva binodal superior foi de 0,21% e para a curva binodal inferior foi de 0,19%.

	Curva superior												
		Fase	aquosa	(L_1)			Fase	orgânica	$\mathfrak{l}(L_2)$				
N	η_D	ρ (g.cm ⁻³)	$w_{1}^{L_{1}}$	$W_{2}^{L_{1}}$	$W_{3}^{L_{1}}$	η_D	ρ (g.cm ⁻³)	$w_{1}^{L_{2}}$	$W_{2}^{L_{2}}$	$W_{3}^{L_{2}}$			
1	1,3522	0,9731	0,7348	0,1816	0,0836	1,3635	0,9615	0,5824	0,2837	0,1339			
2	1,3493	0,9729	0,7704	0,1662	0,0634	1,3702	0,9446	0,4828	0,3776	0,1396			
3	1,3473	0,9737	0,7956	0,1527	0,0517	1,3741	0,9303	0,4194	0,4478	0,1328			
4	1,3466	0,9731	0,8032	0,1512	0,0456	1,3774	0,9186	0,3657	0,5062	0,1281			
5	1,3435	0,9761	0,8444	0,1241	0,0315	1,3794	0,9061	0,3279	0,5599	0,1123			
6	1,3413	0,9781	0,8741	0,1048	0,0211	1,3804	0,8967	0,3052	0,5974	0,0974			
7	1,3398	0,9793	0,8941	0,0924	0,0135	1,3818	0,8830	0,2728	0,6523	0,0749			
8	1,3384	0,9795	0,9115	0,0841	0,0044	1,3840	0,8650	0,2264	0,7259	0,0477			
					Curva inf	ferior							
		Fase	aquosa	(L_1)		Fase orgânica (L_2)							
N	η_D	ρ (g.cm ⁻³)	$w_{1}^{L_{1}}$	$w_{2}^{L_{1}}$	$w_{3}^{L_{1}}$	η_D	ρ (g.cm ⁻³)	$w_{1}^{L_{2}}$	$w_{2}^{L_{2}}$	$W_{3}^{L_{2}}$			
1	1,3783	1,0181	0,4612	0,1714	0,3674	1,3910	1,0453	0,3342	0,1478	0,5180			
2	1,3734	1,0113	0,5148	0,1674	0,3178	1,3941	1,0555	0,3078	0,1298	0,5624			
3	1,3715	1,0113	0,5374	0,1574	0,3052	1,3964	1,0635	0,2874	0,1154	0,5972			
4	1,3687	1,0102	0,5717	0,1452	0,2831	1,4005	1,0780	0,2529	0,0881	0,6590			
5	1,3650	1,0070	0,6132	0,1362	0,2506	1,4041	1,0907	0,2215	0,0648	0,7137			
6	1,3619	1,0066	0,6513	0,1203	0,2284	1,4062	1,0980	0,2036	0,0512	0,7452			
7	1,3529	0,9973	0,7523	0,1026	0,1451	1,4086	1,1063	0,1830	0,0360	0,7810			
8	1,3462	0,9975	0,8348	0,0654	0,0998	1,4098	1,1125	0,1750	0,0214	0,8036			

Tabela 5.83 – Linhas de amarração do ELL do sistema água (1) + 1-butanol (2) + [hmim][BF₄] (3).

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

Tabela 5.84 – Teste de qualidade da curva binodal superior do sistema água (1) + 1-butanol (2) + [hmim][BF₄] (3).

N	Cor	nposição to	tal da soluç	ão	M^{L_1}	ML_2	\$ (04)
1	M ^{sol}	w_1^{sol}	W_2^{sol}	W_3^{sol}	<i>IVI</i> 1	101 2	0(%)
1	20,1723	0,6826	0,2181	0,0993	13,1904	7,0013	0,10
2	20,8884	0,6864	0,2315	0,0821	14,6916	6,2533	0,27
3	21,2594	0,6894	0,2364	0,0742	15,2499	6,0165	0,03
4	21,4758	0,6954	0,2421	0,0625	16,1283	5,4118	0,30
5	22,6078	0,7035	0,2467	0,0498	16,3901	6,2945	0,34
6	22,9436	0,7087	0,2503	0,0410	16,2460	6,7470	0,22
7	23,4037	0,7112	0,2541	0,0347	16,5457	6,7870	0,30
8	23,2663	0,7215	0,2634	0,0151	16,8039	6,4926	0,13

N	Cor	nposição to	tal da soluç	ão	ML_1	ML2	\$ (04)
1	M ^{sol}	W_1^{sol}	W_2^{sol}	W_3^{sol}	<i>IVI</i> 1	IVI 2	0(%)
1	17,5821	0,3847	0,1592	0,4561	7,1306	10,4300	0,12
2	18,1974	0,3916	0,1515	0,4569	7,6363	10,4854	0,42
3	18,2670	0,3975	0,1388	0,4637	8,2052	10,0011	0,33
4	19,3516	0,4075	0,1178	0,4747	9,4345	9,8893	0,14
5	19,7425	0,4128	0,1023	0,4849	9,6914	10,0123	0,20
6	19,3090	0,4212	0,0854	0,4934	9,3939	9,9057	0,05
7	18,5239	0,4301	0,0628	0,5071	8,0204	10,5367	0,18
8	20,5258	0,4421	0,0387	0,5192	8,3055	12,2300	0,05

Tabela 5.85 – Teste de qualidade da curva binodal inferior do sistema água (1) + 1-butanol (2) + [hmim][BF₄] (3).

Na Tabela 5.86, são listados os valores experimentais dos coeficientes de distribuição e do fator de separação. Nota-se que os valores maiores que um para o fator de separação, em ambas as temperaturas, apontam para a viabilidade da extração do 1-butanol contido na água empregando o [hmim][BF4].

λĭ	Cui	va binodal sup	perior	Curv	Curva binodal inferior				
IN	D_1	D_2	S	D_1	D_2	S			
1	0,79	1,56	2,0	0,72	0,86	1,2			
2	0,63	2,27	3,6	0,60	0,78	1,3			
3	0,53	2,93	5,6	0,53	0,73	1,4			
4	0,46	3,35	7,4	0,44	0,61	1,4			
5	0,39	4,51	11,6	0,36	0,48	1,3			
6	0,35	5,70	16,3	0,31	0,43	1,4			
7	0,31	7,06	23,1	0,24	0,35	1,4			
8	0,25	8,63	34,8	0,21	0,33	1,6			

Tabela 5.86 – Coeficientes de distribuição e fatores de separação experimentais do 1-butanol.

Fonte: Arquivo pessoal.

Nas Figuras 5.35 e 5.36, são representados os valores de S e D_2 , respectivamente, em função da fração mássica de 1-butanol na fase aquosa $(w_2^{L_1})$. Nas duas curvas binodais, os valores da seletividade indicam que o [hmim][BF₄] pode ser usado como agente extrator do 1-butanol em uma solução com água, sendo que a região da curva binodal superior é mais

adequada para a separação, uma vez que os valores de S são maiores do que os calculados para a região da curva binodal inferior.

Figura 5.35 – Fator de separação (S) para o sistema água (1) + 1-butanol (2) + [hmim][BF₄] (3) a 298,15 K.

Fonte: Arquivo pessoal.

Legenda: Curva binodal inferior (●); curva binodal superior (■).

Figura 5.36 – Coeficiente de distribuição (D_2) para o sistema água (1) + 1-butanol (2) + [hmim][BF₄] (3) a 298,15 K.

Fonte: Arquivo pessoal.

Legenda: Curva binodal inferior (●); curva binodal superior (■).

Os parâmetros de interação binária da modelagem termodinâmica realizada com o modelo NRTL são apresentados na Tabela 5.87. Cada curva binodal teve um parâmetro de

não-aleatoriedade otimizado e foram encontrados os valores de 0,3568 e de 0,3245 para a superior e para a inferior, respectivamente.

Tabela 5.87 – Parâmetros de interação binária,	$g_{ij} - g_{jj}$ (cal.mol ⁻¹), do modelo NRTL para o
sistema água (1) + butanol (2) +	[hmim][BF ₄] (3).
~ .	~

	Curv	a superior		Curva inferior						
i \ j	1	2	3	i \ j	1	2	3			
1	0,0000	8,5439	-6,1925	1	0,0000	0,0747	9,8018			
2	1,3209	0,0000	0,8458	2	0,0736	0,0000	2,6765			
3	-7,5133	0,699	0,0000	3	1,9548	0,530	0,0000			

Fonte: Arquivo pessoal.

Os parâmetros de componente puro e os parâmetros de interação binária da modelagem termodinâmica realizada com a EdE PR-TV-CG são apresentados nas Tabelas 5.3 e 5.88, respectivamente.

Grupos	$A_{nm}(K)$	B _{nm}	$C_{nm} (K^{-1})$	A _{mn} (K)	\mathbf{B}_{mn}	C _{mn} (K ⁻¹)
CH - OH	882,813	12,832	0,000	-794,396	5,907	0,000
CH - H ₂ O	394,504	28,607	0,000	-963,441	-1,951	0,000
CH - [hmim][BF ₄]	553,721	28,754	0,000	-94,063	-1,553	0,000
OH - H ₂ O	-196,864	28,171	0,000	550,715	1,374	0,000
OH - [hmim][BF ₄]	2513,603	10,963	0,000	1,608	17,326	0,000
H ₂ O - [hmim][BF ₄]	-482,745	-1,405	0,000	-363,932	-1,968	0,000

Tabela 5.88 – Valores dos parâmetros de interação da EdE PR-TV-CG.

Fonte: Arquivo pessoal.

Nas Tabelas 5.89 e 5.90, são apresentados os resultados da modelagem termodinâmica com o modelo NRTL para as composições em frações mássicas e os desvios calculados para as curvas superior e inferior, respectivamente, do ELL do sistema água + 1-butanol + [hmim][BF₄].

Na Tabela 5.91, são apresentados os resultados da modelagem termodinâmica empregando a EdE PR-TV-CG para a curva binodal superior e, na Tabela 5.92, para a curva binodal inferior.

Os desvios médios encontrados demonstram que os modelos termodinâmicos empregados são capazes de correlacionar com qualidade dos dados experimentais, com

destaque para a EdE PR-TV-CG que apresentou os menores desvios para as duas curvas binodais do sistema ternário. Em termos de desvio médio quadrático, foram encontrados os valores de 0,0011 para a curva binodal superior e de 0,0485 para a inferior usando o modelo NRTL, enquanto foram calculados os valores de 0,0001 para a superior e 0,0002 para a inferior com a EdE PR-TV-CG.

			Fa	se aquosa			Fase orgânica					
Ν	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	Δw_1 (%)	Δw_2 (%)	Δw_3 (%)	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	Δw_1 (%)	Δw_2 (%)	Δw_3 (%)
1	0,7329	0,1838	0,0833	0,19	0,22	0,03	0,5744	0,2960	0,1296	0,80	1,23	0,43
2	0,7711	0,1656	0,0633	0,07	0,06	0,01	0,4895	0,3724	0,1380	0,67	0,52	0,16
3	0,7958	0,1522	0,0519	0,02	0,05	0,02	0,4250	0,4420	0,1330	0,56	0,58	0,02
4	0,8039	0,1509	0,0452	0,07	0,03	0,04	0,3717	0,5002	0,1281	0,60	0,60	0,00
5	0,8446	0,1232	0,0322	0,02	0,09	0,07	0,3288	0,5593	0,1119	0,09	0,06	0,03
6	0,8776	0,1020	0,0204	0,35	0,28	0,07	0,3080	0,5937	0,0983	0,28	0,37	0,09
7	0,8918	0,0953	0,0129	0,23	0,29	0,06	0,2703	0,6548	0,0749	0,25	0,25	0,00
8	0,9099	0,0849	0,0053	0,16	0,08	0,09	0,2251	0,7273	0,0476	0,13	0,14	0,01
		Des	vio médio	0,14	0,14	0,05		Des	vio médio	0,42	0,47	0,09

Tabela 5.89 – Resultados obtidos com o modelo NRTL para a curva binodal superior do ELL do sistema água (1) + 1-butanol (2) + [hmim][BF4] (3) a 298,15 K.

			Fa	se aquosa					Fas	e orgânica		
N	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	Δw_1 (%)	Δw_2 (%)	Δw_3 (%)	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	Δw_1 (%)	Δw_2 (%)	Δw_3 (%)
1	0,4520	0,1772	0,3707	0,92	0,58	0,33	0,3438	0,1417	0,5146	0,96	0,61	0,34
2	0,4952	0,1771	0,3277	1,96	0,97	0,99	0,2981	0,1162	0,5857	0,97	1,36	2,33
3	0,5178	0,1733	0,3089	1,96	1,59	0,37	0,2778	0,1026	0,6195	0,96	1,27	2,23
4	0,5595	0,1638	0,2766	1,21	1,86	0,65	0,2560	0,0843	0,6597	0,31	0,38	0,07
5	0,6015	0,1490	0,2494	1,17	1,28	0,12	0,2370	0,0666	0,6965	1,55	0,18	1,72
6	0,6309	0,1390	0,2301	2,04	1,87	0,17	0,2237	0,0571	0,7192	2,01	0,59	2,60
7	0,7082	0,1049	0,1869	4,41	0,23	4,18	0,2070	0,0366	0,7564	2,40	0,06	2,46
8	0,7527	0,0817	0,1656	8,21	1,63	6,58	0,1914	0,0253	0,7832	1,64	0,39	2,04
	Desvio médio			2,73	1,25	1,67		Des	vio médio	1,35	0,61	1,72

Tabela 5.90 – Resultados obtidos com o modelo NRTL para a curva binodal inferior do ELL do sistema água (1) + 1-butanol (2) + [hmim][BF₄] (3) a 298,15 K.

