PROJECT 20: SUPPORTED METALS NANOPARTICLES AS CATALYST FOR THE PROX REACTION

Prof. Elisabete M. Assaf, PhD IQSC - USP Prof. José M. Assaf, PhD; Janaina F. Gomes, PhD; Aline R. L. Miranda, Ms DEQ - UFSCar Estevam V. Spinacé, PhD; Jorge M. Vaz, PhD; Julio C. M. Silva, PhD IPEN - CNEN/SP

V Workshop Interno RCGI University of São Paulo, Brazil 21 – 22 AUG 2018

Why to study hydrogen purification?

Some hydrogen applications: ammonia synthesis and electric energy generation through polymer electrolyte membrane fuel cells (PEMFC)

Hydrogen production

methane steam reforming $CH_4 + H_2O \rightleftharpoons CO + 3 H_2$ water gas shift reaction $CO + H_2O \leftrightarrow CO_2 + H_2$

Typical composition of the effluent gas from the water gas shift reactor: about 1% or 10.000 ppm of CO in a large excess of H₂

 \rightarrow

CO is a poison for the ammonia synthesis catalyst and PEMFC anode catalyst!

What is CO-PROX reaction?

The preferential oxidation of carbon monoxide (CO) with oxygen in hydrogen-rich mixtures

CO-PROX reaction: $CO + \frac{1}{2}O_2 + H_2 \leftrightarrow CO_2 + H_2$ (1)

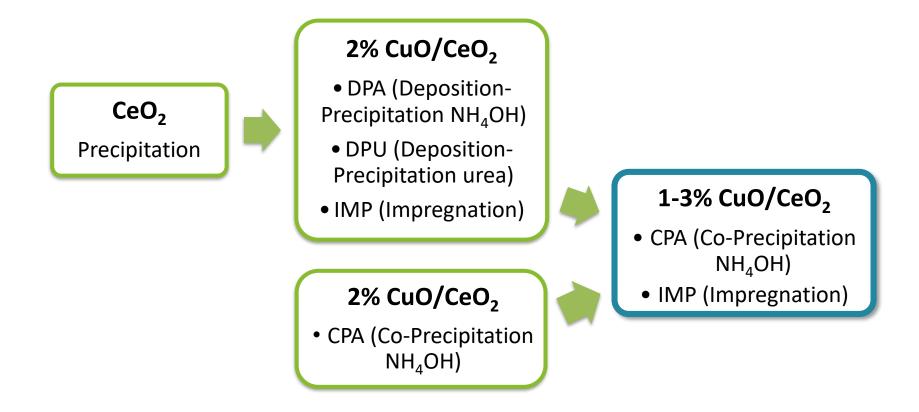
CO Oxidation:
$$CO + \frac{1}{2}O_2 \leftrightarrow CO_2 + H_2$$
 (2)

 H_2 Oxidation: $H_2 + \frac{1}{2}O_2 \leftrightarrow H_2$ (3)

PROX reaction is interesting for H₂ stream purification

To perform **basic studies and technology** on nanostructured catalysts for PROX reaction

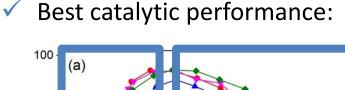
To obtain catalysts more active and selectivity in the range 25 – 200 °C and to understand the reaction mechanisms involved in this process

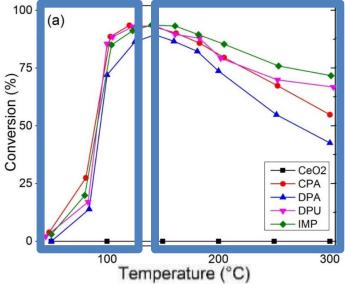

In our studies, two parallel pathways will be followed:

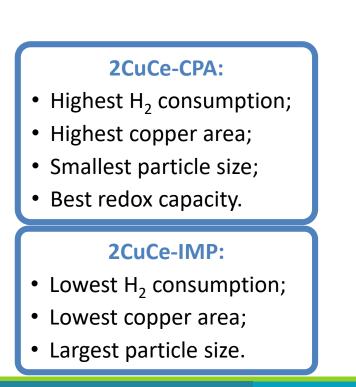
i - Bulk and supported CuO/ceria compounds will be prepared. Pt and Au will be incorporated as a promoter and the catalysts will be tested in the PROX reaction (UFSCar and USP-Scarlos)

ii – Au and Pt nanoparticles supported on reducible metal oxides will be prepared and tested in the PROX reaction (IPEN-CNEN/SP)

