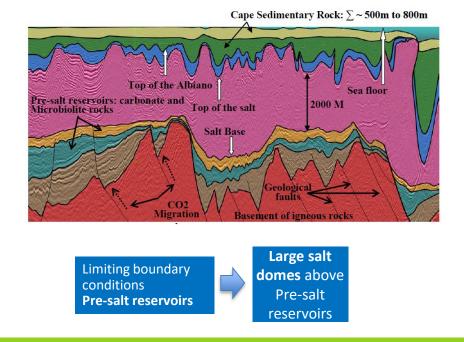
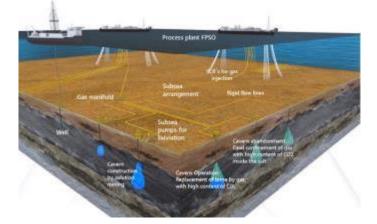
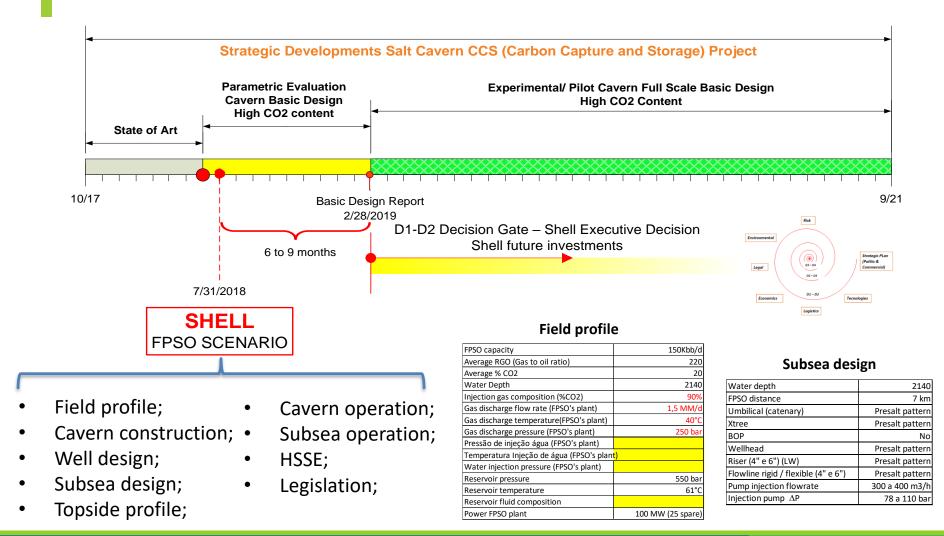
PROJECT 34 – CCS IN OFFSHORE SALT CAVERNS

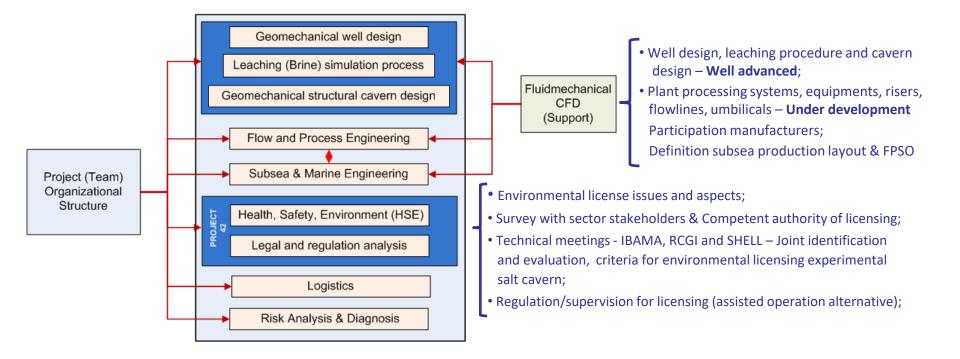
Prof. Dr. Claudio Mueller P. Sampaio

Coordinator: Prof Dr. Kazuo Nishimoto¹ (USP) **Team**: Alvaro Maia da Costa², Pedro Vassalo Maia da Costa², Edgard B. Malta³, Felipe Ruggeri⁴, Guilherme F. Rosetti⁴, Leandro Grandin⁵, Claudio M. P. Sampaio¹, Marcelo R. Martins¹, Celso P. Pesce¹, André M. Bergsten¹, Claudio A. Oller do Nascimento¹, Hirdan K. Medeiros Costa¹, Evandro M. Moretto¹, Julio R. Meneghini¹

