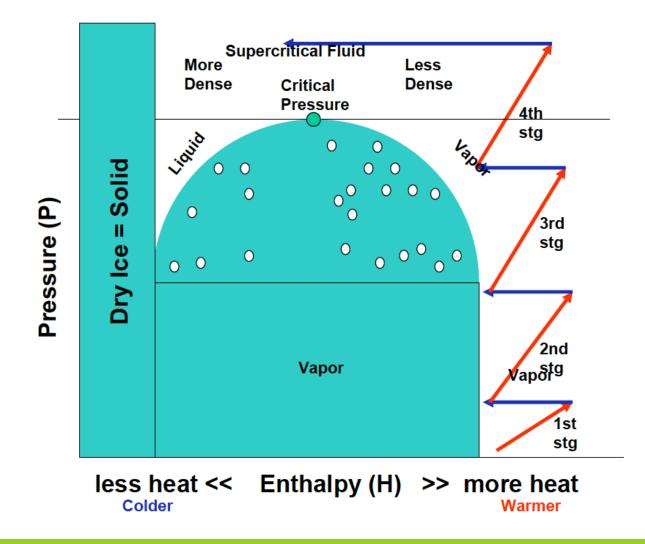
SIMULATION AND OPTIMIZATION OF COMPRESSOR FOR CO₂ AND CO₂ - CH₄ MIXTURES IN SUPERCRITICAL CONDITIONS

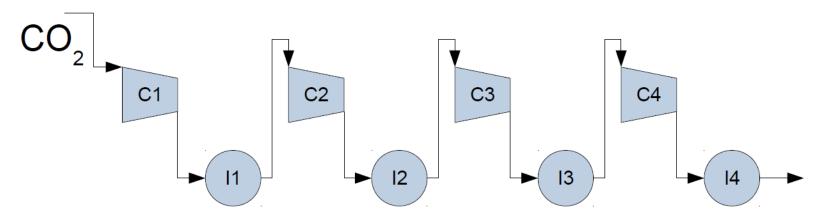
Prof. Dr. Jurandir Itizo Yanagihara

Dept. of Mechanical Engineering University of São Paulo, Brazil



V Workshop Interno RCGI August 21st and 22nd, 2018

Research Team

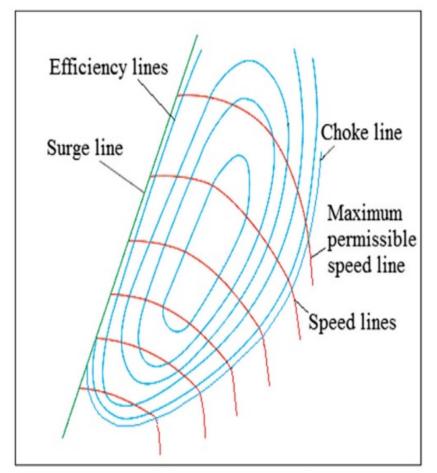

- Faculties: Jurandir Itizo Yanagihara PI (EPUSP), Emilio Carlos Nelli Silva (EPUSP), Fabio Saltara (EPUSP), Sergio Frascino Muller de Almeida (EPUSP), Paulo Eduardo Batista de Mello (FEI), Leandro Oliveira Salviano (UNESP), Daniel Jonas Dezan (UFABC)
- **Doctoral Students:** Carlos Massaiti Okubo Junior, Luis Fernando Garcia Rodriguez
- Master Students: Julia Silva de Matos, Bruno Jose Nagy Antonio, Kayo Henrique Rodrigues

Compression of Supercritical CO2

Thermodynamic Analysis

- Objectives
 - Estimate total power requirement as a function of the number of stages
 - Determine the number of stages (actually, a decision)
 - Determine inlet conditions in each stage
 - This is a requirement to proceed with rotor geometry definition and its CFD simulation for further optimization

Thermodynamic Analysis


Implementation

- Console application written in C# uses Coolprop to evaluate properties
- Optimization using Matlab
- Minimum power: four stages

Fluid	rp1	rp2	rp3	rp4	W _{TOTAL} (kW)
Pure CH ₄	3.5566	2.9894	2.5719	2.3940	49388
Pure CO ₂	4.0318	2.9538	2.0274	2.6980	14684
70% CO ₂	3.8284	3.0479	2.5264	2.2130	20340

1 D Analysis - Mean Line Method

- The Mean Line Method continues to be the best method for a first approach on centrifugal compressors design.
- A Mean Line code was implemented on MATLAB[®] software.
- The code is able to predict the centrifugal compressor performance faster than a CFD code with good accuracy.

