PROJECT 27 THE PERSPECTIVES OF BIOMETHANE TO CONTRIBUTE TO INCREASE THE NG SUPPLY

Prof. Dr. Suani Teixeira Coelho - Coordinator Institute of Energy and Environment University of São Paulo, Brazil

21 Augost 2018 Sao Paulo / Brazil

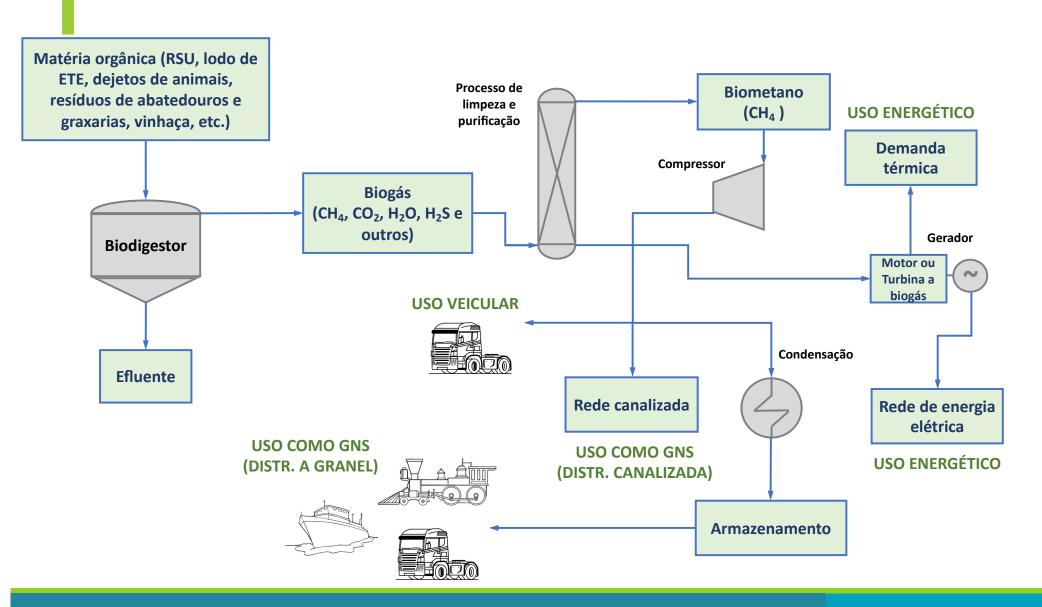
cleaner energy for a sustainable future

Prof Suani T. Coelho, PhD

Project Coordinator – PROJECT 27 - RCGI

Coordinator of Research Group on Bioenergy – GBIO

www.iee.usp.br/gbio


Institute of Energy and Environment

University of São Paulo, Brazil

RCGI – PROJECT 27

- Analysis of the perspectives for biogas and biomethane (from urban, sugar and alcohol industry and animal residues) in the State of Sao Paulo based on a geo-referenced mapping
- Analysis of environmental benefits of increasing the biogas/biomethane share in the energy matrix of São Paulo State
- Analysis of standards for biomethane injection into NG grid, as well as for the other biomethane's final uses, such as in automotive vehicles and biogas for decentralized electricity generation.
- Biogas scenarios for 2030 compared to INDC from Brazil (Paris Agreement)
- Policy proposals to improve current legislation in Brazil and São Paulo

Value chain of biogas and biomethane

Biogas and Biomethane Potencial and georeferenced mapping for São Paulo State

Potentials

- The methodologies to determine the potential was already defined
- The data is being updated for the base year of 2017 and recalculated potentials
- Geo-referenced (iterative mapping)
 - Shape layers was already defined (natural gas network, electric power, lines transmission, electrical substations and environmental protection areas)

Biogas and Biomethane Potential for São Paulo State : Estimations

Project 27: year base 2015

Biogas Source	Biogas potential (10 ⁹ m³/year)	Biomethane potential (10 ⁹ m³/year)	Electric energy (GWh/yr)	Potential power (MW)
Landfill	2.419	1.210	3,769	495
Sewage treatment	0.431	0.215	671	88
Vinasse	2.610	1.501	4,067	798
Animal residues	0.133	0.066	207	26
Total	5.593	2.992	8,714	1,407