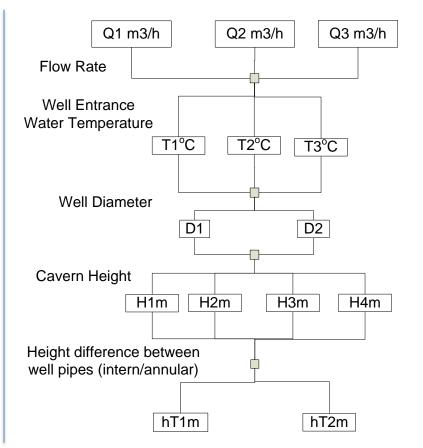

¹ University of São Paulo, ² Modecom, ³ Technomar, ⁴ Argonautica, ⁵ FlowProcess


Workshop – RCGI - CO2 Abatement Program University of São Paulo, Brazil 21-22 August 2018


Introduction


- CO₂ found pre-salt reservoirs Earth's mantle origin, migrating to pre-salt reservoirs through geological faults;
- **Today** \Rightarrow **Disposal of gas** with high content of CO2 in the reservoirs (EOR);
 - Continuous increase of CO2 content levels and RGO inside the reservoir
 - \Rightarrow Potential closure of production wells over time;

- Technological solution under study Offshore Salt Cavern Carbon Capture and Storage (CCS) solution
 - Other technological solutions Not for large volumes of produced gas;
 - Saline aquifers characteristics in pre-salt region Suggest unfeasibility;
- Mature technology Salt underground caverns;
- Premises
 - Salt caverns for storage of gas with high content of CO2;
 - Gas stream from existing FPSO;
 - Maximize existing FPSO infrastructure (plant, lines, pumps, compressors, umbilical, power);
 - Maximize disposal volume, keeping high safety standards;



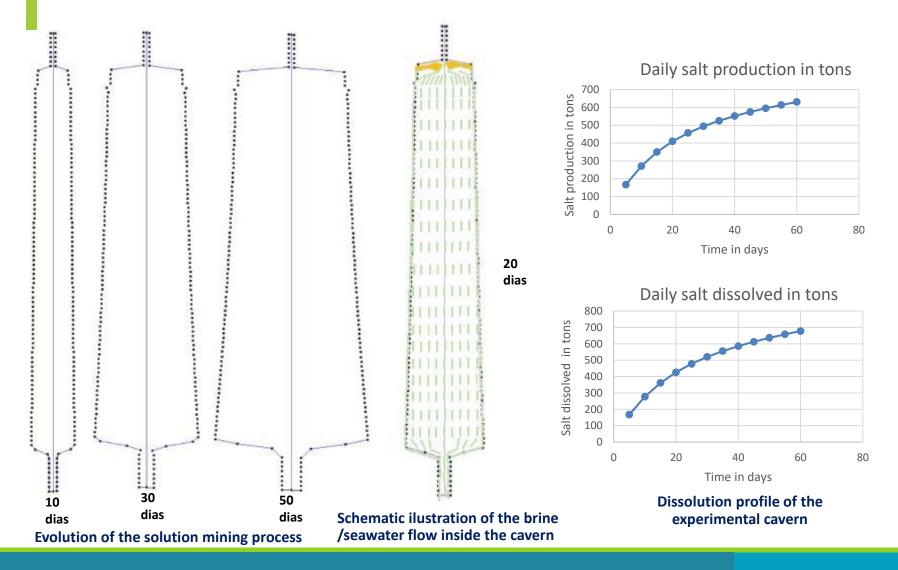
Assumptions

- Cavern Construction
 - Pure halite;
 - Discarding brine at sea;
 - No geological faults;
 - Olefins injected by the FPSO via ring line (diesel flush)
- Subsea
 - Same Xtree for both construction and operation;
 - Installations/facilities, vessels and standard pre-salt procedures;
 - Presumed space riser balcony for installation lines;
 - Power available FPSO for submerged pump/equipments;
- Topsides
 - Olefins injected using the chemical injection system (diesel flush system);
- Cavern Operation
 - Natural gas at 90% CO2;
 - PDG installed in downhole water injection pipe (P and T);
- HSE / Risks / Legislation
 - No restrictions on the disposal of brine subsea;
 - Qualitative risk matrix used by Shell EIA RIMA of the field of Lula as reference;
- Logistics
 - Drilling ship at disposal for construction of caverns;

