PROJECT 7 – NATURAL-GAS BASED HYBRID POWER SYSTEMS FOR VESSELS

Dr Bruno S. Carmo, Dr Silvio de Oliveira Junior, Roberto D. A. Campos, Rodolfo C. Puraca, Paulo E. S. Martins Department of Mechanical Engineering Dr Marcelo Martins Department of Naval Architecture Dr Maurício C. B. Salles, Giovani G. T. T. Vieira, Cesar P. O. Piernagorda Department of Electricity and Electrical Automation University of São Paulo, Brazil

V Workshop Interno RCGI Universidade de São Paulo, São Paulo 21 – 22 AGO DE 2018

Diesel Consumption Curve

Reduction on diesel consumed and CO2 emitted

Case	Reduction on Diesel Consumed (%)	Reduction on Total Diesel Consumed Battery Charge +Operation (%)	Reduction on Total Diesel Consumed Battery SoC (final-initial) +Operation (%)
Bus-tie Opened	-	-	-
Bus-tie Closed	16.15%	16.15%	16.15%
Generators at 80%	17.72%	-1.17%	4.24%
Generators at 90%	18.16%	-0.93%	17.86%

Case	Reduction on CO ₂ emitted (%)	Reduction on NO _x emitted (%)
Bus-tie Opened	-	-
Bus-tie Closed	16.15%	16.15%
Generators at 80%	17.72%	17.72%
Generators at 90%	18.16%	18.16%

Requisites for TPN incorporation

- Preferable language Matlab
- Runtime actualization frequency 10 Hz 0.1 s
- TPN input
 - Required shaft velocity
- Model output
 - Propulsion force

Work inherited from the research group

- Motor thermodynamics model
 - Dr. Silvio de Oliveira Junior, Roberto D. A. Campos
- Optimization of the hybrid model structure
 Dr Maurício C. B. Salles, Cesar P. O. Piernagorda
- Motor electric parameters
 - Dr Maurício C. B. Salles, Giovani G. T. T. Vieira

TPN - Hybrid System model

Simulation

- Ship characterization
 - Type: Platform supply vessel (PSV)
 - Length: 87 m
 - Lightweight: 5 ton
- Propulsion power characterization
 - Electric motor power: 2 MW
 - Combustion generator power: 5.7 MW
 - Batteries power: 1.4 MW

- Trip duration 4 h 10 min
- Trip distance 116 km
- Total simulation time 1923 s
 - Average Step time 0.012 s

- Thermodynamic model results
 - Diesel mass: 29 kg
 - LNG mass: 1.2 ton
 - CO₂ emission mass: 3.3 ton
 - N₂ emission mass: 33.8 ton
 - Average combustion generator efficiency: 45.14%

THANK YOU

facebook.com/GasInnovation

twitter.com/rcgipage

www.usp.br/rcgi