			Fa	se aquosa			Fase orgânica					
Ν	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	Δw_1 (%)	Δw_2 (%)	Δw_3 (%)	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	Δw_1 (%)	Δw_2 (%)	Δw_3 (%)
1	0,7348	0,1811	0,0841	0,00	0,05	0,05	0,5826	0,2842	0,1333	0,02	0,05	0,06
2	0,7710	0,1658	0,0633	0,06	0,04	0,01	0,4823	0,3777	0,1400	0,05	0,01	0,04
3	0,7960	0,1521	0,0519	0,04	0,06	0,02	0,4192	0,4482	0,1326	0,02	0,04	0,02
4	0,8025	0,1500	0,0475	0,07	0,12	0,19	0,3659	0,5069	0,1271	0,02	0,07	0,10
5	0,8427	0,1227	0,0345	0,17	0,14	0,30	0,3279	0,5603	0,1118	0,00	0,04	0,04
6	0,8743	0,1042	0,0216	0,02	0,06	0,05	0,3051	0,5975	0,0974	0,01	0,01	0,00
7	0,8933	0,0912	0,0155	0,08	0,12	0,20	0,2731	0,6535	0,0734	0,03	0,12	0,15
8	0,9115	0,0832	0,0053	0,00	0,09	0,09	0,2266	0,7269	0,0464	0,02	0,10	0,13
		Des	vio médio	0,06	0,09	0,11		Des	vio médio	0,02	0,06	0,07

Tabela 5.91 – Resultados obtidos com o modelo PR-TV-CG para a curva binodal superior do ELL do sistema água (1) + 1-butanol (2) + [hmim][BF4] (3) a 298,15 K.

			Fa	se aquosa					Fas	e orgânica		
N	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	Δw_1 (%)	Δw_2 (%)	Δw_3 (%)	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	Δw_1 (%)	Δw_2 (%)	Δw_3 (%)
1	0,4606	0,1708	0,3687	0,06	0,06	0,13	0,3343	0,1476	0,5181	0,01	0,02	0,01
2	0,5112	0,1656	0,3232	0,36	0,18	0,54	0,3080	0,1297	0,5623	0,02	0,01	0,01
3	0,5359	0,1566	0,3075	0,15	0,08	0,23	0,2875	0,1151	0,5974	0,01	0,03	0,02
4	0,5698	0,1445	0,2856	0,18	0,07	0,25	0,2530	0,0878	0,6592	0,01	0,03	0,02
5	0,6109	0,1353	0,2538	0,23	0,09	0,32	0,2216	0,0646	0,7138	0,01	0,02	0,01
6	0,6500	0,1205	0,2295	0,13	0,02	0,11	0,2039	0,0511	0,7450	0,03	0,01	0,02
7	0,7514	0,1032	0,1453	0,09	0,06	0,02	0,1831	0,0358	0,7811	0,01	0,02	0,01
8	0,8338	0,0659	0,1003	0,10	0,05	0,05	0,1752	0,0215	0,8033	0,02	0,01	0,03
	Desvio médio			0,16	0,08	0,21		Des	vio médio	0,01	0,02	0,02

Tabela 5.92 – Resultados obtidos com o modelo PR-TV-CG para a curva binodal inferior do ELL do sistema água (1) + 1-butanol (2) + [hmim][BF₄] (3) a 298,15 K.

Na Figura 5.37, o diagrama ternário do sistema água + 1-butanol + [hmim][BF₄] contém os dados experimentais e os resultados da modelagem termodinâmica. As soluções que deram origem às linhas de amarração são destacadas, assim como os pontos críticos obtidos pelo método de Alders (1959). A composição do ponto crítico da curva binodal superior é $w_1 = 0,6741$, $w_2 = 0,2124$ e $w_3 = 0,1135$, e o da curva binodal inferior é $w_1 = 0,3778$; $w_2 = 0,1702$; $w_3 = 0,4520$.

Figura 5.37 – Dados do ELL para o sistema água + 1-butanol + [hmim][BF4] a 298,15 K.

De acordo com os resultados, os modelos termodinâmicos mostram uma boa precisão na modelagem do ELL envolvendo substâncias complexas, como os líquidos iônicos. Tendo como objetivo extrair o 1-butanol da fase aquosa, ao se comparar os resultados atingidos nos três sistemas ternários, se verifica que os LIs com o ânion tetrafluoroborato, [emim][BF4] e [hmim][BF4], se mostram mais eficientes que o [emim][EtSO4], uma vez que a região bifásica é maior no sistema contendo [emim][BF4] e há duas regiões de duas fases no sistema contendo [hmim][BF4]; logo, há regiões maiores que permitem a extração líquido-líquido. O líquido iônico [hmim][BF4] também apresentou menor miscibilidade com a água que o torna um bom agente extrator em processos como, por exemplo, a extração do biobutanol do meio fermentativo ABE.

5.3 SIMULAÇÃO TERMODINÂMICA

5.3.1 Códigos SMILES

Os códigos SMILES para as substâncias utilizadas nesta etapa são mostrados na Tabela 5.93.

Tabela 5.93 – Códigos SMILES dos componentes utilizados na simulação termodinâmica.

Componente	Código SMILES
[emim][BF ₄]	[B-](F)(F)(F)F.CCN1C=C[N+](=C1)C
[bmim][BF ₄]	[B-](F)(F)(F)F.CCCCN1C=C[N+](=C1)C
[hmim][BF4]	[B-](F)(F)(F)F.CCCCCN1C=C[N+](=C1)C
[omim][BF ₄]	[B-](F)(F)(F)F.CCCCCCCN1C=C[N+](=C1)C
[emim][PF ₆]	CCN1C=C[N+](=C1)C.F[P-](F)(F)(F)(F)F
[hmim][PF ₆]	CCCCCCN1C=C[N+](=C1)C.F[P-](F)(F)(F)(F)F
[emim][Cl]	CCN1C=C[N+](=C1)C.[Cl-]
[emim][EtSO ₄]	CCN1C=C[N+](=C1)C.CCOS(=O)(=O)[O-]
CO_2	C(=O)=O

Fonte: Arquivo pessoal.

5.3.2 Descritores moleculares

Os descritores moleculares foram selecionados em função das propriedades dos LIs e são apresentados na Tabela 5.94.

Descritor molecular	Nome	Sub-bloco	Bloco		
MW	Massa molar				
nH	Nº de átomos de Hidrogênio	_			
nC	N° de átomos de Carbono				
nN	Nº de átomos de Nitrogênio	_			
nO	Nº de átomos de Oxigênio	Descritores básicos	Índices		
nP	Nº de átomos de Fósforo	Descritores basicos	constitucionais		
nS	N° de átomos de Enxofre				
nF	Nº de átomos de Flúor				
nCl	Nº de átomos de Cloro				
nStructures	Nº de estruturas desconectadas				
Pol	N° de polaridade	Índices baseados na distância	Índices topológicos		
X0Av	Índice médio de conectividade de valência de ordem 0	Índices de conectividade molecular Kier-Hall			
X0SOL	Índice de conectividade de solução	Índice de conectividade de solução	Índices de Conectividade		
XMOD	Índice Randic modificado	Índices de			
RDCHI	Soma da distância do Índice randômico	conectividade do tipo Randic			
P_VSA_p_1	Polarizabilidade P_VSA, tipo 1	Polarizabilidade	Descritores tipo P_VSA		
nImidazoles	Nº de Imidazólios	Descritores básicos	Contagens de grupos		
TPSA(ToT)	Área de superfície polar topológica usando contribuições polares N,O,S,P	_			
VvdwMG	Volume de van der Waals para volume de McGowan	Descritores básicos	Propriedades moleculares		
VvdwZaZ	Volume de van der Waals da equação de Zhao-Abraham- Zissimos				

Tabela 5.94 – Descritores moleculares selecionados do Dragon 7.0.

Os valores numéricos dos descritores moleculares (Tabela 5.94), obtidos usando os códigos SMILES (Tabela 5.93) no Dragon 7.0, são mostrados nas Tabelas 5.95 e 5.96.

Descritor molecular	MW	nH	nC	nN	nO	nP	nS	nF	nCL	nStructures
[emim][BF ₄]	198,000	11	6	2	0	0	0	4	0	2
[bmim][BF ₄]	226,060	15	8	2	0	0	0	4	0	2
[hmim][BF4]	254,120	19	10	2	0	0	0	4	0	2
[omim][BF ₄]	282,180	23	12	2	0	0	0	4	0	2
[emim][PF ₆]	256,160	11	6	2	0	1	0	6	0	2
[hmim][PF ₆]	312,280	19	10	2	0	1	0	6	0	2
[emim][Cl]	146,640	11	6	2	0	0	0	0	1	2
[emim][EtSO ₄]	236,330	16	8	2	4	0	1	0	0	2
CO_2	44,010	0	1	0	2	0	0	0	0	1

Tabela 5.95 – Valores numéricos dos descritores moleculares dos componentes (parte 1).

Tabela 5.96 – Valores numéricos dos descritores moleculares dos componentes (parte 2).

Descritor molecular	Pol	X0Av	X0sol	XMOD	RDCHI	P_VSA_v_1	nImidazoles	TPSA(Tot)	VvdwMG	VvdwZAZ
[emim][BF4]	6	0,569	5,983	38,263	3,197	129,482	1	8,810	93,241	177,180
[bmim][BF4]	8	0,587	7,397	44,263	3,497	176,567	1	8,810	112,426	211,780
[hmim][BF ₄]	10	0,602	8,812	50,263	3,791	223,651	1	8,810	131,611	246,380
[omim][BF ₄]	12	0,613	10,226	56,263	4,075	270,735	1	8,810	150,795	280,980
[emim][PF ₆]	6	0,592	5,983	53,657	3,241	129,482	1	8,810	103,031	175,910
[hmim][PF ₆]	10	0,616	8,812	65,657	3,835	223,651	1	8,810	141,401	245,110
[emim][Cl]	6	0,000	0,000	0,000	0,000	129,482	1	8,810	84,391	129,590
[emim][EtSO ₄]	10	0,661	12,147	54,249	3,537	188,338	1	83,620	122,359	202,650
CO_2	0	0,439	2,707	9,899	1,155	0,000	0	34,140	22,500	38,160

5.3.3 Redes neurais artificiais

A maneira mais rápida de investigar uma arquitetura ótima para a predição de dados é por meio de tentativa e erro. Diferentes arquiteturas foram obtidas combinando quantidades diferentes de neurônios entre as camadas. Configurações com três camadas (X-X-1) e com quatro camadas (X-X-1) foram analisadas para encontrar a configuração mais precisa para este estudo.

Além dos dados obtidos nesta tese, outros dados obtidos em outros projetos do grupo de pesquisa do prof. Pedro Arce para sistemas $CO_2 + LI$ foram incorporados à simulação (IGARASHI *et al.*, 2022), totalizando 620 dados, que foram dispostos aleatoriamente para melhorar a capacidade de previsão e divididos de acordo com as três etapas da simulação termodinâmica, mostradas na Figura 4.5. Para a aprendizagem foram usados 500 dados, para o teste, 70 e, para a predição, 50, seguindo uma proporção percentual de aproximadamente 80:10:10 de divisão entre as etapas das RNA característica dessa metodologia. A RNA empregada foi do tipo propagação feed-forward-back com o erro entre uma iteração e a próxima em 0,0001, com o máximo de iterações fixado em 500 e com o programa rodando 50 vezes usando o algoritmo de Levenberg-Marquardt.

Os resultados da etapa de aprendizagem da simulação termodinâmica são apresentados nas Tabelas 5.97, para as configurações X-X-1 e 3-X-X-1, e 5.98, para as configurações 5-X-X-1 e 10-X-X-1. O desvio relativo médio, ΔP , para um conjunto de 500 dados foi definido conforme a equação (5.4).

$$\Delta P = \frac{100}{N} \sum_{i=1}^{N} \frac{\left|P^{pred} - P^{exp}\right|_{i}}{P_{i}^{exp}}$$
(5.4)

Onde *P* é a pressão do sistema e representa a variável dependente.

Arquitetura	Iteração	ΔP	Arquitetura	Iteração	ΔP	Arquitetura	Iteração	ΔP
2-3-1	28	6,58	15-15-1	17	4,01	3-10-5-1	28	4,18
2-5-1	20	7,06	15-20-1	12	4,67	3-10-10-1	5	4,31
2-10-1	35	7,36	15-25-1	37	4,43	3-10-15-1	16	4,39
2-15-1	40	6,85	15-30-1	46	4,08	3-10-20-1	25	4,17
2-20-1	46	7,27	20-3-1	22	4,89	3-10-25-1	40	4,09
2-25-1	3	6,92	20-5-1	27	4,41	3-10-30-1	35	4,06
2-30-1	22	6,74	20-10-1	4	4,09	3-15-5-1	31	4,31
3-3-1	10	7,37	20-15-1	50	4,13	3-15-10-1	21	4,18
3-5-1	28	6,32	20-20-1	29	4,21	3-15-15-1	42	4,09
3-10-1	15	6,12	20-25-1	49	4,22	3-15-20-1	28	4,03
3-15-1	35	5,92	20-30-1	11	4,63	3-15-25-1	34	3,88
3-20-1	12	6,07	25-3-1	13	4,74	3-15-30-1	41	4,10
3-25-1	10	5,84	25-5-1	39	4,36	3-20-5-1	12	4,07
3-30-1	7	6,04	25-10-1	44	4,09	3-20-10-1	43	4,12
5-3-1	41	5,95	25-15-1	40	3,92	3-20-15-1	46	3,96
5-5-1	18	5,72	25-20-1	27	3,97	3-20-20-1	15	3,74
5-10-1	38	5,57	25-25-1	40	4,09	3-20-25-1	19	3,64
5-15-1	50	5,98	25-30-1	27	3,78	3-20-30-1	33	3,59
5-20-1	44	5,42	3-3-5-1	26	5,49	3-25-5-1	27	3,68
5-25-1	34	5,03	3-3-10-1	8	5,62	3-25-10-1	43	3,75
5-30-1	1	4,87	3-3-15-1	26	5,21	3-25-15-1	5	3,71
10-3-1	14	5,39	3-3-20-1	15	5,03	3-25-20-1	30	3,46
10-5-1	43	5,58	3-3-25-1	40	4,72	3-25-25-1	33	3,51
10-10-1	26	5,25	3-3-30-1	28	4,42	3-25-30-1	44	3,58
10-15-1	15	5,84	3-5-5-1	12	4,24	3-30-5-1	19	3,62
10-20-1	37	4,68	3-5-10-1	47	4,45	3-30-10-1	23	3,69
10-25-1	15	5,43	3-5-15-1	45	4,62	3-30-15-1	43	3,57
10-30-1	1	4,82	3-5-20-1	43	4,23	3-30-20-1	14	3,74
15-3-1	32	4,08	3-5-25-1	10	4,35	3-30-25-1	31	3,98
15-5-1	12	4,17	3-5-30-1	30	4,08	3-30-30-1	17	4,10
15-10-1	2	4,36						

Tabela 5.97 – Resultados para as arquiteturas X-X-1 e 3-X-X-1.