Non-dimensional mass (or volume) flow rate

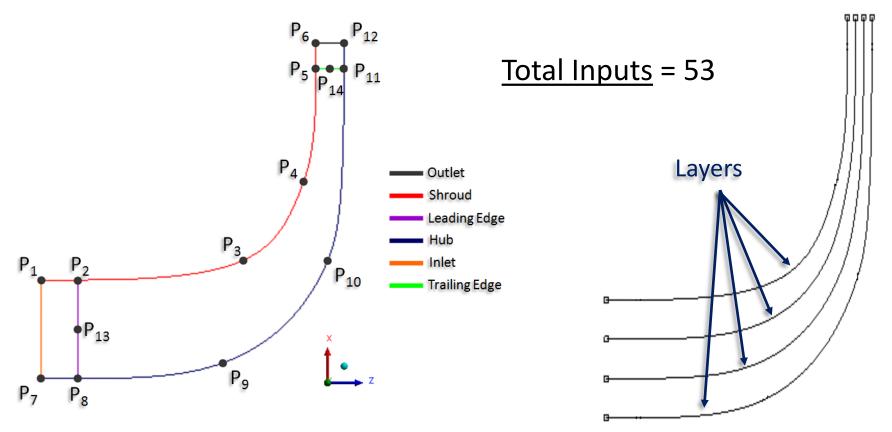
1 D Analysis - Mean Line Method

The code was validated with experimental data for Air and Supercritical Carbon Dioxide (S-CO2)

Air				
	Experimental Data	Mean Line Code	Relative Error %	
Rotor Efficiency [-]	0,880	0,880	0,00	
Pressure Ratio [-]	2,176	2,081	4,37	

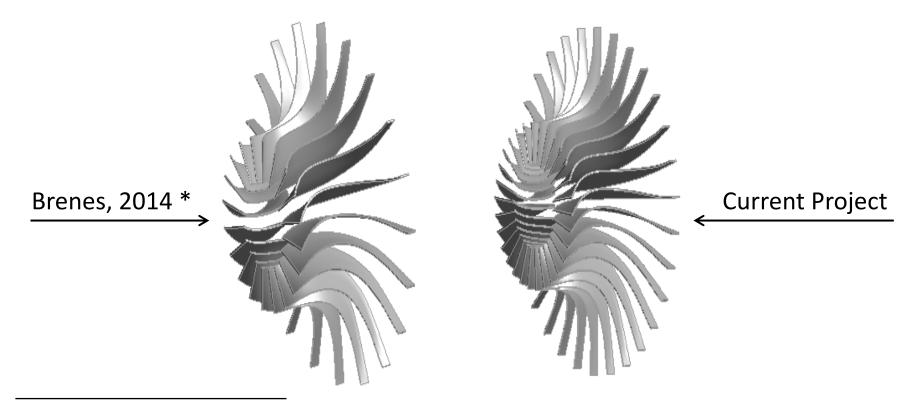
Supercritical Carbon Dioxide					
	Experimental Data	Mean Line Code	Relative Error %		
Outlet Temperature [K]	378,9	376,93	0,52		
Outlet Pressure [kPa]	24000	23540	1,92		
Pressure Ratio [-]	2,5	2,48	0,80		

RESEARCH CENTRE FOR GAS INNOVATION


Thermodynamic Properties of S-CO2

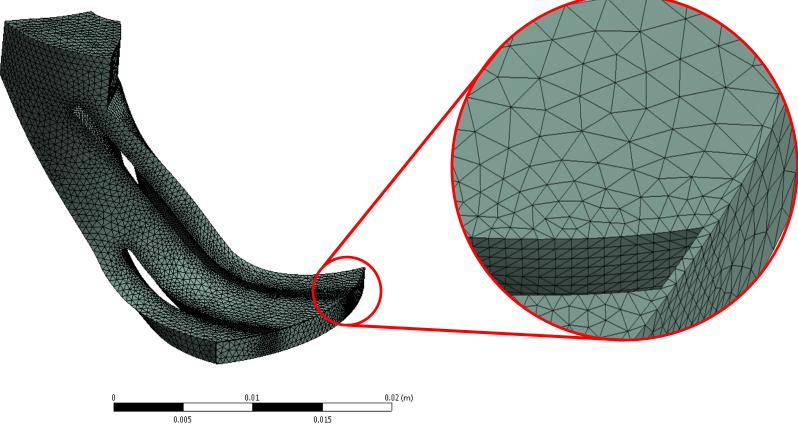
🚾 Thermophysical Propert 🗙 🕂		
← → ♂ ☆ ③ ♥ ♣	https://webbook. nist.gov /chemistry/fluid/	
🌣 Most Visited 🥘 Getting Started 🖨 [Pla	ay]	
National Institute of Standards and Technology U.S. Department of Commerce	NIST Chemistry WebBook, SRD 69	File Edit View Search Tools Documents Help DESCRIPTION
A Search ▼ NIST Data ▼	About V	S-C02 From NIST NAME SC02
-	l Properties of Fluid System vailable for several fluids. These data include the following:	INDEX
 C_p Enthalpy Internal energy Viscosity 	 Specific volume C_v Entropy Speed of Sound Thermal conductivity Surface tension (saturation curve only) 	1 7.5000000E+006 PMAX_SUPERHEAT 3.0000000E+007 TMIN_SUPERHEAT 3.0000000E+002 TMAX_SUPERHEAT 1.1000000E+003 SUPERCOLING 0.0000000E+000
Please follow the steps below to select the 1. Please select the species of interess Carbon dioxide 2. Please choose the units you wish to Temperature O Kelvin Celsius Fahr	t:]= D use:	P_CRITICAL 7.3800000E+006 P_TRIPLE 5.185000E+005 T_CRITICAL 3.0418000E+002 T_TRIPLE 2.1658000E+002 GAS_CONSTANT Plain Text ▼
Pressure MPa bar atm.		