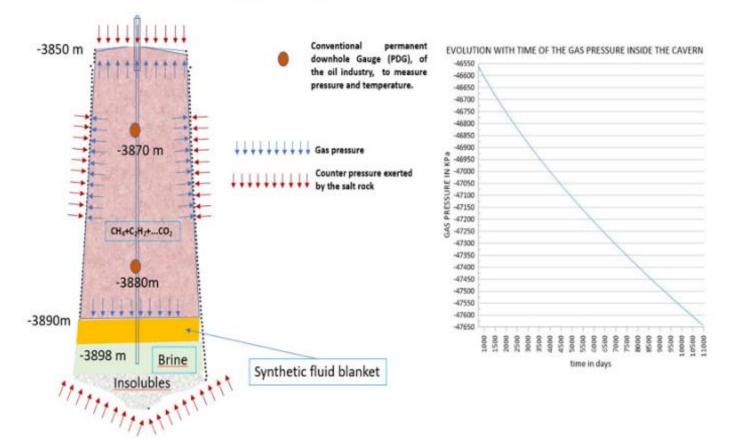
Parametric Design

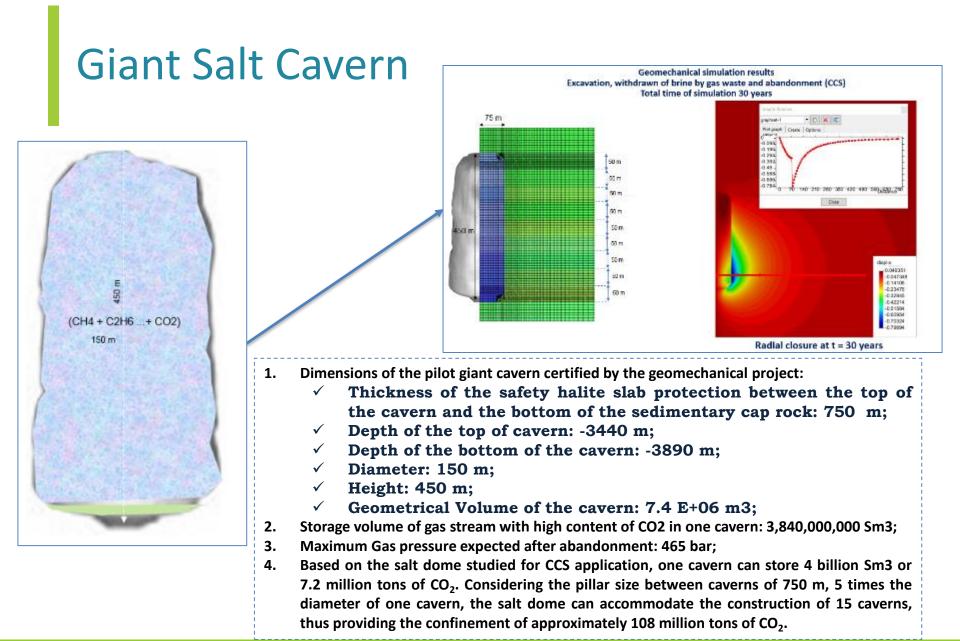
Schedule

		Activity	Type of	Month								
PLANNED ACTIVITIES	Dependency (Y/N)	Number	dependency	8	9	10	11	12	13	14	15	16
1. State of the Art Report Elaboration												
2. Solution mining process simulation	N											
2.1 - Disolution factor experimental analysis	N			x	x	x						
2.2 - Parametric analysis for selected cases	N			х	х	х	х	x				
2.3 - Pipe wipe problem	N			х	х	х	х					
3. Fluidmechanical project of pilot cavern - CFD	Y	2	Finish-Finish									
3.1 Physical Modeling - Evaluation olefine pattern interface during Gas / Brine substitution proc	N N			х	х							
3.2 Brine substitution												
3.2.1 Geometry, grid modeling/analysis & convergence	N			х	х	х						
3.2.2 Simulations & Analysis	Y	4.1.1	Finish-Start					x	x	х	х	х
3.2.3 Load functions of internal pressures inside the caverns	N										х	х
3.3 Gas filing analysis (High content CO2)	N											
3.3.1 Adaptation numerical grid model, convergence	N						х	х				
3.3.2 Simulations & Analysis	Y	4.1.2	Finish-Start						х	х	х	х
3.3.3 Load functions of internal pressures inside the caverns	N										х	х
4. Flow and Process Engineering	N											
4.1 Flow assessment - Based on models available in publications/references + Experimental ter	s N											
4.1.1 Flow assessment - Substitution phase - Gas, CO2 rich stream / Brine	N				х	x						(
4.1.2 Flow assessment - Salt cavern final filling process - Gas, CO2 rich stream	N					x	х					(
4.2 Assessment of solubility of CO2 rich stream in brine	N						х	1				(
4.3 Conception subsea raw sea water injection system	N							x	х			(
5. Subsea & Marine Engineering	N											
5.1 Graphical and electronic model development	N											<u> </u>
5.1.1 3D graphical representation of the salt cavern construction	N			х	x	x	x					<u> </u>
5.1.2 Subsea arrangement for construction and operation of salt caverns	N			x	x	x	x					-
5.2 Data collection	N			~	^	^	~					-
5.2.1 Riser	N			х	x	x	x					1
5.2.2 Flowline	N			x	x	×	x					-
5.2.3 Umbilicals	N			x	x	x	x					
5.2.4 Xtree	N			x	x	x	x					
5.2.5 Mudline water injecttion pump	N			х	x	x	х					