Arquitetura	Iteração	ΔP	Arquitetura	Iteração	ΔP	Arquitetura	Iteração	ΔP
5-3-5-1	4	4,85	5-20-25-1	13	2,74	10-10-15-1	46	0,80
5-3-10-1	16	4,64	5-20-30-1	1	2,87	10-10-20-1	23	0,88
5-3-15-1	10	4,31	5-25-5-1	24	3,17	10-10-25-1	44	0,57
5-3-20-1	25	4,15	5-25-10-1	43	3,09	10-10-30-1	25	0,62
5-3-25-1	27	4,38	5-25-15-1	13	3,11	10-15-5-1	41	0,66
5-3-30-1	21	4,26	5-25-20-1	20	3,27	10-15-10-1	21	0,68
5-5-5-1	26	4,12	5-25-25-1	25	3,12	10-15-15-1	17	0,53
5-5-10-1	35	4,09	5-25-30-1	16	3,08	10-15-20-1	38	0,74
5-5-15-1	50	4,11	5-30-5-1	35	3,18	10-15-25-1	11	0,82
5-5-20-1	33	3,96	5-30-10-1	28	3,13	10-15-30-1	14	0,74
5-5-25-1	23	3,62	5-30-15-1	40	3,38	10-20-5-1	13	0,66
5-5-30-1	21	3,61	5-30-20-1	33	3,26	10-20-10-1	26	0,55
5-10-5-1	23	3,75	5-30-25-1	7	3,43	10-20-15-1	17	0,33
5-10-10-1	25	3,51	5-30-30-1	40	3,37	10-20-20-1	24	0,48
5-10-15-1	26	3,41	10-3-5-1	46	2,31	10-20-25-1	3	0,57
5-10-20-1	5	3,38	10-3-10-1	17	2,24	10-20-30-1	44	0,42
5-10-25-1	47	3,54	10-3-15-1	34	2,20	10-25-5-1	39	0,65
5-10-30-1	14	3,51	10-3-20-1	8	2,12	10-25-10-1	7	0,56
5-15-5-1	16	3,30	10-3-25-1	44	1,81	10-25-15-1	46	0,49
5-15-10-1	30	3,28	10-3-30-1	22	1,62	10-25-20-1	25	0,75
5-15-15-1	13	3,08	10-5-5-1	12	1,36	10-25-25-1	15	0,62
5-15-20-1	32	3,01	10-5-10-1	13	1,54	10-25-30-1	39	0,60
5-15-25-1	19	3,23	10-5-15-1	37	1,41	10-30-5-1	32	0,53
5-15-30-1	43	2,93	10-5-20-1	28	1,28	10-30-10-1	42	0,71
5-20-5-1	20	2,75	10-5-25-1	13	1,20	10-30-15-1	27	0,67
5-20-10-1	50	2,62	10-5-30-1	3	1,15	10-30-20-1	40	0,79
5-20-15-1	48	2,43	10-10-5-1	10	1,17	10-30-25-1	14	0,84
5-20-20-1	31	2,57	10-10-10-1	26	0,86	10-30-30-1	47	0,78

Tabela 5.98 – Resultados para as arquiteturas 5-X-X-1 e 10-X-X-1.

Nas Figuras 5.38 a 5.41, foram plotados os desvios, para a etapa de aprendizado, da pressão do sistema para todas as arquiteturas analisadas. Conforme mencionado, a arquitetura ótima encontrada foi a configuração de quatro camadas 10-20-15-1, destacada na Figura 5.42.

Figura 5.38 – Resultados na etapa de aprendizado para arquiteturas X-X-1.

Fonte: Arquivo pessoal.

Figura 5.39 – Resultados na etapa de aprendizado para arquiteturas 3-X-X-1.

Fonte: Arquivo pessoal.

Figura 5.40 – Resultados na etapa de aprendizado para arquiteturas 5-X-X-1.

Fonte: Arquivo pessoal.

Figura 5.41 – Resultados na etapa de aprendizado para arquiteturas 10-X-X-1.

Fonte: Arquivo pessoal.

O melhor resultado depende da seleção de dados apropriados, da escolha de uma boa arquitetura e de variáveis capazes de gerar correlações adequadas e da predição de propriedades termodinâmicas. A interpretação do desvio relativo médio e do menor desvio relativo máximo levou à arquitetura 10-20-15-1 encontrada na décima sétima iteração, conforme destacado na Tabela 5.98.

Na etapa de aprendizado ou treinamento, foram utilizados 500 dados, os desvios relativos individuais entre os valores correlacionados e experimentais ficaram abaixo de 1,00% para a maioria dos dados. Para a pressão do sistema, 25 pontos apresentaram desvios relativos superiores a 1,50%, sendo 4,00% o maior valor. O desvio relativo médio para a pressão do sistema foi de 0,33%. Esses valores foram considerados precisos o suficiente para dizer que a RNA aprendeu com sucesso.

Na etapa de teste, foram empregados 70 pontos, que não foram utilizados na etapa de aprendizado. Na Tabela 5.99, são mostrados os desvios relativos de 16 pontos para a pressão do sistema testada pela arquitetura 10-20-15-1 da RNA. A configuração ótima reproduziu a pressão do sistema com desvios relativos abaixo de 1,50%, exceto em cinco casos, em que os desvios relativos ficaram abaixo de 4,76%. Na etapa de teste, o desvio relativo total médio para a pressão do sistema foi de 1,81%.

A Tabela 5.100 mostra os desvios relativos obtidos para a pressão do sistema predita, com a arquitetura 10-20-15-1, de 16 pontos dentre os 50 pontos utilizados na etapa de predição, que foram diferentes dos empregados nas etapas anteriores. A arquitetura ótima da RNA reproduziu a pressão do ELV de sistemas $CO_2 + LI$ com desvio relativo médio de 1,20% e o maior desvio relativo individual de 2,33%.

Sistema binário	Experimental		_	Experimental	Etapa Teste	% desvio
$CO_2 +$	<i>T</i> (K)	<i>x</i> ₁	DM	P (MPa)	P (MPa)	ΔP
[bmim][BF ₄]	313,13	0,1222		1,11	1,08	2,70
[emim][EtSO ₄]	333,13	0,3022		5,53	5,48	0,90
[emim][PF ₆]	313,12	0,4036		5,73	5,65	1,40
[emim][Cl]	363,15	0,2244		8,3	8,21	1,08
[emim][BF ₄]	313,15	0,0581		0,96	1,00	4,17
[hmim][BF ₄]	303,12	0,1759		1,11	1,08	2,70
[hmim][PF ₆]	343,15	0,4782		7,59	7,51	1,05
[omim][BF ₄]	323,14	0,4022		4,43	4,38	1,13
[emim][Cl]	343,16	0,1243		3,13	3,16	0,96
[bmim][BF ₄]	313,08	0,3035		3,18	3,21	0,94
[hmim][PF ₆]	313,13	0,0746		0,42	0,44	4,76
[emim][EtSO ₄]	333,10	0,1763		2,61	2,57	1,53
[hmim][BF4]	323,15	0,4587	•••••	6,39	6,44	0,78
[emim][BF ₄]	303,09	0,3753		5,69	5,74	0,88
[emim][PF ₆]	323,12	0,0264		1,28	1,30	1,56
[omim][BF4]	318,14	0,1253		0,83	0,85	2,41
					Desvio médio	1,81

Tabela 5.99 – Alguns desvios médios para a pressão do sistema na etapa de teste para a arquitetura 10-20-15-1.

Sistema binário	Experimental		-	Experimental	Etapa Predição	% desvio
$CO_2 +$	<i>T</i> (K)	<i>x</i> ₁	DM	P (MPa)	P (MPa)	ΔP
[omim][BF4]	328,16	0,4532		5,75	5,70	0,87
[emim][Cl]	353,13	0,2745		10,06	10,13	0,70
[bmim][BF4]	333,13	0,0334		0,43	0,42	2,33
[emim][EtSO ₄]	323,08	0,374		8,92	8,83	0,79
[emim][BF ₄]	313,14	0,0754		1,26	1,24	1,59
[hmim][BF ₄]	333,16	0,4243		6,76	6,65	0,75
[emim][PF ₆]	333,13	0,3262		5,98	6,04	1,00
[emim][EtSO ₄]	333,16	0,0507		1,08	1,06	1,85
[bmim][BF ₄]	313,11	0,4005		4,71	4,75	0,85
[hmim][PF ₆]	333,16	0,4112		5,56	5,52	0,72
[emim][BF ₄]	323,15	0,2231		4,46	4,42	0,90
[emim][PF ₆]	333,10	0,1762		2,23	2,21	0,90
[omim][BF ₄]	328,11	0,1746		1,49	1,47	1,34
[emim][Cl]	363,15	0,0742		2,03	2,05	0,99
[hmim][BF ₄]	333,09	0,1023		1,12	1,14	1,79
[hmim][PF ₆]	343,13	0,0986		1,08	1,10	1,85
				-	Desvio médio	1,20

Tabela 5.100 – Alguns desvios médios para a pressão do sistema na etapa de predição para a arquitetura 10-20-15-1.

5.3.4 Modelagem termodinâmica versus simulação termodinâmica

Nas Figuras 5.42 a 5.44, são mostrados os resultados do ELV de sistemas $CO_2 + LI$, [emim][BF4], [emim][EtSO4] e [hmim][BF4], para as três temperaturas experimentais. Apesar da semelhança entre os resultados das EdEs e das RNA, o grande diferencial é o tempo de processamento. Enquanto a modelagem termodinâmica necessita do ajuste dos parâmetros de interação binária para cada sistema em diversas condições de temperatura, a simulação termodinâmica realizada com redes neurais artificiais e descritores moleculares envolve os dados de todos os sistemas binários de uma só vez. Figura 5.42 – Pontos de bolha experimentais, pressões de bolha das EdEs PC-SAFT e CPA e das RNA do sistema CO₂ + [emim][BF₄].

Fonte: Arquivo pessoal.

- Legenda: Dados experimentais a 303, 15 K (•); 313,15 K (•); 323,15 K (•); Modelagem termodinâmica: PC-SAFT (----); CPA (-----); Simulação termodinâmica: RNA, arquitetura 10-20-15-1 (-----).
- Figura 5.43 Pontos de bolha experimentais, pressões de bolha das EdEs PC-SAFT e CPA e das RNA do sistema CO₂ + [emim][EtSO₄].

Fonte: Arquivo pessoal.

Legenda: Dados experimentais a 303, 15 K (•); 313,15 K (•); 323,15 K (•); Modelagem termodinâmica: PC-SAFT (----); CPA (-----); Simulação termodinâmica: RNA, arquitetura 10-20-15-1 (-----).

Figura 5.44 – Pontos de bolha experimentais, pressões de bolha das EdEs PC-SAFT e CPA e das RNA do sistema CO₂ + [hmim][BF₄].

Legenda: Dados experimentais a 303, 15 K (•); 313,15 K (•); 323,15 K (•); Modelagem termodinâmica: PC-SAFT (----); CPA (-----); Simulação termodinâmica: RNA, arquitetura 10-20-15-1 (-----).

A comparação do comportamento de fases de sistemas binários envolvendo CO₂ e LIs foi realizada em relação ao desempenho entre a modelagem (EdEs + abordagem ϕ - ϕ e método Bolha P) e simulação (RNA + DM) termodinâmicas.

Com o modelo de RNA usado para prever o ponto de bolha usando descritores moleculares, os resultados, para a arquitetura 10-20-15-1, deram uma concordância geral entre os valores experimentais e os da predição dos dados termodinamicamente consistentes do ELV. Com esta configuração, os resultados de teste e de predição são muito próximos dos dados experimentais, sendo que os desvios relativos médios para a pressão de bolha foram 1,81% e 1,20%, respectivamente. Embora os resultados da simulação termodinâmica sejam muito semelhantes aos da modelagem termodinâmica, a grande diferença reside no tempo de processamento computacional, além de não precisar da otimização dos parâmetros de interação binária.