- Properties can be downloaded from NIST Website
- Converted through Matlab application to a RGP (Real Gas Properties) text file that can be used in ANSYS CFX


Blade Parametric Modeling for FVM

Geometry Input Variables:

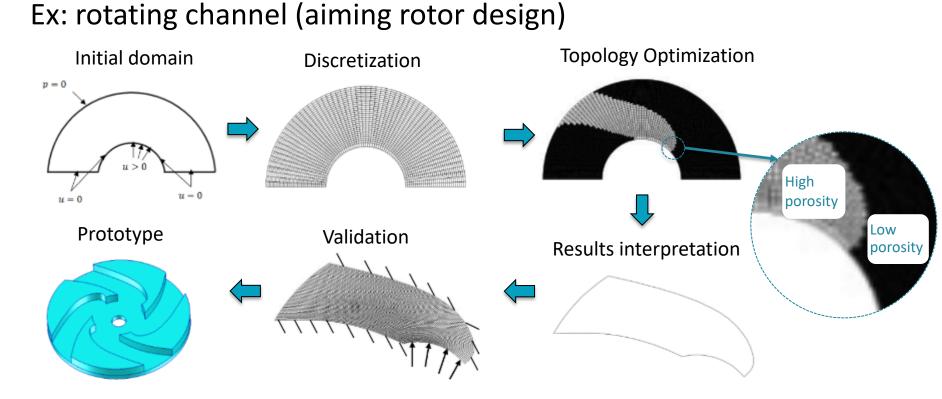
Centrifugal Compressor Modeling for FVM


Geometry Input Variables:

* Brenes, B.M., 2014. Design of supercritical carbon dioxide centrifugal compressors. University of Seville, Spain.

Centrifugal Compressor Modeling for FVM

• Meshing (On going):

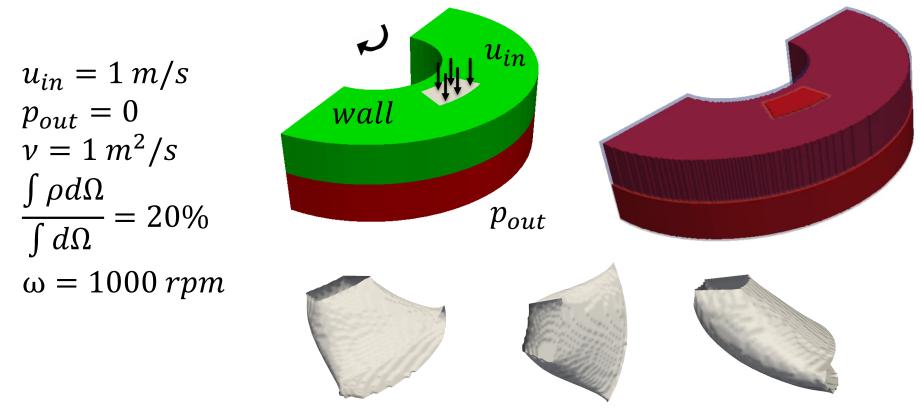


FVM Simulation and Parametric Optimization

Next Steps:

- Coupling of 1D Software and ModeFrontier for 1D Optimization
- Implementation of Blade Parametric Modeling in the Vista CCD Software
- FVM software validation (turbulence model, meshing, S-CO₂ properties) using experimental data from the Sandia S-CO₂ Compressor

Determine material distribution in a design domain such that an objective function is extremized and constraints are fulfilled


- Work is being developed in OpenFOAM
- Currently using Continuous Adjoint Method (sensitivities calculation)
- Optimization problem definition:

Minimize Energy dissipation /Pressure drop /Other functions

 $\begin{aligned} \text{Subject to} \left\{ \begin{matrix} \text{Navier Stokes + porosity field (design variables for TopOpt)} \\ \text{Volume constraint} \\ \text{Design variable constraint } (0 \leq \rho_{des} \leq 1) \end{matrix} \right. \end{aligned}$

Porosity field represented by αu in Navier Stokes equations $\alpha = f(\rho_{des}) \Rightarrow$ Porosity field controlled by ρ_{des}

 Example: design of a rotating channel minimizing energy dissipation (incompressible + without turbulence models)

Next steps

- Cases with turbulence models are being studied, but improvements are necessary
- Assessment of Discrete Adjoint Method (sensitivities calculation)
- Optimize compressible flow cases

THANK YOU