5.3 Monitoring - cavern construction/operational process/abandonment	N							x	x			
6. Logistics	N											
6.1 Salt cavern project scheduling	N											
6.1.1 Problem definition (Well construction, solution mining, subsea arrangement, gas												
injection and confinement)	N			х								1
6.1.2 Process description & mapping, including resources, materials and duration	N				x	x						
6.1.3 Project modelling (precedence diagram, network representation) & Model implementatio	r N				х	x	x	x				
6.1.4 Computational experiments	N				x	x	x	x	x	x		
7. Health, Safety, Environment (HSE) and Legislation	N											
7.1 Landscape screening	N											-
7.1.1 Team engagement/interviews and learnings	N			х	x							
7.1.2 External stakeholder engagement strategy definition and kick-off	N			~	x	x						<u> </u>
7.2 Scoping	N											<u> </u>
7.2.1 Environmental study requirements for licensing	N						х	x	x	x	х	
7.2.2 Legal requirements for licensing	N						x	x	x	x	x	
7.3 Stakeholders engagement to conclude licensing strategy	N						x	x	x	x	x	
8. Risk Analysis & Diagnosis	N											<u> </u>
8.1 Cavern Construction APRI	N			x	x	x	x	x	x	x		<u> </u>
8.2 Well design APRI	N			x	x	x	x	x	x	x		<u> </u>
8.3 Subsea Design APRI	N			x	x	x	x	x	x	x		<u> </u>
8.4 Topside APRI	N			x	x	x	x	x	x	x		-
8.5 Cavern Operation APRI	N			x	x	x	x	x	x	x		<u> </u>
8.6 Subsea Operation APRI	N			x	x	x	x	x	x	x		<u> </u>
8.7 HSE/Legislation/Assumption APRI	N			x	x	x	x	x	×	x		<u> </u>
8.8 Logistics APRI	N			x	x	x	x	x	x	x		<u> </u>
8.9 Consolidation	N			^	^	^	^		^	^	х	x
9. Phase wrap-up workshop	N			I								M

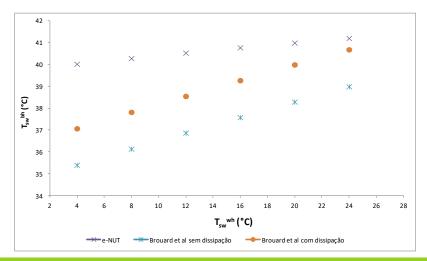

Cavern design

- First project cycle studies
 - Basic geomechanical design of an experimental cavern;
 - Obtain parameters to be used definitive design salt caverns with central CO₂ disposal station;
 - Dissolution / mining process
 - Monitoring plan, to be applied in the construction, operation and abandonment phases of the caverns;
 - Basic geomechanical design of a giant cavern for assessing the technical feasibility of storing large volumes of CO₂;
- Parametric study of caverns with different sizes;