6 CONCLUSÕES

Com o estudo do equilíbrio de fases de sistemas formados por substâncias mais simples, os aparatos experimentais foram capazes de reproduzir com confiabilidade dados publicados servindo como validação tanto dos equipamentos recém adquiridos, quanto dos procedimentos experimentais adotados no laboratório. Os dados experimentais dos sistemas de validação atenderam aos critérios dos testes de qualidade utilizados e a modelagem produziu resultados satisfatórios. Com a metodologia experimental validada, foi realizado o estudo experimental e computacional do comportamento de fases envolvidos em processos sustentáveis, como a captura de CO_2 e a purificação de bioálcoois.

Os métodos utilizados na obtenção das propriedades críticas e dos parâmetros de componentes puros dos LIs para as EdEs geraram boas predições ao se avaliar que as correlações encontradas para os dados experimentais foram satisfatórias.

6.1 ELV A BAIXAS PRESSÕES

Os sistemas água + etanol + LI geraram resultados satisfatórios do ponto de vista experimental e computacional, uma vez que todos os dados experimentais atenderam aos critérios de consistência termodinâmica nas condições propostas, significando que o procedimento experimental desde a calibração até as medições do equilíbrio de fase foi adequado. A modelagem termodinâmica, adotando a abordagem γ - ϕ e o método de Bolha T, mostrou eficácia, uma vez que os desvios encontrados com a EdE PR-TV-CG foram levemente menores dos encontrados com o modelo NRTL.

6.2 ELV A ALTAS PRESSÕES

Os resultados encontrados para o estudo dos sistemas binários do ELV a altas pressões permitiram estabelecer relações entre a solubilidade do CO_2 e as características estruturais dos LIs e condições experimentais. O aumento do radical alquila na cadeia carbônica do cátion aumentou a capacidade do LI solubilizar o dióxido de carbono. A influência dos ânions demonstrou uma dependência às condições do sistema, em que o ânion etilsulfato permite uma solubilidade de CO_2 ligeiramente maior até pressões próximas de 6,0 MPa, quando o comportamento se inverte e o ânion tetrafluoroborato passa a favorecer significativamente a captura de CO_2 . O aumento da temperatura mostrou uma leve redução da solubilidade, quando a pressão foi mantida constante. Já pressões mais elevadas influenciaram positivamente na solubilidade. No geral, o [emim][BF4] apresentou a menor capacidade de captura de CO₂ e as condições do sistema influenciaram os demais LIs, em que, a pressões e temperaturas mais baixas, o [emim][EtSO4] apresentou a maior solubilidade, enquanto o [hmim][BF4] seria mais capaz de solubilizar CO₂ a pressões e temperaturas mais altas.

Essa análise foi realizada após todos os dados serem considerados termodinamicamente consistentes pelo teste de área, o que mostrou que o método experimental sintético-estático foi adequado. Os resultados da modelagem termodinâmica, utilizando o método Bolha P e a abordagem ϕ - ϕ , permitem concluir que as EdEs PC-SAFT e CPA foram similarmente capazes de correlacionar os dados.

6.3 ELL

No ELL, o estudo dos sistemas ternários permitiu concluir que os três LIs possuem capacidade de atuarem como agente extrator do 1-butanol em soluções aquosas pela análise dos valores encontrados para a seletividade.

O método de ponto de névoa se mostrou adequado para o estudo e a qualidade dos dados foi fundamental para a obtenção das curvas de calibração para encontrar as composições das fases em equilíbrio após cada experimento. Todos os dados atenderam aos critérios do teste de qualidade proposto e a modelagem termodinâmica utilizando a abordagem γ - γ mostrou que a EdE PR-TV-CG é ligeiramente melhor do que o modelo NRTL na correlação dos dados a partir dos desvios calculados.

6.4 SIMULAÇÃO TERMODINÂMICA

O uso das RNA com uma seleção de DM mostrou ser tão eficaz quanto os modelos termodinâmicos empregados para os sistemas binários voltados para a captura de CO₂ com o diferencial no tempo de processamento dos dados, porém para que a qualidade dos resultados fosse assegurada uma grande quantidade de dados experimentais distribuídos aleatoriamente entre as planilhas utilizadas foi necessária para que a etapa de aprendizado gerasse o modelo matemático com os melhores desvios possíveis

REFERÊNCIAS

ABRAMS, D. S.; PRAUSNITZ, J. M. Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. **AIChE J.**, v. 21, p. 116–128, 1975.

AKI, S. N. V. K.; MELLEIN, B. R.; SAURER, E. M.; BRENNECKE, J. F. High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids. **J. Phys. Chem. B**, v. 108, p. 20355–20365, 2004.

ALDERS, L. Liquid-Liquid Extraction: Theory and laboratory practice. 2nd ed. Amsterdam: Elsevier Publishing Company, 1959. 209p.

ALVAREZ, V. H.; AZNAR, M. Application of a thermodynamic consistency test to binary mixtures containing an ionic liquid. **The Open Thermodynamics Journal**, v. 2, p. 25–38, 2008.

AMINABHAVI, T. M.; BANERJEE, K. Density, viscosity, refractive index, and speed of sound in binary mixtures of acrylonitrile with methyl acetate, ethyl acetate, n -propyl acetate, n -butyl acetate, and 3-methylbutyl-2-acetate in the temperature interval (298.15–308.15) K. J. Chem. Eng. Data, v. 43, p. 514–518, 1998.

ARCE, P.; AZNAR, M. Modeling of binary and ternary mixture critical lines using non-cubic and cubic equations of state. **J. Supercrit. Fluid.**, v. 42, p. 1–26, 2007.

ARCE, P.F.; VIEIRA, N.F.; IGARASHI, E.M.S. Thermodynamic modeling and simulation of biodiesel systems at supercritical conditions. **Ind. Eng. Chem. Res.**, v. 57, p. 751–767, 2018.

ARCE, P. F.; VILELLA, G. A.; VALDERRAMA, J. O. Prediction of critical pressure of ionic liquids (imidazolium) utilizing artificial neural networks. In: IBEROAMERICAN MEETING ON IONIC LIQUIDS, 5., 2017, Santos, Brasil.

BARKER, J. A.; HENDERSON, D. Perturbation theory and equation of state for pure fluids: the square-well potential. **J. Chem. Phys.**, v. 47, p. 2856–2861, 1967.

BLANCHARD, L. A.; GU, Z.; BRENNECKE, J. F. High-pressure phase behavior of ionic liquid/CO₂ systems. **J. Phys. Chem. B**, v. 105, p. 2437–2444, 2001.

BOSE, N.K.; LIANG, P. Neural networks fundamentals with graphs, algorithms, and applications. New York: McGraw-Hill Series in Electrical and Computer Engineering; The McGraw-Hill Companies, 1996. 512p.

BRANCO, L. C. Líquidos iónicos: aplicações e perspectivas futuras. **Química**, v. 139, p. 15–22, 2015.

BRIGNOLE, E.; PEREDA, S. **Phase Equilibrium Engineering**. Included in Series: Supercritical Fluid Science and Technology. Elsevier, 2013.

CALVAR, N.; GONZÁLEZ, B.; GÓMEZ, E.; DOMÍNGUEZ, A. Vapor–liquid equilibria for the ternary system ethanol + water + 1-ethyl-3-methylimidazolium ethylsulfate and the corresponding binary systems containing the ionic liquid at 101.3 kPa. **J. Chem. Eng.**, v. 53, p. 820–825, 2008.

CARNITI, P.; CORI, L.; RAGAINI, V. A critical analysis of the Hand and Othmer-Tobias correlations. **Fluid Phase Equilibr.**, v. 2, p. 39–47, 1978.

CARVALHO, P.; ALVAREZ, V. H.; MARRUCHO, I. M.; AZNAR, M.; COUTINHO, J. A. P. High pressure phase behavior of carbon dioxide in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-butyl-3-methylimidazolium dicyanamide ionic liquids. **J. Supercrit. Fluid.**, v. 50, p. 105–111, 2009.

CHAPMAN, W. G.; GUBBINS, K. E., JACKSON, G.; RADOSZ, M. New reference equation of state for associating liquids. **Ind. Eng. Chem. Res.**, v. 29, p. 1709–1721, 1990.

CHAPMAN, W. G.; JACKSON, G.; GUBBINS, K. E. Phase equilibria of associating fluids: chain molecules with multiple bonding sites. **Mol. Phys.**, v. 65, p. 1057–1079, 1988.

CHO, C. W.; PHAM, T. P. T.; ZHAO, Y.; STOLTE, S.; YUN, Y.-S. Review of the toxic effects of ionic liquids, **Sci. Total Environ.**, v. 786, p. 147309, 2021.

CONSONNI, V.; TODESCHINI, R.; PAVAN, M. Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the Novel 3D Molecular Descriptors. J. Chem. Inf. Comp. Sci., v. 42, n. 3, p. 682–692, 2002.

CUNICO, L. Modelling of phase equilibria and related properties of mixtures involving lipids. 2015. 240p. Ph.D. (Thesis). Kgs. Lyngby: Danmarks Tekniske Universitet (DTU). Dinamarca, January 2015.

DIPPR Information and Data Evaluation Manager, version 1.2.0; AIChE, 2000.

DOHRN, R.; PEPER, S.; FONSECA, J.M.S. High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2000–2004). Fluid Phase Equilibr., v. 288, p. 1–54, 2010.

DOMANSKA, U.; KROLIKOWSKI, M. Extraction of butan-1-ol from water with ionic liquids at T = 308.15 K. **J. Chem. Thermodin.**, v. 53, p. 108–113, 2012.

DONG, K.; LIU, X.; DONG, H.; ZHANG, X.; ZHANG, S. Multiscale studies on ionic liquids. **Chem. Rev.**, v. 117, p. 6636–6695, 2017.

EGOROVA, K. S.; GORDEEV, E. G.; ANANIKOV, V. P. Biological activity of ionic liquids and their application in pharmaceutics and medicine. **Chem. Rev.**, v. 117, p. 7132–7189, 2017.

GE, Y.; ZHANG, L.; YUAN, X.; GENG, W.; JI, J. Selection of ionic liquids as entrainers for separation of (water + ethanol). J. Chem. Thermodyn., v. 40, p. 1248–1252, 2008.

GMEHLING, J.; LI, J.; SCHILLER, M. A modified UNIFAC model 2: Present parameter matrix and results for different thermodynamic properties. **Ind. Eng. Chem. Res.**, v. 32, p. 178–193, 1993.

GONÇALVES, A. R. P.; PAREDES, X.; CRISTINO, A. F.; SANTOS, F. J. V.; QUEIRÓS, C. S. G. P. Ionic liquids - A review of their toxicity to living organisms, **Int. J. Mol. Sci.**, v. 22, 5612, 2021.

GRACZOVA, E.; STELTENPOHL, P. VLE measurement of binary systems containing imidazolium ionic liquids and water or ethanol. **Fluid Phase Equilibr.**, v. 556, p. 113400, 2022.

GRISWOLD, J.; BUFORD, C. B. Separations of synthesis mixtures. Vapor-liquid equilibria of acetone – methanol – water. **Ind. Eng. Chem.**, v. 41, p.2347–2351, 1949.

GROSS, J.; SADOWSKI, G. Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains. **Fluid Phase Equilibr.**, v. 168, p. 183–199, 2000.

GROSS, J.; SADOWSKI, G. Application of the Perturbed-Chain SAFT equation of state to associating systems. **Ind. Eng. Chem. Res.**, v. 41, p. 5510–5515, 2002.

GROSS, J.; SADOWSKI, G. Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. **Ind. Eng. Chem. Res.**, v. 40, p. 1244–1260, 2001.

HA, S. H.; MAI, N. L.; KOO, Y. M. Butanol recovery from aqueous solution into ionic liquids by liquid–liquid extraction. **Process Biochem.**, v. 45, p. 1899–1903, 2010.

HAGHTALAB, A.; KHEIRI, A. High pressure measurement and CPA equation of state for solubility of carbon dioxide and hydrogen sulfide in 1-butyl-3-methylimidazolium acetate. J. Chem. Thermodyn., v. 89, p. 41–50, 2015.

HALLET, J. P.; WELTON, T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2, **Chem. Rev.**, v. 111, p. 3508–3576, 2011.

HERRAEZ, J. V.; BELDA, R. Refractive indices, densities and excess molar volumes of monoalcohols + water. **J. Solution Chem.**, v. 35, p. 1315–1328, 2006.

HIZADDIN, H. F.; HADJ-KALI, M. K.; ALNASHEF, I. M.; MJALLI, F. S.; HASHIM, M. A. Prediction of CO₂ solubility in ionic liquids using the PSRK model. **J. Supercrit. Fluid.**, v. 100, p. 184–193, 2015.

HOLBREY, J. D.; SEDDON, K. R. Ionic Liquids, Clean Prod. Proc., v. 1, p. 223–236, 1999.

HUANG, S. H.; RADOSZ, M. Equation of state for small, large, polydisperse, and associating molecules. **Ind. Eng. Chem. Res.**, v. 29, p. 2284–2294, 1990.

IBRAHIM, M. H.; HAYYAN, M.; HASHIM, M. A.; HAYYAN, A. The role of ionic liquids in desulfurization of fuels: a review. **Renew. Sust. Energ. Rev.**, v. 76, p. 1534–1549, 2017.

IGARASHI, E. M. S.; DOS SANTOS, G. L.; CARVALHO, F. D. C.; FREIRE, N. V.; ARCE, P. F. Green capturing of greenhouse gas (CO₂) by ionic liquids. Experimental measurement, consistency and modeling. In: IBEROAMERICAN CONFERENCE ON PHASE EQUILIBRIA AND FLUID PROPERTIES FOR PROCESS DESIGN (EQUIFASE), 12.; CONGRESSO BRASILEIRO DE TERMODINÂMICA APLICADA (CBTermo), 11., Campinas, Brasil, 2022.