Project 27 X others intitution

	Potential power (MW)				
Biogas Source	This study	SEMSP	DATAGRO		
Landfill	495	354	-		
Sewage treatment	88	370	-		
Vinasse	798	2,247	3,800		
Animal residues	26	440			
Total	1,407	3,411	2		

ROADMAP – Biogas and biomethane production and uses technologies

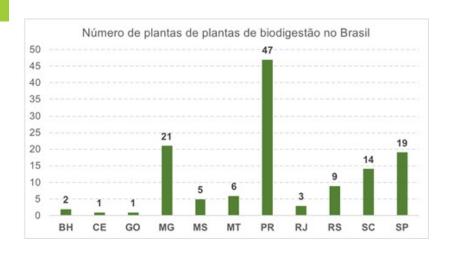
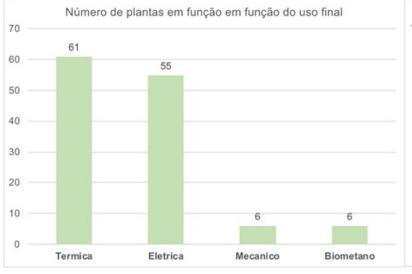
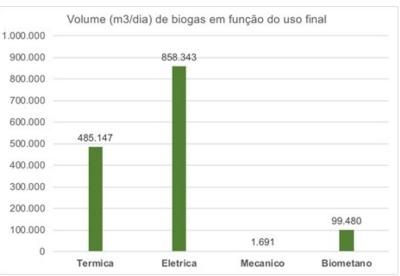
Hot Spots

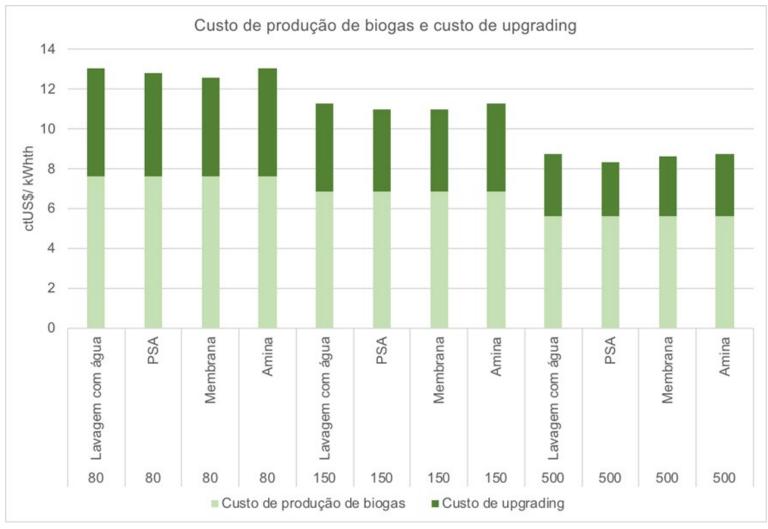
- Technological routes for the production of biogas and biomethane
- National and international scenario of technologies for production and end uses of biogas and biomethane
- National and International Policy
- Regulatory Scenario for biogas and biomethane
- Estimate cost

Comparison among upgrading technologies

Técnica	Lavagem	Lavagem com solventes	Lavagem com aminas	PSA	Membranas
	com água	orgânicos	com aminas		
Princípio	Solubilização seletiva do CO ₂ em água	Solubilização seletiva do CO ₂ em solventes orgânicos como metanol e poliglicóis	Reação do CO ₂ com aminas (MEA, DEA, MDEA)	Adosrção do CO ₂ em zeólitas ou silicatos	Passagem seletiva de moléculas de CO ₂ pela membrana
Necessário tirar H ₂ S previamente?	Sim	Sim (pode substituir dessulf. fina)	Sim (pode substituir dessulf. fina)	Sim	Não (mas recomendado)
Meio regenerável?	Sim	Sim	Sim	Sim	-
Custo de investimento	Médio	Médio	Médio	Alto	Baixo
Tratamento do gás residual	Sim	Sim	Não	Sim	Sim
Custo operacional	Baixo	Médio	Alto	Baixo	Médio
Eficiência de remoção de metano (%)	98-99	96-99	99,9	97-98	85 – 99,5
Nível final de metano	96% - 99%	93 - 98%	99%	>96%	90 - 96%
Perdas de metano (%)	0,5 - 2	1-4	0,1	1,5 - 2,5 (relata-se 8%-12%)	0,5-2%
Pressão de trabalho (bar(g))	4 - 10	4 - 8	Atmosférica	2-7	7-20
Demanda de eletricidade [kWh _e / m³ biogas]	0,2 - 0,3	0,2 - 0,33	0,06 - 0,17	0,15-0,35	0,18-0,33
Demanda de calor (kWh _{th} / m ³ biogas th	Não	0,1 - 0,15	0,4 - 0,8	Não	Não
Temperatura	Não	40 - 80	110 -160	Não	Não
Demanda de água	Sim	Não	Não	Não	Não