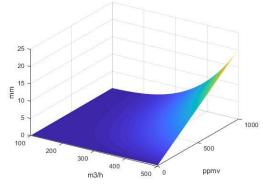

Experimental Salt Cavern


Cavern design – leaching process

Experimental salt cavern – Monitoring



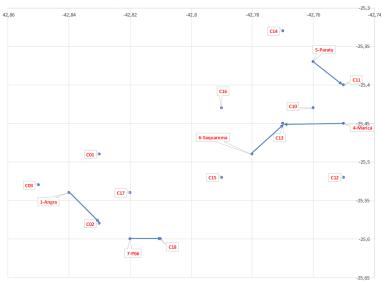
Monitoring of the gas pressure inside the cavern

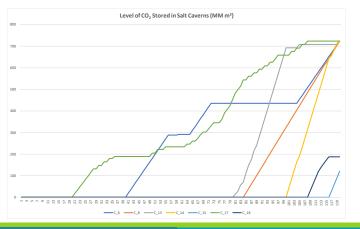


Flow Assessment

- Expected seawater temperature at well bottom hole
 - Two models implemented ⇒ Estimate effect seawater temperature at well bottom hole during dissolution:
 - Both indicated that seawater reaches well bottom hole at a temperature close to brine inlet, regardless of seawater temperature at wellhead

- Is erosion an issue?
 - Brine contains insoluables
 - DNVGL-RP-O501 (managing sand production and erosion);
 - During dissolution
 - Brine flows through annular space between outer pipe and inner pipe
 - During brine substitution by gas
 - Brine flows through inner pipe


2 years of brine substitution (conservative)


Depending on the flowrate and concentration, erosion could be an issue

Logistics

Global Development Strategy

- Plan construction several caverns associated to existing oil & gas wells and new projects;
- Plan = f (amount available resources; prioritization issues; location/size; sharing cavern with more than one FPSO);
 - Limited resources and conflicting decisions;
- Optimization approach = PROPOSED;
- Main phases:
 - 1) Elaboration different scenarios concerning Santos Basin development;
 - 2) Mathematical modelling;
 - 3) Optimization.
- Output:
 - 1) Location; 2) Size; 3) When to build; 4)
 Connections between FPSOs and salt caverns.

Lula Oil Field (Pre-Salt) & Candidate Sites for Installation of Salt Caverns

Risk Analysis

SEVENTY MODABILITY	Catastrophic (1)	Critical (2)	Marginal (3)	Negligible (4)	
Frequent (A)	High	High	-	Mediam	
Probable	High	HID	Serious	Median	
Occasional (13	High	Series	Medium.		
Remote (D)	Second	Medium	Medium	1.6.0	
mprobable (E)	Medium	Medium	Medium	i ana	
Eliminated		Ela	ande		

Methodology

- Development of Preliminary Risk Analysis (APRI, in Portuguese), identifying hazard events, causes, and consequences;
- Evaluation of events' frequency and consequences' severity;
- Qualitative Risk assessment according to SHELL standards;
- Barriers identification;
 - Establishment of mitigation plan

- Scope:
 - Cavern well construction APRI
 - Well design APRI
 - Subsea Design APRI
 - Topside APRI
 - Cavern Operation APRI
 - Subsea Operation APRI
 - HSE / Legislation / Assumptions APRI
 - Logistic APRI

HSSE & Regulation – Project 42

Contribution project 42

- 1. Screening

- 1.1. Definition of the type of licensing by Project 42 staff (all team);
 2 months August and September;
- 1.2. Discussion about type licensing with participation of IBAMA and Project 34;
 1 month September;

- 2. Scoping

- 2.1. Scope of the Environmental Study (analysis of alternatives, risk assessment, impact analysis and PBA (mitigating measures):

 Definition scope Environmental Study required for licensing (EIA team)
 5 months November to March;
- 2.2. Discussion about the scope with participation of IBAMA and Project 34
 5 months November to March.

- Deliverables

- March
- Understanding about the screening step of salt cavern project licensing;
- Draft of the Term of Reference of the Environmental Study.

THANK YOU

facebook.com/GasInnovation

twitter.com/rcgipage

www.usp.br/rcgi