IGLESIAS, M.; ORGE, B.; MARINO, G; TOJO, J. Vapor-Liquid Equilibria for the Ternary System Acetone +Methanol + Water at 101.325 kPa. J. Chem. Eng. Data., v. 44, p. 661–665, 1999.

IGLESIAS, M.; ORGE, B.; TOJO, J. Refractive indices, densities and excess properties on mixing of the systems acetone + methanol + water and acetone + methanol + 1-butanol at 298.15K. Fluid Phase Equilibr., v. 126, p. 203–223, 1996.

JACKSON, P. L.; WILSAK, R. A. Thermodynamic consistency tests based on the Gibbs-Duhem equation applied to isothermal, binary vapor-liquid equilibrium data: data evaluation and model testing. **Fluid Phase Equilibr.**, v. 103, p. 155–197, 1995.

JONASSON, A.; PERSSON, O.; FREDENSLUND, A. High Pressure Solubility of Carbon Dioxide and Carbon Monoxide in Dimethyl Ether. J. Chem. Eng. Data, v. 40, 296–300, 1995.

KESKIN, S.; KAYRAK-TALAY, D.; AKMAN, U.; HORTAÇSU, O. A review of ionic liquids towards supercritical fluid applications. **J. Supercrit. Fluid.**, v. 43, p. 150–180, 2007.

KODE SRL. Dragon (software for molecular descriptor calculation), version 7.0, 2016. Disponível em: http://chm.kode-solutions.net. Acesso em: 9 jun. 2022.

KONTOGEORGIS, G. M.; MICHELSEN, M. L.; FOLAS, G. K.; DERAWI, S.; VON SOLMS, N.; STENBY, E. H. Ten years with the CPA (cubic-plus-association) equation of state. Part 1. Pure compounds and self-associating systems. **Ind. Eng. Chem. Res.**, v. 45, p. 4855–4868, 2006a.

KONTOGEORGIS, G. M.; MICHELSEN, M. L.; FOLAS, G. K.; DERAWI, S.; VON SOLMS, N.; STENBY, E. H. Ten years with the CPA (cubic-plus-association) equation of state. Part 2. Cross-associating and multicomponent systems. **Ind. Eng. Chem. Res.**, v. 45, p. 4869–4878, 2006b.

KONTOGEORGIS, G. M; VOUTSAS, E. C.; YAKOUMIS, I. V.; TASSIOS, D. P. An equation of state for associating fluids. **Ind. Eng. Chem. Res.**, v. 35, p. 4310–4318, 1996.

LAURSEN, T.; RASMUSSEN, P.; ANDERSEN, S. I. VLE and VLLE Measurements of Dimethyl Ether Containing Systems. J. Chem. Eng. Data, v. 47, p. 198–202, 2002.

LEE, J. W.; PARK, S. B.; LEE, H. Densities, surface tensions, and refractive indices of the water + 1,3-propanediol system. J. Chem. Eng. Data, v. 45, p. 166–168, 2000.

LEI, Z.; CHEN, B.; KOO, Y. M.; MACFARLANE, D. R. Introduction: ionic liquids. Chem. Rev., v. 117, p. 6633–6635, 2017.

LEI, Z.; DAI, C.; ZHU, J.; CHEN, B. Extractive distillation with ionic liquids: A review. **AIChE J.**, v. 60, p. 3312–3329, 2014.

LEI, Z.; YUAN, J.; ZHU, J. Solubility of CO₂ in propanone, 1-ethyl-3-methylimidazolium tetrafluoroborate and their mixtures. **J. Chem. Eng. Data**, v. 55, p. 4190–4194, 2010.

LEVENBERG, K. A method for the solution of certain non-linear problems in least squares. **Q. Appl. Math.**, v. 2, p. 164–168, 1944.

LIVINGSTONE, D. J.; MANALLACK, D. T.; TETKO, I. V. Data modelling with neural networks: Advantages and limitations. **J. Comput. Aid. Mol. Des.**, v. 11, p. 135–142, 1997.

LONEY, N. W.; SIMON, L.; GAO, L. Trends in the applications of neural network in chemical process modelling. **Proceedings of the Indian National Science Academy**, v. 69, p. 285–299, 2003.

MARCILLA, A.; RUIZ, F.; GARCÍA, A. N. Liquid-liquid-solid equilibria of the quaternary system water-ethanol-acetone-sodium chloride at 25 °C. **Fluid Phase Equilibr.**, v. 112, p. 273–289, 1995.

MARQUARDT, D. W. An algorithm for least-squares estimation of nonlinear parameters. **J. Soc. Ind. Appl. Math.**, v. 11, n. 2, p. 431–441, 1963.

MARTINEZ-REINA, M.; AMADO-GONZALEZ, E.; GOMEZ-JARAMILLO, W. Experimental study and modeling of the refractive indices in binary and ternary mixtures of water with methanol, ethanol and propan-1-ol at 293.15 K. J. Solution Chem., v. 44, p. 206–222, 2015.

MARSH, K. N.; BOXALL, J. A.; LICHTENTHALER, R. Room temperature ionic liquids and their mixtures – a review. **Fluid Phase Equilibr.**, v. 219, p. 93–98, 2004.

MICHELSEN, M. L.; MOLLERUP, J. M. **Thermodynamic models:** fundamentals & computational aspects. 2nd ed. Holte: Tie-Line Publications, 2007. 382p.

MJALLI, F. S.; AL-SHEH, S.; ALFADALA, H. E. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. **J. Environ. Manage.**, v. 83, p. 329–338, 2007.

MOHAMMADI, A. H.; ESLAMIMANESH, A.; RICHON, D. Wax solubility in gaseous system: thermodynamic consistency test of experimental data. **Ind. Eng. Chem. Res.**, v. 50, p. 4731–4740, 2011.

MORTON, M. D.; HAMER, C. K. Ionic liquids – The beginning of the end or the end of the beginning? – A look at the life of ionic liquids through patent claims. **Sep. Purif. Technol.**, v. 196, p. 3–9, 2018.

MOTGHARE, K. A.; SHENDE, D. Z.; WASEWAR, K. L. Butanol recovery using ionic liquids as green solvents. J. Chem. Technol. Biot., v. 97, p. 873–884, 2022.

NASR, M. S.; MOUSTAFA, M. A. E.; SEIF, H. A. E.; KOBROSY, G. E. Application of artificial neural network (ANN) for the prediction of EL-AGAMY wastewater treatment plant perfomance-EGYPT. Alexandria Engineering Journal, v. 51, p. 37–43, 2012

OLIVEIRA, H. N. M. Determinação de dados de equilíbrio líquido-vapor para sistemas hidrocarbonetos e desenvolvimento de uma nova célula dinâmica. 2003. 163p. Tese (Doutorado em Engenharia Química) Universidade Federal do Rio Grande do Norte, Natal, 2003.

PALAIOLOGOU, M. M. Densities, viscosities, and refractive indices of some alkyl esters with 4-chlorotoluene systems at (293.15, 298.15, and 303.15) K. J. Chem. Eng. Data, v. 41, p. 1036–1039, 1996.

PAUCAR, N. E.; KIGGINS, P.; BLAD, B.; DE JESUS, K.; AFRIN, F.; PASHIKANTI, S.; SHARMA, K. Ionic liquids for the removal of sulfur and nitrogen compounds in fuels: A review, **Environ. Chem. Lett.**, v. 19, p. 1205–1228, 2021.

PENG, D. Y.; ROBINSON, D. B. A new two-constant equation of state. Ind. Eng. Chem. Fund., v. 15, n. 1, p. 59–64, 1976.

PETKOVIC, M.; SEDDON, K. R.; REBELO, L. P. N.; PEREIRA, C. S. Ionic liquids: A pathway to environmental acceptability, **Chem. Soc. Rev.**, v. 40, p. 1383–1403, 2011.

PLECHKOVA, N. V.; SEDDON, K. R. Applications of ionic liquids in the chemical industry. **Chem. Soc. Rev.**, Belfast, v. 37, p. 123–150, 2007.

PRAUSNITZ, J. M.; LICHTENTHALER, R. N.; AZEVEDO, E. G. Molecular thermodynamics of fluid phase equilibria. 3rd ed. Englewood Cliffs: Prentice Hall, 1999. 860p.

QIAO, Y.; MA, Y.; HUO, Y.; MA, P.; XIA, S. A group contribution method to estimate the densities of ionic liquids. J. Chem. Thermodyn., v. 42, p. 852–855, 2010.

RENON, H.; PRAUSNITZ, J. M. Local composition in thermodynamics excess functions for liquid mixtures. **AIChE J.**, v. 14, p. 135–144, 1968.

RESA, J. M.; GOENAGA, J. M.; IGLESIAS, M.; GONZALEZ-OLMOS, R.; POZUELO, D. Liquid-liquid equilibrium diagrams of ethanol + water + (ethyl acetate or 1-pentanol) at several temperatures. **J. Chem. Eng. Data**, v. 51, p. 1300–1305, 2006.

RIDDICK, J.; BUNGER, W.; SAKANO, T. K. **Organic solvents:** physical properties and methods of purification. 4th ed. New York: Wiley-Interscience, 1986. 1344p.

ROBLES, P. A.; LOURENÇO, N. I.; IGARASHI, E. M. S.; SOUSA, M. N.; ARCE, P. F. Thermodynamic behavior of the phase equilibrium of ethyl acetate + ethanol + water systems at atmospheric pressure: Experiment and modeling. **J. Chem. Eng. Data**, v. 65, p. 1402–1410, 2020.

ROGERS, R. D.; SEDDON, K. R. Ionic liquids – solvents of the future? Science, v. 302, p. 792–793, 2003.

ROTREKL, J.; STORCH, J.; VELISEK, P.; SCHROER, W.; JACQUEMIN, J.; WAGNER, Z.; HUSSON, P.; BENDOVA, M. Liquid phase behaviour ins systems of 1-butyl-3-alkylimidazolium bis{(trifluoromethyl)sulfonyl}imide ionic liquids with water: influence of the structure of the C5 alkyl substituent. **J. Solution Chem.**, v. 46, p. 1456–1474, 2017.

SAKINA; KHAN, A. S.; NASRULLAH, A.; ULLAH, F.; MUHAMMAD, N.; KUBRA, S.; DIN, I. U.; MUTAHIR, Z. Effect of imidazolium's ionic liquids with different anions and alkyl chain length on phytotoxicity and biochemical analysis of maize seedling, **J. Mol. Liq.**, v. 321, 114491, 2021.

SANDLER, S. I. Chemical, biochemical and engineering thermodynamics. 4th ed. New Jersey: John Wiley and Sons, 2006. 960p.

SCHMID, B; GMEHLING, J. Revised parameters and typical results of the VTPR group contribution equation state. Fluid Phase Equilibr., v. 317, p. 110–126, 2012.

SEDDON, K. R. Ionic liquids for clean technology. J. Chem. Technol. Biot., v. 68, p. 351–356, 1997.

SHARIATI, A.; GUTKOWSKI, K.; PETERS, C. J. Comparison of the phase behaviour of some selected binary systems with ionic liquids. **AIChE J.**, v. 51, n. 5, p. 1532–1540, 2005.

SHIMOYAMA, Y.; IWAI, Y.; ABETA, T.; ARAI, Y. Measurement and correlation of vapor– liquid equilibria for ethanol + ethyl laurate and ethanol + ethyl myristate systems near critical temperature of ethanol. **Fluid Phase Equilibr.**, v. 264, p. 228–234, 2008.

SHELDON, R. A. Metrics of green chemistry and sustainability: Past, present, and future. **ACS** Sustain. Chem. Eng., v. 6, p. 32–48, 2018.

SMITH, J. M.; VAN NESS, H. C.; ABBOTT, M. M. Introdução à termodinâmica da engenharia química. 7th ed. Rio de Janeiro: LTC – Livros Técnicos e Científicos Editora, 2007. 640p.

STUART, G. R.; DARIVA, C.; OLIVEIRA, J. V. High-pressure vapor-liquid equilibrium data for CO₂-orange peel oil. **Braz. J. Chem. Eng.**, v. 17, p. 181–189, 2000.

TASKINEN, J.; YLIRUUSI, J. Prediction of physicochemical properties based on neural network modelling. **Adv. Drug Deliver. Rev.**, v. 55, n. 9, p. 1163–1183, 2003.

TODESCHINI, R.; CONSONNI, V. Handbook of molecular descriptors. Weinheim: Wiley-VCH, 2000.

TREYBAL, R.E. Mass Transfer Operations. 3rd ed. New York: McGraw-Hill, 1980. 800p.

TSAI, J. C.; CHEN, Y. P. Application of a volume-translated Peng-Robinson equation of state on vapor-liquid equilibrium calculations. **Fluid Phase Equilibr.**, v. 145, p. 193–215, 1998.

TSANAS, C.; TZANI, C.; PAPADOPOULOS, A.; DETSI, A.; VOUTSAS, E. Ionic liquids as entrainers for the separation of the ethanol/water system. **Fluid Phase Equilibr.**, v. 379, p. 148–156, 2014.

TSANG, C. Y.; STREETT, W. B. Vapor-liquid equilibrium in the system carbon dioxide/dimethyl ether. **J. Chem. Eng. Data**, v. 26, p. 155–159, 1981.

VALDERRAMA, J. O.; FORERO, L. A. An analytical expression for the vapor pressure of ionic liquids based on an equation of state. **Fluid Phase Equilibr.**, v. 317, p. 77–83, 2012.
VALDERRAMA, J. O.; FORERO, L. A.; ROJAS, R. E. Critical properties and normal boiling temperature of ionic liquids. Update and a new consistency test. **Ind. Eng. Chem. Res.**, v. 51, p. 7838–7844, 2012.