Scenarios: Biogas and Biomethane - 2015


Figura 11.11 - Distribuição das plantas de produção de biogás no território nacional.

Fonte: EPE (2018), adaptado pelos autores.

Comparison cost of biogas production. Upgrading scenarios

Fonte: Adaptado de Stürmer (2016).

"Carbon capture and use (CCUS) from ethanol production process: CO₂ production costs compared to market prices in São Paulo State"

Deliverables:

- Roadmap of the BAT for CCUS in an ethanol mill, in particular the best pathway for biogas upgrade and CO₂ capture. Selection of the best technologies to be implemented in a pilot plant (vinasse-biodigestion process, biogas upgrade process, CO₂ capture from fermentation and from biogas upgrade).
- 2. Technical-economic analysis of CCUS and preliminary costs of CO₂ compared to market prices and CO₂ reuse technologies.
- 3. Pilot plant in operation, on the results from the pilot plant.
- 4. Results from the technical-economic analysis from the **pilot plant for CO₂ production**; **CO₂ production prices** compared to market prices.
- 5. Potential prices of CO₂ from a CCUS process in an ethanol plant in São Paulo State (300 tc/h). Selection of potential mills to host the CCUS project. Scenarios for Brazil.
- 6. Report 6: Diesel oil replacement by biogas. Ethanol carbon footprint.
- 7. Report 7: Perspectives for Bio-products.

"Carbon capture and use (CCUS) from ethanol production process: CO₂ production costs compared to market prices in São Paulo State"

Component	Premises	Results			
Sugarcane crushed	 300 tonne¹ of sugarcane crushed per hour; 50% of the sugarcane is directed for ethanol production 				
Ethanol	- Industrial productivity of ethanol = 70 L / t of sugarcane	10,500 L / h			
CO ₂ production in the fermentation process	 CO₂ is produced in the same amount as ethanol (in moles). Considering also: Ethanol density = 789 g/L Ethanol molar mass = 46.07 g/mole Ethanol molarflow = 10,500 L/h x 789 g/L ÷ 46.07 g/mole = 179,824 mole/h = CO₂ molar flow Considering CO₂ molar mass as 44.01 g/mole: CO₂ mass flow = 179,824 mole/h x 44.01 g/mole 	7.9 t/h			
Vinasse	Considering that for every liter of ethanol, it is produced 10 liters of vinasse				
Biogas	The anaerobic digestion of vinasse produces around 10 Nm³ of biogas per cubic meter of vinasse	1,050 Nm ³ /h			
CO ₂ from biogas	Considering that 40% of biogas from vinasse is CO_2 - 420 Nm³ of CO_2 can be produced in the biodigestion of vinasse - Volume of a gas at the STP is 22.4 L/mole and the molar mass of CO_2 is 44.01 g/mole: CO_2 mass flow = 420,000 L/h x 44.01 g/mole ÷ 22.4 L/mole				
Total CO2 produced	7.9 + 0.83 = 8.73 t/h				
rotal CO ₂ produced	or 6,285 t/month				
	or 40,284 t/yr (considering an 8 months-harvesting season in C-S region)				

cleaner energy for a sustainable future

THANK YOU

facebook.com/GasInnovation

twitter.com/rcgipage

www.usp.br/rcgi