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Introduction – Fluid Diodes

• A fluid diode is a device without moving parts which causes smaller flow resistance in one 

direction compared to the opposite.

• The basic concept is shown on the right and it was patented by Nikola Tesla in 1916. 

• A special kind of fluid diodes applied to turbines is the labyrinth seal.
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Labyrinth Seal Application Example
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Turbo parts steam turbine advanced sealing system (Link: https://www.youtube.com/watch?v=942gtbwBmcw)
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Introduction – Motivation

• Labyrinth Seals are used extensively in machines 

with high pressure and temperature, like turbines 

and pumps [1], even with their inherent leakage.

• 60% of methane emissions are caused by leaks in 

pumps, turbines or pneumatic devices, coming to 

leak about 4m³ a day, which amount to about 

3,965 m³ per year for each device [2].

• Supercritical Carbon Dioxide (S-CO2) is a 

promising working fluid for future high efficiency 

power cycles, but the leakage from compressors 

may be considered. [3]

[1] M.P. Boyce.    Gas Turbine Engineering Handbook, 4. ed., Elsevier, 2012
[2] EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2009. Abril, 2011
[3]Yuan, Haomin, et al. "Experiment and numerical study of supercritical carbon dioxide flow through labyrinth seals." The 4th International Symposium-
Supercritical CO2 Power. 2014.
[4] UNITED TECHNOLOGIES CORPORATION;  Charlos C.W et al;  Gas Turbine Engine with canted pocket and canted knife edge seal;2012.  
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• The factors influencing this fluid loss include the 

design and their maintenance. The first is the 

most effective in combating gas emissions.

• The shape of these kind of devices are so relevant 

that there are patents [4]  exploring design.
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Topology Optimization of Labyrinth Seals
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Relevance of Labyrinth Seals Geometry
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V. Schramm¹

Optimization of sealing parameters such as length and width 
in order to minimize flow

S.J. Yoon²

Optimization of parameters with experimental and statistical 
data in order to maximize the pressure loss

S.P. Asok³

Neural Networks combined with CFD analysis to optimize 
parameters of one square and another curve joint

[1] V. Schramm et al.; Shape Optimization of a Labyrinth Seal Applying the Simulated Annealing Method 2004.
[2] S.J. Yoon et al.; Numerical and experimental investigation on labyrinth seal mechanism for bypass flow reduction in prismatic VHTR core, 2013 
[3] S.P.Asok et al.; Neural network and CFD-based optimisation of square cavity and curved static labyrinth seals 2007
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Topology Optimization applied to Tesla Valves

• Another approach is similar what Lin, Sen(2015) [1] performed in Tesla Valves, minimizing "diodicity", or in 
other words, maximizing the viscous dissipation
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[1] Sen Lin, et al. ; Topology Optimization of Fixed-Geometry Fluid Diodes; Journal of Mechanical Design, 2015

Design
Domain

Traditional Tesla Valve

Tesla Valve after Topology Optimization

Forward Flow Reverse Flow

Forward Flow Reverse Flow
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• Study of the design of labyrinth seal using topology optimization method for 
turbines and compressors. 

• Implementation of a Topology Optimization Method of labyrinth seals considering 
the rotation of the moving parts (2D-Swirl).

Objective
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Hypothesis

• Incompressibility

• Time-Independency
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Problem Formulation – NS Equation – 2DSwirl

For the design of fluid diodes
with rotational axis, the 2D
Swirl modeling with relative
velocities may be necessary

𝜌
𝐷𝐮

𝐷𝑡
= −𝛻p + 𝜇𝛻2𝐮 + 𝜌𝒇 + 𝛼𝐮

Inertial forces

𝜌 ⋅ 𝑓𝑐𝑒𝑛𝑡𝑟𝑖𝑓 = −𝜌𝝎 ∧ (𝝎 ∧ 𝒓)

𝜌 ⋅ 𝑓𝑐𝑜𝑟𝑖𝑜𝑙𝑖𝑠 = −2𝜌𝝎 ∧ 𝒖𝒓𝒆𝒍

𝜌
𝐷𝒖𝒓𝒆𝒍

𝐷𝑡
= −𝛻p + 𝜇𝛻2𝒖𝒓𝒆𝒍 − 𝜌𝝎 ∧ (𝝎 ∧ 𝒓) − 2𝜌𝝎 ∧ 𝒖𝒓𝒆𝒍 + 𝛼𝐮
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Finite Element Method

• This work uses the Taylor-Hood element for the finite element analysis, because 
it has been shown one fast and easy element to converge.
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Problem Formulation – Material Model

• The material model [1] is implemented into 
the Navier-Stokes Equation:
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[1] Borrvall, Thomas, and Joakim Petersson. "Topology optimization of fluids in Stokes flow." International journal for numerical methods in fluids41.1 (2003): 77-107.
[2] Lazarov, Boyan Stefanov, and Ole Sigmund. "Filters in topology optimization based on Helmholtz‐type differential equations." International Journal for Numerical Methods in Engineering 86.6 (2011): 765-781.