______. Extension of a group contribution method to estimate the critical properties of ionic liquids of high molecular mass. **Ind. Eng. Chem. Res.**, v. 54, p. 3480–3487, 2015.

VALDERRAMA, J. O.; REÁTEGUI, A.; SANGA, W. W. Thermodynamic consistency test of vapor–liquid equilibrium data for mixtures containing ionic liquids. **Ind. Eng. Chem. Res.**, v. 47, p. 8416–8422, 2008.

VALDERRAMA, J. O.; ROBLES, P. A. Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids. **Ind. Eng. Chem. Res.**, v. 46, p. 1338–1344, 2007.

VALDERRAMA, J. O.; ROJAS, R. E. Critical properties of ionic liquids. Revisited. **Ind. Eng. Chem. Res.**, v. 48, p. 6890–6900, 2009.

______. Mass connectivity index, a new molecular parameter for the estimation of ionic liquids properties. **Fluid Phase Equilibr.**, v. 297, p. 107–112, 2010.

VALDERRAMA, J. O.; SANGA, W. W; LAZZÚS, J. A. Critical properties, normal boiling temperatures, and acentric factors of another 200 ionic liquids. **Ind. Eng. Chem. Res.**, v. 47, p. 1318–1330, 2008.

VEKARIYA, R. L. A review of ionic liquids: applications towards catalytic organic transformations. J. Mol. Liq., v. 227, p. 44–60, 2017.

VENERAL, J. G. Equilíbrio líquido-vapor a baixas pressões de ésteres de ácidos graxos e de sistemas relacionados à produção de biodiesel. 2010. 92p. Dissertação (Mestrado em Engenharia de Alimentos) Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, 2010.

VERHOEYE, L. A.; DE SCHEPPER, H. The vapour-liquid equilibria of the binary, ternary and quaternary systems formed by acetone, methanol, propan-2-ol, and water. J. Chem. Technol. Biot., v. 23, p. 607–619, 1973.

VERMA, R.; NAIK, P. K.; DIAZ, I.; BANERJEE, T. Separation of low molecular weight alcohols from water with deep eutectic solvents: Liquid-liquid equilibria and process simulations. **Fluid Phase Equilibr.**, v. 533, p. 112949, 2021.

VEZA, I.; SAID, M. F. M.; LATIFF, Z. A. Recent advances in butanol production by acetonebutanol-ethanol (ABE) fermentation. **Biomass Bioenerg.**, v. 144, p. 105919, 2021.

WANG, B.; QIN, L.; MU, T.; XUE, Z.; GUOHUA, G. Are ionic liquids chemically stable? **Chem. Rev.**, v. 117, p. 7113–7131, 2017.

WASEWAR, Kailas L. Chapter 12 - Biobutanol separation using ionic liquids as a green solvent. In: Gurunathan, Baskar (Ed.); Sahadevan, Renganathan (Ed.). **Biofuels and bioenergy:** A techno-economic approach. 1. ed. Amsterdam: Elsevier, 2022, p. 291–322,

WELTON, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. **Chem. Rev.**, v. 99, p. 2071–2083, 1999.

WISNIAK, J.; ORTEGA, J.; FERNÁNDEZ, L. A fresh look at the thermodynamic consistency of vapour-liquid equilibria data. **J. Chem. Thermodyn.**, v. 105, p. 385–395, 2017.

YADAV, S; SINGH, V.; MAHATA, C.; DAS, D. Optimization for simultaneous enhancement of biobutanol and biohydrogen production. **Int. J. Hydrogen. Energ.**, v. 46, p. 3726-3741, 2021.

ZAFARANI-MOATTAR, M. T.; SHEKAARI, H.; POURBAGHERIAN, E. Study of the liquid-liquid equilibrium for aqueous ternary systems containing choline bitartrate and 1-propanol or 2-propanol at different temperatures and their performances in acetaminophen separation and alcohols recovery. **Fluid Phase Equilibr.**, v.514, p. 112536, 2020.

ZENG, S.; ZHANG, X.; BAI, L.; ZHANG, X.; WANG, H.; WANG, J.; BAO, D.; LI, M.; LIU, X.; ZHANG, S. Ionic-liquid-based CO₂ capture systems: structure, interaction and process. **Chem. Rev.**, v. 117, p. 9625–9673, 2017.

APÊNDICE A

Tabela A.1 – Propriedades críticas e fator acêntrico estimados pelo método de contribuição de grupos de alguns líquidos iônicos utilizados em trabalhos produzidos.

Líquido iônico	MM (g/mol)	Т _b (К)	<i>T_c</i> (K)	P _c (bar)	ω
Acetato de 2-(2-hidroxietoxi)amônio	165,19	582,93	770,07	31,53	1,0138
Acetato de 2-hidroxietilamônio	121,14	514,75	699,22	40,85	0,9359
Acetato de 2-hidróxi-N-(2-hidroxietil)-N-etilmetilamina	179,22	653,91	828,74	29,61	1,3799
Acetato de Bis(2-hidroxietil)amônio	165,20	653,39	829,31	31,41	1,4044
Acetato de N-metil-2-hidroxietilamônio	135,16	538,33	715,92	32,89	0,9836
Acetato de Tri-(2-hidroxietil)amônio	209,24	768,97	946,10	28,15	1,7229
Bis(2,4,4-trimetilpentil)fosfinato de Trihexiltetradecilfosfônio	773,29	1374,94	1878,85	5,44	-0,1388
Bis(fluorosulfonil)imida de N,n-dietil-n-metil-n-propilamônio	310,37	701,94	1059,82	37,51	0,3186
Bis(trifluorometilsulfonil)imida de 1-butil-3-metilimidazólio	419,36	862,44	1269,93	27,28	0,3004
Bis(trifluorometilsulfonil)imida de N-butil-N-metilpirrolidínio	422,41	759,80	1093,10	23,93	0,3467
Bis(trifluorometilsulfonil)imida de N-heptil-N-metilpirrolidínio	464,49	901,94	1248,85	20,12	0,4549
Bis(trifluorometilsulfonil)imida de N-hexil-N-metilpirrolidínio	450,46	805,56	1123,32	20,95	0,4374
Bis(trifluorometilsulfonil)imida de N-nonil-N-metilpirrolidínio	492,54	947,70	1277,68	17,93	0,5475
Bis(trifluorometilsulfonil)imida de N-octil-N-metilpirrolidínio	478,51	851,32	1154,90	18,59	0,5299
Bis(trifluorometilsulfonil)imida de N-pentil-N-metilpirrolidínio	436,43	856,18	1221,93	22,86	0,3636
Bis(trifluorometilsulfonil)imida de N-propil-N-metilpirrolidínio	408,38	736,92	1078,45	25,74	0,3025
Bis(trifluorometilsulfonil)imida de Trihexiltetradecilfosfônio	764,01	1310,56	1586,73	8,40	0,8915 (continua)

Líquido iônico	MM (g/mol)	<i>Т</i> _b (К)	<i>T_c</i> (K)	P _c (bar)	ω
Brometo de Trihexiltetradecilfosfônio	563,77	1034,88	1256,59	8,10	0,8311
Cloreto de Trihexiltetradecilfosfônio	519,32	1006,15	1222,78	7,84	0,7947
Dicianamida de Trihexiltetradecilfosfônio	549,91	1231,08	1525,46	7,55	0,5822
Dicianamida de 1-butil-3-metilimidazólio	205,26	782,96	1035,84	24,08	0,8419
Dodecil-benzenosulfonato de Trihexiltetradecilfosfônio	809,36	1581,88	2067,80	6,22	0,1105
Etilsulfato de 1-etil-3-metilimidazólio	236,30	712,68	1067,49	39,93	0,3744
Formato de 2-(2-hidroxietoxi)amônio	151,16	478,25	645,64	36,13	0,9187
Formato de 2-hidroxietilamônio	107,11	410,07	571,30	48,99	0,8477
Formato de N-metil-2-hidroxietilamônio	121,14	433,65	589,88	38,07	0,8907
Hexafluorofosfato de 1-etil-3-metilimidazólio	256,13	508,82	674,01	19,26	0,7083
Hexafluorofosfato de 1-hexil-3-metilimidazólio	312,24	600,34	764,89	15,30	0,8697
Hidrogenossulfato de 1-etil-3-metilimidazólio	208,24	736,68	1073,84	56,85	0,6411
Lactato de 2-(2-hidroxietoxi)amônio	195,22	697,55	883,06	30,29	1,4074
Lactato de 2-hidroxietilamônio	151,16	629,37	812,65	38,87	1,3579
Lactato de 2-hidróxi-N-(2-hidroxietil)-N-etilmetilamina	209,24	768,53	946,69	28,49	1,7149
Lactato de Bis(2-hidroxietil)amônio	195,22	768,01	946,91	30,19	1,7485
Lactato de Tri-(2-hidroxietil)amônio	239,27	883,59	1071,75	27,01	1,9075
Tetrafluoroborato de 1-etil-3-metilimidazólio	197,97	449,46	596,23	23,28	0,8087
Tetrafluoroborato de 1-hexil-3-metilimidazólio	254,08	540,98	689,98	17,71	0,9625
Tetrafluoroborato de 1-octil-3-metilimidazólio	282,13	586,74	736,99	15,81	1,0287

Fonte: Arquivo pessoal. Nota: MM – Massa molar; T_b – Temperatura de ebulição; T_c – Temperatura crítica; P_c – Pressão crítica; ω – fator acêntrico.

APÊNDICE B

	ρ (g.cn	n⁻³)	η_D				
Substância	Experimental ^a	Literatura ^b	Experimental ^a	Literatura			
		T=293	,15 K ^a				
Acetato de etila	0,8997	0,8995	1,3718	1,3725°			
Etanol	0,7905	0,7903	1,3623	1,3620 ^d			
Água	0,9965	0,9965	1,3331	1,3330 ^d			
	$T = 303,15 \text{ K}^{a}$						
Acetato de etila	0,8882	0,8879	1,3678	1,3670 ^c			
Etanol	0,7812	0,7815	1,3578	1,3572 ^e			
Água	0,9921	0,9929	1,3316	1,3319 ^f			
		T = 308	3,15 K ^a				
Acetato de etila	0,8817	0,8817	1,3659	1,3657 ^g			
Etanol	0,7769	0,7769	1,3562	1,3559 ^e			
Água	0,9940	0,9909	1,3314	1,3313 ^f			

Tabela B.1 – Propriedades físicas do acetato de etila + etanol + água a 101,3 kPa^a.

Fonte: Arquivo pessoal.

Nota: ^a Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): u(T) = 0,01 K, u(P) = 0,01 kPa, U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴;

^b (DIPPR, 2000);

° (PALAIOLOGOU, 1996);

^d(MARTINEZ-REINA; AMADO-GONZALEZ; GOMEZ-JARAMILLO, 2015);

^e (HERRAEZ; BELDA, 2006);

^f (LEE; PARK; LEE, 2000);

^g (AMINABHAVI; BANERJEE, 1998).

Tabela B.2 – Curva binodal do sistema ternário acetato de etila (1) + etanol (2) + água (3).

	T = 293,15 K											
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	η_D	ρ (g.cm ⁻³)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	η_D	ρ (g.cm ⁻³)			
0,8734	0,0000	0,1266	1,3703	0,9061	0,2349	0,1645	0,6006	1,3648	0,9362			
0,8133	0,0248	0,1619	1,3702	0,9070	0,1916	0,1561	0,6523	1,3637	0,9423			
0,7548	0,0484	0,1968	1,3701	0,9079	0,1534	0,1459	0,7007	1,3618	0,9483			
0,6971	0,0705	0,2324	1,3699	0,9091	0,1162	0,1352	0,7486	1,3596	0,9542			
0,6409	0,0918	0,2673	1,3696	0,9104	0,0921	0,1204	0,7875	1,3567	0,9598			
0,6067	0,1042	0,2891	1,3694	0,9112	0,0682	0,1048	0,8270	1,3538	0,9654			
0,5727	0,1166	0,3107	1,3692	0,9121	0,0502	0,0872	0,8626	1,3515	0,9709			
0,5361	0,1302	0,3337	1,3689	0,9129	0,0322	0,0704	0,8974	1,3492	0,9763			
0,4527	0,1456	0,4017	1,3683	0,9181	0,0268	0,0524	0,9208	1,3458	0,9806			
0,3692	0,1617	0,4691	1,3676	0,9232	0,0225	0,0338	0,9437	1,3431	0,9849			
0,3250	0,1664	0,5086	1,3668	0,9267	0,0207	0,0166	0,9627	1,3402	0,9886			
								(continua)			

(conclusão)