CuO/CeO₂ NANOPARTICLES UFSCar-USP/SÃO CARLOS


Strategy – UFSCar-USP (São Carlos)

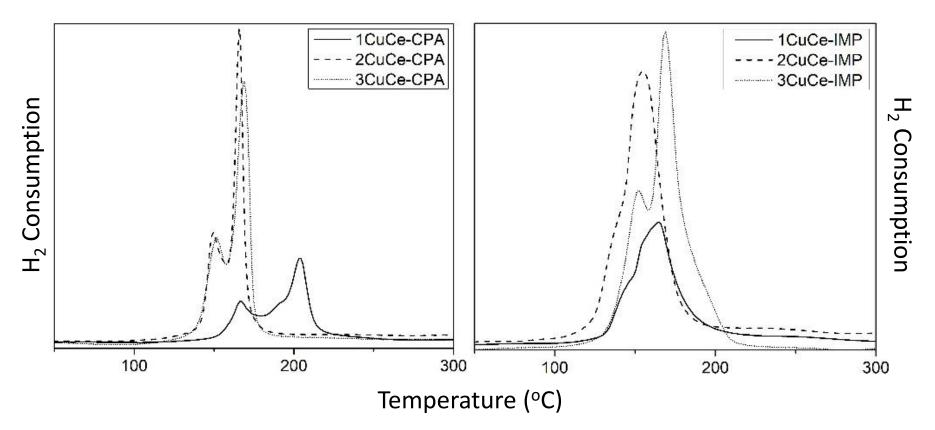



Results - UFSCar-USP (São Carlos)

2% CuO/CeO₂: Preparation Method

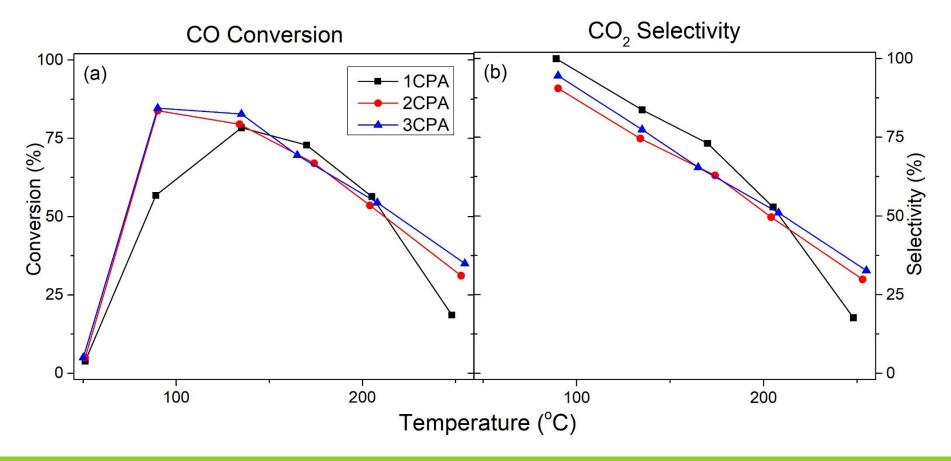
- ✓ The preparation method influences directly:
 - Cu-CeO₂ interactions;
 - Catalytic performance.

RESEARCH CENTRE FOR GAS INNOVATION


Results – UFSCar-USP (São Carlos)

1-3% CuO/CeO₂: Physicochemical Properties

	SEM-EDS		BET		TPR		
	Cu loading (wt.%)	SA (m²/g _{cat})		H ₂	$H_2^{}$ (µmol/g _{cat})		
1CuCe-CPA	1.1		44		373		
2CuCe-CPA	2.0		56		572		
3CuCe-CPA	2.5		72		614		
1CuCe-IMP	0.9	ſ	35		269		
2CuCe-IMP	2.5		37		454		
3CuCe-IMP	3.7		31	,	631		


Results – UFSCar-USP (São Carlos)

