PROJECT 3: ADVANCED COMBUSTION SYSTEMS USING DIESEL AND NATURAL GAS BLENDS FOR INTERNAL COMBUSTION ENGINES APPLICATIONS MINIMIZING METHANE SLIP

Bernardo Luiz Harry Diniz Lemos, B.Sc. / Filipi Martins Fernandes Silva, M.Sc. Supervisor: Prof. Dr. Guenther Carlos Krieger Filho Laboratory of Thermal and Environmental Engineering (LETE)/ Combustion Research Center (CRC)

V Workshop University of São Paulo, Brazil 21 – 21 AUG 2018

Motivation: Methane Slip

• Emissions of methane that was not burned in the engine and escapes into the atmosphere.

Options to Minimize Methane Slip

Prechamber (CH₄ only)

Diesel pilot fuel ignition

RESEARCH CENTRE FOR GAS INNOVATION

Prechamber

• Turbulent reactive jets leave the prechamber and ignites the natural gas in the main combustion chamber.

RESEARCH CENTRE FOR GAS INNOVATION

CFD

CFD answers:

- Injection time: 0.7 ms;
- Ignition time: 5 ms;
- Mass flow;
- Temperature.

Experimental Bench - Prechamber

- Constant Volume Combustion Chamber (CVCC);
- Pressure vessel where the tests will be performed;
- CVCC and other experimental apparatus are part of Project 2.

Experimental Bench - Prechamber

- Experimental techniques:
 - Schlieren flame shape to evaluate the turbulence;
 - Chemiluminescence for flame shape and radicals
 (OH*, CH*) to evaluate the reactiveness;
 - Pressure measurements Kistler sensors.

Preliminary Test with BOS

Background Oriented Schlieren (BOS) is a synthetic schlieren technique that do not require mirrors and can extract quantitative information about the fluid flow.

RESEARCH CENTRE FOR GAS INNOVATION

CVCC Previous Tests

- CVCC pressure tests with ethanol and spark plug;
- Ethanol hollow cone injection;
- Two spark plugs.

Experimental Bench – Optical Engine

- Our Single Cylinder Research Engine (SCRE) is capable of running with diesel or diesel and natural gas;
- Preliminary tests were done in July at AVL (Austria);
- Commissioning: October 2018.

Bottom view

Frontal view

Future Work

Experimental

- August and September 2018: Tests with prechamber outside of CVCC;
- October 2018: Tests with prechamber inside CVCC;
- October and November 2018: Commissioning and first test of SCRE.

CFD

- LES simulation of mixture formation inside prechamber;
- Simulations of prechamber inside CVCC with different pressures.

THANK YOU

facebook.com/GasInnovation

twitter.com/rcgipage

www.usp.br/rcgi