				T = 30	03,15 K				
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	η_D	ρ (g.cm ⁻³)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	η_D	ρ (g.cm ⁻³)
0,2804	0,1722	0,5474	1,3660	0,9300	0,0188	0,0000	0,9812	1,3369	0,9923
0,8647	0,0000	0,1353	1,3676	0,9023	0,2752	0,1640	0,5608	1,3635	0,9289
0,8177	0,0145	0,1678	1,3675	0,9041	0,2450	0,1587	0,5963	1,3629	0,9332
0,7685	0,0318	0,1997	1,3674	0,9055	0,2134	0,1540	0,6326	1,3617	0,9374
0,7201	0,0521	0,2278	1,3673	0,9063	0,1677	0,1415	0,6908	1,3592	0,9448
0,6698	0,0752	0,2551	1,36/3	0,9067	0,1221	0,1281	0,7944	1,35/1	0,9524
0,6357	0,0922	0,2/21	1,36/2	0,9066	0,0972	0,1184	0,7844	1,3000	0,9570
0,5839	0,1092	0,3009	1,30/1	0,9084	0,0719	0,1081	0,8200	1,3518	0,9018
0,3291	0,1205	0,3300	1,3003	0,9110	0,0322	0,0882	0,8390	1,3479	0,9081
0,4755	0,1311	0,3934	1,3001	0,9130	0,0328	0,0091	0,0901	1,3443	0,9741
0,4207	0,1+20 0 1539	0,4303	1,3033	0,9105	0,0275	0,0304	0,9221 0.9467	1,3411	0,9780
0.3215	0,1584	0,4004 0.5201	1,3639	0,9253	0.0175	0.0000	0.9825	1,3366	0.9903
0,0210	0,1001		1,0007	T = 30)8 15 K			1,0000	
				1 – 5	<i>56,15</i> IX				
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	η_D	ρ (g.cm ⁻³)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	η_D	ρ (g.cm ⁻³)
0,8479	0,0000	0,1521	1,3655	0,8988	0,3043	0,1611	0,5346	1,3617	0,9249
0,8153	0,0137	0,1710	1,3656	0,8994	0,2688	0,1588	0,5724	1,3607	0,9293
0,7667	0,0323	0,2010	1,3659	0,9009	0,2325	0,1568	0,6107	1,3593	0,9339
0,7258	0,0528	0,2214	1,3655	0,9010	0,1963	0,1519	0,6518	1,3580	0,9390
0,6854	0,0733	0,2413	1,3652	0,9011	0,1600	0,1464	0,6936	1,3561	0,9443
0,6294	0,0928	0,2778	1,3651	0,9032	0,1179	0,1298	0,7523	1,3533	0,9526
0,5788	0,1098	0,3114	1,3649	0,9052	0,0756	0,1127	0,8117	1,3517	0,9610
0,5311	0,1254	0,3435	1,3648	0,9071	0,0418	0,0804	0,8777	1,3485	0,9718
0,4851	0,1402	0,3747	1,3649	0,9091	0,0292	0,0559	0,9149	1,3433	0,9786
0,4369	0,1476	0,4155	1,3650	0,9129	0,0225	0,0290	0,9485	1,3398	0,9852
0,3884	0,1554	0,4562	1,3638	0,9166	0,0202	0,0141	0,9657	1,3372	0,9887
0,3402	0,1638	0,4961	1,3632	0,9202	0,0179	0,0000	0,9821	1,3355	0,9920

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

		T = 29	93,15 K		
Coeficiente	Va	lor	Coeficiente	Va	lor
Coefficiente	η_D	ρ	coeffetence	η_D	ρ
C ₀₀	1,2680	0,9976	C ₃₁	-5023,2	-123,9611
C_{10}	8,8410	-0,1395	C ₂₂	-10475,0	-211,7184
C_{01}	1,2182	-0,2246	$c_{13}^{}$	-13061,0	-268,7023
C_{20}	-287,1156	-2,4065	c_{04}^{-1}	-2993,0	-46,6826
C_{11}	-106,9601	0,2731	C_{50}	-103,3187	2,1568
$C_{02}^{}$	-32,7736	-0,1158	c_{41}	1863,3	68,1160
<i>C</i> ₃₀	534,7233	7,2866	<i>C</i> ₃₂	7815,1	225,2147
<i>C</i> ₂₁	3105,6	56,0670	c_{23}^{-1}	17994,0	477,3556
c_{12}^{-1}	1847,4	8,9863	c_{14}^{-1}	19824,0	513,8056
<i>C</i> ₀₃	323,7202	5,6981	c_{05}	13563,0	404,4406
C_{40}	-158,7680	-7,0109	R^2	0,9999	0,9999
		T = 30)3,15 K		
Coeficiente	Va	lor	Coeficiente	Va	lor
	η_D	ρ		η_D	ρ
<i>C</i> ₀₀	1,4446	1,0009	C ₃₁	-191,2501	443,8046
<i>C</i> ₁₀	-6,1988	-1,0055	C ₂₂	2247,1	968,9369
<i>C</i> ₀₁	-3,4570	-0,3780	<i>c</i> ₁₃	5223,6	1360,6
<i>C</i> ₂₀	0,7206	24,3893	c_{04}	6191,5	370,4798
<i>C</i> ₁₁	185,3596	13,8494	c_{50}	23,2746	-38,2930
<i>C</i> ₀₂	65,0936	3,7950	c_{41}	245,9547	-260,7133
<i>C</i> ₃₀	43,2274	-81,5420	<i>c</i> ₃₂	-365,6634	-814,7200
<i>C</i> ₂₁	-238,7802	-204,3875	<i>c</i> ₂₃	-4226,5	-1797,0
<i>C</i> ₁₂	-1626,9	-263,9694	<i>C</i> ₁₄	-6485,4	-2237,3
<i>C</i> ₀₃	-908,2673	-26,8522	c_{05}	-13625,0	-1271,7
<i>C</i> ₄₀	-61,6306	96,1729	<i>R</i> ²	0,9995	0,9999
		T = 30)3,15 K		
Coeficiente	Va	lor	Coeficiente	Va	lor
	η_D	ρ		η_D	ρ
<i>C</i> ₀₀	1,3004	0,9878	C ₃₁	4379,0	-240,4432
<i>C</i> ₁₀	-2,6784	0,5033	C ₂₂	8584,2	-479,4999
c_{01}	-0,4717	-0,1619	<i>C</i> ₁₃	9419,6	-515,5127
<i>C</i> ₂₀	277,1276	-15,8710	c_{04}	7675,5	-174,1478
<i>C</i> ₁₁	-7,0322	-5,4484	c_{50}	-549,5035	23,8173
<i>C</i> ₀₂	63,5720	-1,9321	c_{41}	-2789,9	140,0808
<i>C</i> ₃₀	-1033,8	52,0510	<i>c</i> ₃₂	-7822,1	411,1139
<i>c</i> ₂₁	-1706,3	109,4494	<i>c</i> ₂₃	-14339,0	755,3662
<i>c</i> ₁₂	-1942,4	117,7231	<i>C</i> ₁₄	-16006,0	791,8831
<i>c</i> ₀₃	-723,9467	9,9249	<i>c</i> ₀₅	-19070,0	470,3013
C ₄₀	1304,2	-60,5048	R^2	0,9982	0,9999

Tabela B.3 – Coeficientes da curva de calibração do sistema acetato de etila + etanol + água.

Figura B.1 – Isolinhas do índice de refração (a) e da densidade (b) em função da composição para o sistema acetato de etila + etanol + água a 293,15 K.

Fonte: Arquivo pessoal.

Figura B.2 – Isolinhas do índice de refração (a) e da densidade (b) em função da composição para o sistema acetato de etila + etanol + água a 303,15 K.

Fonte: Arquivo pessoal.

Figura B.3 – Isolinhas do índice de refração (a) e da densidade (b) em função da composição para o sistema acetato de etila + etanol + água a 308,15 K.

					T = 293	,15 K				
N		Fase O	rgânica ((<i>L</i> ₁)			Fase .	Aquosa (<i>L</i> ₂)	
1	η_D	ρ (g.cm ⁻³)	$x_{1}^{L_{1}}$	$x_{2}^{L_{1}}$	$x_{3}^{L_{1}}$	η_D	ρ (g.cm ⁻³)	$x_{1}^{L_{2}}$	$x_{2}^{L_{2}}$	$x_{3}^{L_{2}}$
1	1,3681	0,9278	0,3634	0,1604	0,4762	1,3535	0,9699	0,0698	0,0945	0,8357
2	1,3695	0,9183	0,4751	0,1538	0,3711	1,3510	0,9767	0,0401	0,0758	0,8842
3	1,3699	0,9168	0,5109	0,1445	0,3446	1,3508	0,9801	0,0387	0,0601	0,9013
4	1,3701	0,9160	0,5297	0,1392	0,3311	1,3486	0,9802	0,0325	0,0619	0,9056
5	1,3706	0,9143	0,5807	0,1238	0,2955	1,3455	0,9844	0,025	0,0449	0,9301
					T = 303	,15 K				
N		Fase O	rgânica ((L_1)			Fase .	Aquosa (<i>L</i> ₂)	
1	η_D	ρ (g.cm ⁻³)	$x_{1}^{L_{1}}$	$x_{2}^{L_{1}}$	$x_{3}^{L_{1}}$	η_D	ρ (g.cm ⁻³)	$x_{1}^{L_{2}}$	$x_{2}^{L_{2}}$	$x_{3}^{L_{2}}$
1	1,3640	0,9299	0,2692	0,1623	0,5685	1,3532	0,9652	0,066	0,0951	0,8389
2	1,3649	0,9239	0,3336	0,1592	0,5072	1,3517	0,9680	0,0572	0,086	0,8568
3	1,3654	0,9204	0,3800	0,1534	0,4667	1,3507	0,9698	0,052	0,0801	0,8679
4	1,3663	0,9139	0,4839	0,1323	0,3838	1,3485	0,9735	0,0423	0,0674	0,8903
5	1,3667	0,9113	0,5396	0,1173	0,3431	1,3473	0,9753	0,0378	0,0608	0,9014
6	1,3669	0,9100	0,5706	0,1081	0,3213	1,3450	0,9786	0,0303	0,0484	0,9212
7	1,3672	0,9081	0,6238	0,0910	0,2852	1,3438	0,9804	0,0270	0,0422	0,9308
					T = 308	,15 K				
N		Fase O	rgânica ((L_1)			Fase .	Aquosa (<i>L</i> ₂)	
1	η_D	ρ (g.cm ⁻³)	$x_{1}^{L_{1}}$	$x_{2}^{L_{1}}$	$x_{3}^{L_{1}}$	η_D	ρ (g.cm ⁻³)	$x_{1}^{L_{2}}$	$x_{2}^{L_{2}}$	$x_{3}^{L_{2}}$
1	1,3631	0,9191	0,3549	0,1615	0,4836	1,3496	0,9688	0,0551	0,0874	0,8575
2	1,3632	0,9185	0,3631	0,1604	0,4766	1,3487	0,9707	0,0505	0,0814	0,8681
3	1,3640	0,9132	0,4362	0,1467	0,4171	1,3446	0,9781	0,0343	0,0554	0,9103
4	1,3646	0,9062	0,5370	0,1265	0,3365	1,3425	0,9829	0,0206	0,0405	0,9389
5	1,3651	0,9037	0,6200	0,0950	0,2850	1,3402	0,9859	0,0242	0,025	0,9508
6	1,3656	0,9007	0,7321	0,0510	0,2169	1,3373	0,9891	0,0175	0,0137	0,9688

Tabela B.4 – Linhas de amarração do sistema acetato de etila (1) + etanol (2) + água (3).

Nota: Incertezas experimentais U_c (grau de confiança = 0,95, k = 2): U_c(ρ) = 2.10⁻⁴ g.cm⁻³, U_c(η_D) = 2.10⁻⁴.

			Т	= 293,15 K	-		
N	Cor	nposição tot	al da soluçã	ăo	Del.	Mla	S (0/)
N	M^{sol}	x_1^{sol}	x_2^{sol}	x_3^{sol}	M^{L_1}	M^{L_2}	ð (%)
1	15,3468	0,1009	0,1085	0,7906	1,7578	13,5277	0,40
2	16,4312	0,1132	0,0937	0,7931	2,8142	13,5637	0,32
3	13,5258	0,1205	0,0847	0,7948	2,4205	11,0105	0,70
4	17,3206	0,1285	0,0754	0,7961	3,3319	14,0065	0,10
5	15,2142	0,1411	0,0604	0,7985	3,1729	12,0528	0,08
			Т	= 303,15 K			
NZ	Cor	nposição tot	ML	Mla	S (0/)		
IN -	M ^{sol}	x_1^{sol}	x_2^{sol}	x_3^{sol}	- M ²¹	M^{22}	0 (%)
1	12,3652	0,1079	0,1105	0,7816	2,5894	9,7675	0,07
2	13,4151	0,1144	0,1008	0,7848	2,7699	10,6477	0,02
3	15,7412	0,118	0,0964	0,7856	3,1925	12,5338	0,09
4	12,0352	0,1288	0,0798	0,7914	2,3553	9,6826	0,02
5	11,9625	0,1319	0,0735	0,7946	2,2539	9,6889	0,16
6	12,4157	0,1393	0,0615	0,7992	2,5093	9,8969	0,08
7	10,6325	0,1481	0,0504	0,8015	2,1529	8,4950	0,15
			Т	= 308,15 K	- 		_
NI .	Cor	nposição tot	al da soluçã	ão	ML_1	ML2	\$ (0/)
IN	M ^{sol}	x_1^{sol}	x_2^{sol}	x_3^{sol}	<i>IVI</i> +	IVI 2	0 (%)
1	15,7421	0,1349	0,1058	0,7593	4,1650	11,5886	0,07
2	16,8543	0,1365	0,1018	0,7617	4,6112	12,2551	0,07
3	18,7408	0,1519	0,0806	0,7675	5,4625	13,2965	0,10
4	13,6325	0,1623	0,0654	0,7723	3,7485	9,8708	0,10
5	14,5263	0,1774	0,0432	0,7794	3,7360	10,7879	0,02
6	16,8482	0,1917	0,0229	0,7854	4,1073	12,7392	0,01

Tabela B.5 – Teste de qualidade do sistema acetato de etila (1) + etanol (2) + água (3).