𝛼 𝑥 = 𝛼𝑚𝑖𝑛 + 𝛼𝑚𝑖𝑛 − 𝛼𝑚𝑎𝑥 𝜌𝑚 ⋅
1 + 𝑞

𝜌𝑚 + 𝑞

𝜌
𝐷𝒖𝒓𝒆𝒍

𝐷𝑡
= −𝛻p + 𝜇𝛻2𝒖𝒓𝒆𝒍

−𝜌𝝎 ∧ (𝝎 ∧ 𝒓) − 2𝜌𝝎 ∧ 𝒖𝒓𝒆𝒍 + 𝛼𝐮

a𝑛𝑑 − 𝑟2𝛻2 ෤𝜌 + ෤𝜌 = 𝜌

• Filtering in topology optimization based on 
Modified Helmholtz Equation[2]:

𝜌𝑚
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Topology Optimization Formulation
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• Diodicity of Energy Dissipation:

Φf: Energy Loss in the forward flow
Φr: Energy Loss in the reverse flow

Diodicity is the concept of the difference in
loss energy mechanisms in the two flow
directions

𝑚𝑖𝑛
1

Di′
+න

Ω

𝜌 ⋅ 1 − 𝜌 𝑑𝑥 =
Φ 𝐮𝐟, 𝑝𝑓

Φ 𝒖𝒓, 𝑝𝑟
+න

Ω

𝜌 ⋅ 1 − 𝜌 𝑑𝑥 =
Ω׬
1
2
𝜇 𝛻𝒖𝒇 + 𝛻𝒖𝒇

𝑇 + 𝛼𝒖𝒇
2 𝑑𝑥

Ω׬
1
2
𝜇 𝛻𝒖𝒓 + 𝛻𝒖𝒓

𝑇 + 𝛼𝒖𝒓
2 𝑑𝑥

𝑠. 𝑡: 𝛼𝑚𝑖𝑛 ≤ 𝛼 ≤ 1

+ න
Ω

𝜌 ⋅ 1 − 𝜌 𝑑𝑥

𝑉𝑚𝑖𝑛 ≤ 𝑉 ≤ 𝑉𝑚𝑎𝑥

Ω1Ω1
Ω Ω

Ω

Ω1

Local Volume Constraint: 𝑉𝑓𝑙𝑢𝑖𝑑 = 100%
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Methodology
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FENICS/Dolfin

Dolfin-Adjoint

IPOpt
Ipopt 

(Interior Point OPTimizer
)

*all used codes are open software according to GNU
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𝑅𝑒 = 100 𝑅𝑒 = 300 𝑅𝑒 = 600 𝑅𝑒 = 1000

Low Velocities High Velocities

Results – Flow direction
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Results – Helmholtz-type equations
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Results – Helmholtz-type equations
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Results – Helmholtz-type equations
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Results – Helmholtz-type equations
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General Results
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General Results – Velocity Plot during 
Optimization
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Forward Case Reverse Case
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General Results
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Forward Case

General Results – Fluid Flow
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Specifications:
2D plane

𝑅𝑒 = 100
𝐷𝑎 = 3,3 ⋅ 10−5

Reverse Case
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Results – Influence of Angular Velocity
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𝜔 = 200𝑟𝑎𝑑/𝑠𝜔 = 100𝑟𝑎𝑑/𝑠𝜔 = 10𝑟𝑎𝑑/𝑠

Higher angular velocities does not show huge differences in the topology => [1]

[1] Subramanian, S., Sekhar, A.S. and Prasad, B.V.S.S.S., 2015. Influence of combined radial location and growth on the leakage performance of a rotating labyrinth gas turbine seal. Journal of 
Mechanical Science and Technology, 29(6), pp.2535-2545.

Specifications:
2,5D plane

𝑅𝑒 = 300
𝐷𝑎 = 3,3 ⋅ 10−5
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Results – Aspect Ratio
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Specifications:
2,5D plane

𝑅𝑒 = 50
𝐷𝑎 = 3,3 ⋅ 10−5

𝜔 = 100𝑟𝑎𝑑/𝑠

Aspect 1:1 Aspect 1:1 Aspect 1:3
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Conclusions
• Labyrinth Seals design can be improved considering rotation.

• Small values for rotation may influence the final topologies.

• There are several geometry parameters that may influence the flow circulation.

• Helmholtz-type equations can be used as results’ filter and may be used with caution.

• The aspect ratio of the design domain is of medium importance to the final geometry.

Future Work:

• Turbulence Models

• Hydraulic Application

• Efficiency of the simulation

• Prototyping
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