1-3% CuO/CeO₂: TPR-H₂

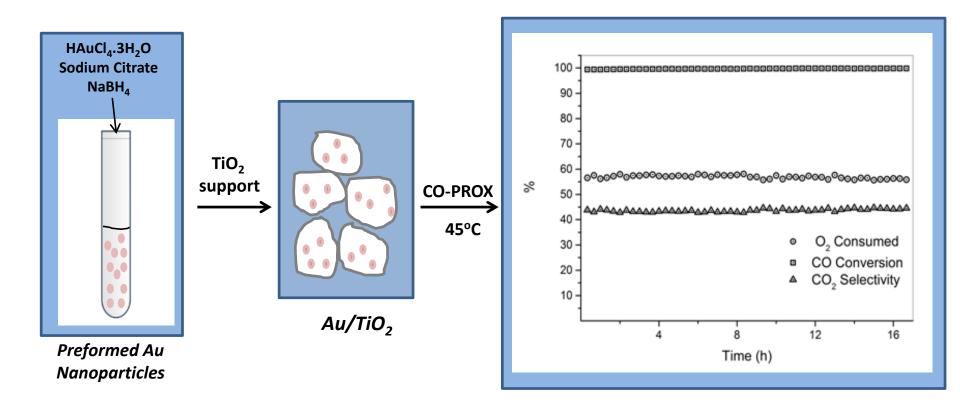
Results – UFSCar-USP (São Carlos)

1-3% CuO/CeO₂: PROX reaction

Planned Activities - UFSCar-USP (São Carlos)

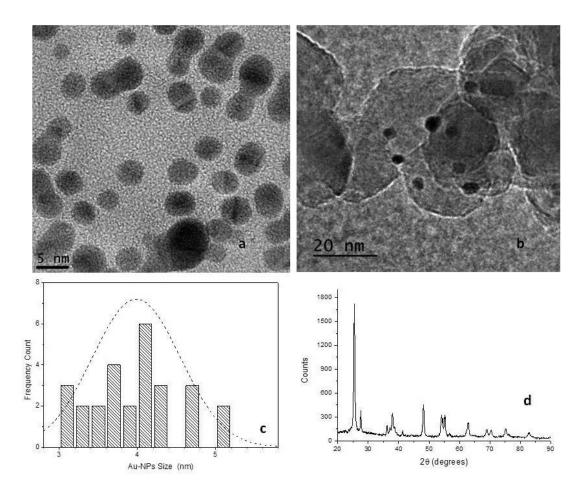
1-3% CuO/CeO₂:

Characterization the catalysts;

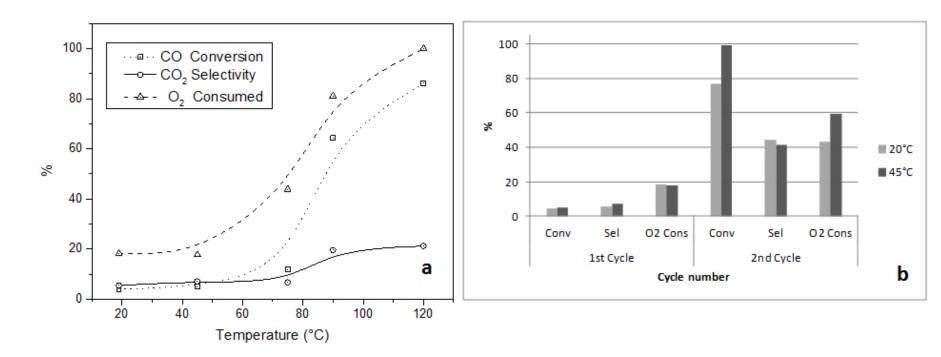

Reaction using IMP catalysts.

Addition of noble metals:

Analyze the impact of the noble metal addition on the performance of the best catalysts.

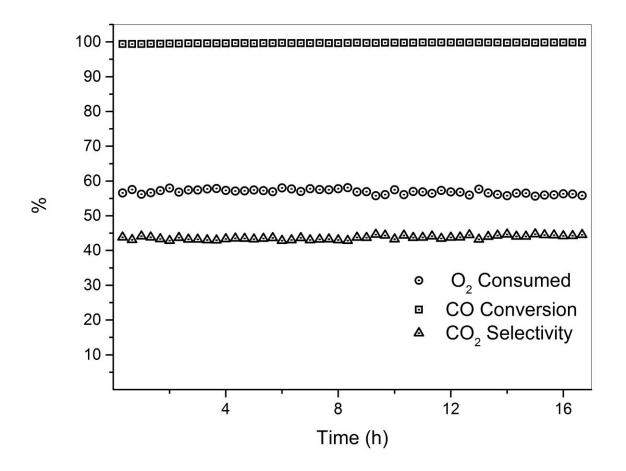

NOBLE METALS NANOPARTICLES IPEN-CNEN/SP

DEVELOPMENT OF A NEW METHOD OF SYNTHESIS TO PREPARE Au/TiO₂ CATALYST


RESEARCH CENTRE FOR GAS INNOVATION

Au/TiO₂ – Catalyst Characterization

TEM micrographs of the pre-formed Au nanoparticles (a) and further supported on TiO_2 (b), particle sizes distribution (c) and X-ray diffractogram of 1 wt% Au/TiO₂ catalyst (d)


Au/TiO₂ - Catalytic Activity

CO conversion (%) and CO_2 selectivity (%) as a function of reaction temperature - first cycle (a), and comparison of the catalytic performance results of the first and second cycles (b).