	T = 293,	15 K									
Componente	1	2	3								
1	0,0000	0,0010	2,0312								
2	2,1461	0,0000	2,6321								
3	7,3438	1,969	0,0000								
	T = 303,15 K										
Componente	1	2	3								
1	0,0000	0,0050	2,1985								
2	0,4933	0,0000	2,0525								
3	6,3170	0,504	0,0000								
	T = 308,	15 K									
Componente	1	2	3								
1	0,0000	0,0020	1,2678								
2	0,4691	0,0000	0,9697								
3	9,4903	3,108	0,0000								

Tabela B.6 – Parâmetros de interação binária, $g_{ij} - g_{jj}$ (cal.mol⁻¹), do modelo NRTL para o sistema acetato de etila (1) + etanol (2) + água (3).

			Fase	e orgânica			Fase aquosa					
T (K)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$\Delta x_1 (\%)$	$\Delta x_2 (\%)$	$\Delta x_3 (\%)$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$\Delta x_1 (\%)$	$\Delta x_2 (\%)$	$\Delta x_3 (\%)$
	0,3405	0,1533	0,5061	2,29	0,71	2,99	0,0652	0,0838	0,8511	0,46	1,07	1,54
	0,4764	0,1545	0,3691	0,13	0,07	0,20	0,0627	0,0819	0,8553	2,26	0,61	2,89
293,15	0,4987	0,1390	0,3624	1,22	0,55	1,78	0,0594	0,0786	0,8619	2,07	1,85	3,94
	0,5074	0,1365	0,3561	2,23	0,27	2,50	0,0576	0,0761	0,8663	2,51	1,42	3,93
	0,5592	0,1150	0,3258	2,15	0,88	3,03	0,0514	0,0520	0,8966	2,64	0,71	3,35
	0,2739	0,1519	0,5742	0,47	1,04	0,57	0,0664	0,1001	0,8334	0,04	0,50	0,55
	0,3377	0,1512	0,5110	0,41	0,80	0,38	0,0577	0,0893	0,8530	0,05	0,33	0,38
	0,3832	0,1449	0,4719	0,32	0,85	0,52	0,0523	0,0836	0,8641	0,03	0,35	0,38
303,15	0,4877	0,1272	0,3851	0,38	0,51	0,13	0,0426	0,0694	0,8880	0,03	0,20	0,23
	0,5218	0,1188	0,3594	1,78	0,15	1,63	0,0380	0,0576	0,9044	0,02	0,32	0,30
	0,5722	0,1025	0,3253	0,16	0,56	0,40	0,0304	0,0504	0,9192	0,01	0,20	0,20
	0,6227	0,0882	0,2891	0,11	0,28	0,39	0,0271	0,0432	0,9297	0,01	0,10	0,11
	0,2916	0,1548	0,5536	6,33	0,67	7,00	0,0721	0,0975	0,8304	1,70	1,01	2,71
	0,3751	0,1578	0,4671	1,20	0,26	0,95	0,0371	0,0781	0,8848	1,34	0,33	1,67
308 15	0,4361	0,1503	0,4136	0,01	0,36	0,35	0,0295	0,0639	0,9066	0,48	0,85	0,37
500,15	0,5309	0,1162	0,3529	0,61	1,03	1,64	0,0275	0,0384	0,9341	0,69	0,21	0,48
	0,6288	0,0876	0,2836	0,88	0,74	0,14	0,0244	0,0276	0,948	0,02	0,26	0,28
	0,7151	0,0447	0,2402	1,70	0,63	2,33	0,0205	0,0151	0,9644	0,30	0,14	0,44

Tabela B.7 – Resultados obtidos da modelagem do ELL (NRTL) do sistema: acetato de etila (1) + etanol (2) + água (3).

	_		Fase	e orgânica			Fase aquosa					
T (K)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$\Delta x_1 (\%)$	$\Delta x_2 (\%)$	$\Delta x_3 (\%)$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$\Delta x_1 (\%)$	$\Delta x_2 (\%)$	$\Delta x_3 (\%)$
	0,3630	0,1601	0,4769	0,04	0,03	0,07	0,0697	0,0943	0,8360	0,01	0,02	0,03
	0,4746	0,1533	0,3721	0,05	0,05	0,10	0,0399	0,0756	0,8845	0,02	0,02	0,03
293,15	0,5104	0,1441	0,3455	0,05	0,04	0,09	0,0393	0,0598	0,9009	0,06	0,03	0,04
	0,5295	0,1386	0,3319	0,02	0,06	0,08	0,0332	0,0617	0,9051	0,07	0,02	0,05
	0,5805	0,1235	0,2960	0,02	0,03	0,05	0,0257	0,0446	0,9297	0,07	0,03	0,04
	0,2697	0,1627	0,5676	0,05	0,04	0,09	0,0661	0,0955	0,8384	0,01	0,04	0,05
	0,3339	0,1596	0,5065	0,03	0,04	0,07	0,0581	0,0856	0,8563	0,09	0,04	0,05
	0,3804	0,1538	0,4658	0,04	0,04	0,09	0,0529	0,0797	0,8674	0,09	0,04	0,05
303,15	0,4843	0,1327	0,3830	0,04	0,04	0,08	0,0432	0,0670	0,8898	0,09	0,04	0,05
	0,5399	0,1177	0,3424	0,03	0,04	0,07	0,0388	0,0603	0,9009	0,10	0,05	0,05
	0,5710	0,1085	0,3205	0,04	0,04	0,08	0,0315	0,0480	0,9205	0,12	0,04	0,07
	0,6241	0,0914	0,2845	0,03	0,04	0,07	0,0280	0,0418	0,9302	0,10	0,04	0,06
	0,3552	0,1618	0,4830	0,03	0,03	0,06	0,0557	0,0872	0,8571	0,06	0,02	0,04
	0,3635	0,1609	0,4756	0,04	0,05	0,10	0,0512	0,0811	0,8677	0,07	0,03	0,04
308 15	0,4367	0,1472	0,4161	0,05	0,05	0,10	0,0349	0,0551	0,9100	0,06	0,03	0,03
500,15	0,5376	0,1271	0,3353	0,06	0,06	0,12	0,0212	0,0403	0,9385	0,06	0,02	0,04
	0,6207	0,0957	0,2836	0,07	0,07	0,14	0,0247	0,0247	0,9506	0,05	0,03	0,02
	0,7328	0,0516	0,2156	0,07	0,06	0,13	0,0180	0,0134	0,9686	0,05	0,03	0,02

Tabela B.8 – Resultados obtidos da modelagem do ELL (PR-TV-CG) do sistema acetato de etila (1) + etanol (2) + água (3).

Figura B.4 – Dados do ELL para o sistema acetato de etila + etanol + água a (a) 293,15 K, (b) 303,15 K e (c) 308,15 K.

Legenda: Curva binodal experimental (); – – Linha de amarração experimental (—); NRTL (); PR-TV-CG (); Ponto crítico (•); Solução inicial da linha de amarração (°).

APÊNDICE C

Figura C.1 – Espectro de RMN ¹H da fase líquida do sistema água + etanol + [hmim][BF₄].

Fonte: Arquivo pessoal.

Figura C.2 – Espectro de RMN ¹H da fase vapor do sistema água + etanol + [hmim][BF4].

APÊNDICE D

PRODUÇÕES DURANTE O PERÍODO DO DOUTORADO

D.1 ARTIGOS – PERIÓDICOS

D.1.1 Publicados

ARCE, P. F.; VIEIRA, N. F.; IGARASHI, E. M. S. Thermodynamic modeling and simulation of biodiesel systems at supercritical conditions. **Ind. Eng. Chem. Res.**, v. 57, p. 751–767, 2018.

ROBLES, P. A.; LOURENCO, N. I.; IGARASHI, E. M. S.; SOUSA, M. N.; ARCE, P. F. Thermodynamic behavior of the phase equilibrium of ethyl acetate + ethanol + water systems at atmospheric pressure: Experiment and modeling. **J. Chem. Eng. Data**, v. 65, p. 1402–1410, 2020.

ARCE, P. F.; IGARASHI, E. M. S.; FREIRE, N. V.; VÁSQUEZ, D. M.; ROBLES, P. A. Sequestration of light hydrocarbons in ionic liquids at high-pressures: Consistency and thermodynamic modeling. **Fluid Phase Equilibr.**, v. 546, p. 113–119, 2021.

D.1.2 Submetidos

LOURENÇO, N.; FIDELIS, L. S.; IGARASHI, E. M.; ARCE, P. Experimental measurements and modeling of the fluid phase behavior of water + 1-butanol + ionic liquids ([EMIM][BF₄] / [HMIM][BF₄] / [EMIM][EtSO₄]) systems at 298.15 K and 101,3 kPa. Submetido ao **Ind. Eng. Chem. Res.**

CARVALHO, F. D.; DOS SANTOS, G. L.; IGARASHI, E. M.; ARCE, P. Thermodynamic analysis of the liquid-liquid equilibrium of ternary systems involving ionic liquids and hydrocarbon compounds by using artificial neural networks and Gibbs free energy functions. Submetido ao **J. Chem. Thermodyn.**

D.1.3 Em preparação

CARVALHO, F. D.; DOS SANTOS, G. L.; FREIRE, N. V.; IGARASHI, E. M.; ARCE, P. Experimental measurements and thermodynamic models vs simulation for the modeling the vapor-liquid equilibrium of CO_2 + 3-alkyl-methyl imidazolium tetrafluoroborate systems over a wide range of pressures and temperatures. Submetido ao **J. Supercritical Fluids.**

D.2 ARTIGOS – CONGRESSOS E SIMPÓSIOS

D.2.1 Apresentados

IGARASHI, E. M. S.; ARCE, P. F. Thermodynamic modeling of the fluid phase behavior of CO_2 + IL (pyrrolidinium and phosphonium) at high pressures. In: IBEROAMERICAN CONFERENCE ON PHASE EQUILIBRIA AND FLUID PROPERTIES FOR PROCESS DESIGN (EQUIFASE), 11., Cordoba, Argentina, 2018.

IGARASHI, E. M. S.; ARCE, P. F. Fluid phase behavior at supercritical conditions of binary systems in presence of imidazolium and ammonium ionic liquids. In: INTERNATIONAL SYMPOSIUM ON SUPERCRITICAL FLUIDS (ISASF), 12., Juan Les Pins, França, 2018.

LISBOA, A. C. C.; CARVALHO, F. D.; IGARASHI, E. M. S.; ARCE, P. F. Comportamento termodinâmico do equilíbrio líquido-vapor de sistemas ternários contendo água, metanol e acetona - Experimental e modelagem. In: CONGRESSO BRASILEIRO DE TERMODINÂMICA APLICADA (CBTermo), 10., Nova Friburgo, Brasil, 2019.

IGARASHI, E. M. S.; FREIRE, N. V.; ARCE, P. F. Modelagem e simulação termodinâmica do equilíbrio de fases de sistemas binários contendo componentes do biodiesel a baixas e altas pressões. In: CONGRESSO BRASILEIRO DE TERMODINÂMICA APLICADA (CBTermo), 10., Nova Friburgo, Brasil, 2019.

LOURENÇO, N. I.; IGARASHI, E. M. S.; ARCE, P. F. Comportamento termodinâmico do equilíbrio líquido-líquido de sistemas ternários à pressão atmosférica: Experimental e modelagem. In: CONGRESSO BRASILEIRO DE TERMODINÂMICA APLICADA (CBTermo), 10., Nova Friburgo, Brasil, 2019.

ARCE, P.; IGARASHI, E.; ROBLES, P. Thermodynamic consistency and modeling of highpressure vapor–liquid equilibrium of light hydrocarbons + ionic liquids systems using the Peng-Robinson Stryjek–Vera equation of state. In: IBEROAMERICAN CONFERENCE ON SUPERCRITICAL FLUIDS (PROSCIBA), 5., Campinas, Brasil, 2019.

LISBOA, A. C. C.; NUNES, M. C.; IGARASHI, E. M. S.; ARCE, P. F. Estudo experimental do comportamento de fases dos sistemas binários e ternários compostos por água, etanol e glicerol. In: CONGRESSO BRASILEIRO DE ENGENHARIA QUÍMICA (COBEQ), 23., Gramado, Brasil, 2021.

CARVALHO, F. D.; IGARASHI, E. M. S.; FREIRE, N. V.; ARCE, P. F. Medição experimental e consistência termodinâmica do equilíbrio líquido-vapor do sistema água + etanol + 1-hexil-3-metil-imidazôlio tetrafluoroborato. In: CONGRESSO BRASILEIRO DE ENGENHARIA QUÍMICA (COBEQ), 23., Gramado, Brasil, 2021. LOURENÇO, N. I.; IGARASHI, E. M. S.; PEDROZO, E. C.; ARCE, P. F. Análise experimental do comportamento de fases do sistema: Água + 1-butanol + 1-etil-3-metilimidazólio tetrafluoroborato. In: CONGRESSO BRASILEIRO DE ENGENHARIA QUÍMICA (COBEQ), 23., Gramado, Brasil, 2021.

D.2.2 Submetidos

IGARASHI, E. M. S.; DOS SANTOS, G. L.; CARVALHO, F. D.; FREIRE, N. V.; ARCE, P. F. Green capturing of Greenhouse Gas (CO₂) by Ionic Liquids. Experimental measurement, Consistency and Modeling. Submetido ao XI Iberoamerican Conference on Phase Equilibria and Fluid Properties for Process Design (EQUIFASE), Campinas, Brasil, 2022.

D.3 CAPÍTULOS DE LIVRO PUBLICADO

LOURENÇO, Natalia I.; ARCE, Pedro F.; IGARASHI, Edson M. S. Medição Experimental e modelagem termodinâmica do equilíbrio líquido-líquido de sistemas contendo etanol, acetato de etila e água. In: SALES, Francisco O. (Org.). **Ciências exatas e da terra:** Exploração e qualificação de diferentes tecnologias 3, 1. ed. Ponta Grossa: Atena, 2021, p. 162–172.