PROJECT 14: METHANOL PRODUCTION FROM CO₂ HYDROGENATION Me. Letícia F. Rasteiro Prof^a. Dr^a. Elisabete Moreira Assaf Prof. Dr. José Mansur Assaf Reinaldo Giudici (POLI-USP) Rita Maria de Brito Alves (POLI-USP) **Project Coordinators** August 21th, 2018 São Paulo - SP ## Introduction ### Why CO₂? - CO₂ is the main pollutant of the Earth's atmosphere and one of the great villains of the greenhouse effect and global warming; - CO₂ is also an abundant C1 feedstock for making chemicals, materials and fuels; ## CO₂ to methanol - Global demand for methanol is increasing every year and it has a great importance for industry, being an important solvent used in large scale in the plastics industry and as precursor in the synthesis of several chemical intermediates. It is also widely used in the transesterification reaction of triglycerides for the production of biodiesel; - The hydrogenation of CO₂ to methanol is a promising strategy to CO₂ abatement from CCUS (Carbon Capture Utilization and Storage) and to clean production of methanol; # Introduction ### **Actual process** $CO + 2 H_2 \leftrightarrows CH_3OH$ Syngas 50 – 100 bar Cu-Zn/Al₂O₃ catalyst # Alternative process CO₂ abatement $CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O$ $$CO_2 + H_2 \rightleftharpoons CO + H_2O$$ RWGS $$CO_2 + 4H_2 \rightarrow CH_4 + 2 H_2O$$ CO2 abatement 1-10 bar Ni-Ga catalyst ### **Challenges** - ✓ Make the process cheaper; < P and T - ✓ Increase CO₂ conversion rate; - ✓ Increase methanol selectivity and decrease CO - selectivity; - ✓ Minimize the deactivation of catalyst # Objectives Synthesize a Ni₅Ga₃ alloy by a surfactant assisted coprecipitation method with different quantities of the surfactant; Characterize and evaluate the catalysts for CO₂ hydrogenation into methanol. # Catalysts preparation and catalytic tests All the precursors were added at stoichiometric ratio of 5Ni:3Ga. ### **Catalytic reaction** #### Reaction conditions: - ~0.200g of catalyst + 0.100g of silicon carbide - 10 bar, 225° C - H_2/CO_2 ratio of 3:1 (GHSV=3000 h-1). # Results | Catalyst | Crystallite size (nm) | | Rwp | |----------|---------------------------------|-------------------------------------|-----| | | Ni ₅ Ga ₃ | Ni _{1.2} Ga _{0.7} | | | C_0% | 24,0 | - | 6,3 | | C_1% | 23,6 | 24,3 | 5,1 | | C_6% | 20,1 | 12,4 | 5,2 | | Catalyst | Basicity
(μmol/g)* | SBET
(m2/g)** | |----------|-----------------------|------------------| | C_0% | 62,2 | 90,9 | | C_1% | 39,0 | 94,9 | | C_6% | 165,0 | 98,2 | | | | | | Catalyst | conversion(%) | CH ₃ OH/g _{cat} .min) | |----------|---------------|---| | C_0% | 5,7 | 29,2 | | C_1% | 3,0 | 15,3 | | C_6% | 4,6 | 36,9 | CO, Activity (µmol ^{*} Referentes ao intervalo de temperatura de 30-300 $^{\circ}$ C ^{**} Área B.E.T. dos catalisadores B # **Next Steps** - Characterization and evaluation of other Ni/Ga ratios with the best percentage of CTAB in the CO₂ hydrogenation to methanol; - Evaluate all the catalysts in the CO₂ hydrogenation to methanol in different temperatures, GHSV and pressures (until 10 bar). - Founded the best alloy, support it in different types of silica (micro, meso and micro/mesoporous); cleaner energy for a sustainable future # **THANK YOU** facebook.com/GasInnovation twitter.com/rcgipage www.usp.br/rcgi