(Feed composition CO:O2:H2 = 1:2:97 (vol%), space velocity 15.000 mL g⁻¹ h⁻¹)

Au/TiO₂ - Catalytic Activity

CO conversion (%) and CO₂ selectivity (%) at 45°C vs. time on stream – stability test (Feed composition CO:O2:H2 = 1:2:97 (vol%), space velocity 15.000 mL g⁻¹ h⁻¹)

Au/TiO₂ - Catalytic Activity

Table 1. Comparison of the catalytic performance over Au/TiO₂ catalysts for CO-PROX reaction reported in the literature

Met <mark>ho</mark> d	Catalyst treatment process before reaction	Au metal loading (wt%)	Au particle size(nm)	Feed composition (vol%)	0 ₂ /CO feed ratio	Space velocity	Т (°С) [#]	CO conversion (%)	CO ₂ selectivity (%)	Reference
Deposition Precipitation	Calcined at 300°C	2		CO/O ₂ /H ₂ /CO ₂ /H ₂ O/He 1/2/37/18/5/37	2	40.000 mL g ⁻¹ h ⁻¹	60-80	99.99	20	[5]
Direct anionic exchange (DAE)	Ammonia treatment	1.5	3	CO/O ₂ /H ₂ /He 2/2/48/48	1	3.000 h ⁻¹	100	88	45	[6]
Impregnation Au complex	Heating H ₂ at 500°C and calcined at 400°C	1	4.7	CO/O ₂ /H ₂ /He 1/2/50/25	2	90.000 mL g ⁻¹ h ⁻¹	100	55	30	[7]
laser vaporization of a metallic gold	No treatment	0.023	2.9	CO/O ₂ /H ₂ /He 2/2/48/48	1	4.000 mL g ⁻¹ h ⁻¹	200	60	40	[10]
Deposition Precipitation	Calcined at 250°C	1.3	5.7	CO/O ₂ /H ₂ 1/0.5/98.5	1	20.000 mL g ⁻¹ h ⁻¹	22	85	90	[11]
Photo- deposition	No treatment	1	~1.5	CO/O ₂ /H ₂ /He 1.33/1.33/65.33/32.01	1	30.000 mL g ⁻¹ h ⁻¹	80	95	47	[12]
Deposition Precipitation	No treatment	3	≥ 5 nm	CO/O2/H ₂ /N ₂ 1/1/50/48	1	165.000 mL g ⁻¹ h ⁻¹	25-50	99	50	[13]
Deposition Precipitation	Calcined at < 200°C	0.5	2.5	CO/O ₂ /H ₂ /He 1.33/1.33/65.33/32.01	1	30.000 mL g ⁻¹ h ⁻¹	80	70	35	[14]
Deposition Precipitation	Thermal and Plasma Treatment	1.0	2.8	CO/O ₂ /H ₂ /N ₂ 1/1/50/48	2	120.000 h ⁻¹	100	75	30	[15]
Supported pre-formed Au nanoparticles	No treatment	1.0	4	CO/O ₂ /H ₂ 1/2/97	2	15.000 mL g ⁻¹ h ⁻¹	45	99	45	This work

Temperature of maximum CO conversion

RESEARCH CENTRE FOR GAS INNOVATION

Conclusions

-Au/TiO₂ catalyst with Au metal average nanoparticles size of \sim 4 nm could be prepared by a facile method at room temperature.

-The catalyst showed to be very active, selective and stable (18 h on reaction stream) for the CO-PROX reaction at low temperatures (20-50°C), even at a high volumetric O_2/CO ratio ratio of 2 (λ = 4) and high hydrogen concentration (97 vol%) in the inlet feed gas stream.

-Next Steps

-The influence of synthesis parameters, like citrate:Au and BH₄⁻:Au molar ratios on Au nanoparticles size and

- The influence of reaction parameters on the CO conversion and CO_2 selectivity, like a volumetric O_2/CO ratio, space velocity, hydrogen concentration and the presence of H_2O and/or CO_2 in the inlet feed gas stream are under investigation.

THANK YOU

facebook.com/GasInnovation

twitter.com/rcgipage

www.usp.br/rcgi