PROJECT 39 - DEVELOPMENT OF GAS SUPERSONIC SEPARATORS - OPTIMISATION, NUMERICAL SIMULATION AND EXPERIMENTS

Paulo V. M. Yamabe¹, Breno A. Avancini², Douglas Serson², Jairo P. C. Filho², Ulisses A. S. Costa², Julián Restrepo², Reinaldo M. Orselli³, Marcelo T. Hayashi³, José R. S. Moreira², Julio R. Meneghini¹, Bruno S. Carmo², Ernani V. Volpe ², Emilio C. N. Silva¹

¹ Department of Mechatronics Engineering and Mechanical Systems, University of São Paulo
² Department of Mechanical Engineering, University of São Paulo
³ Department of Aerospace Engineering, Federal University of ABC

V WORKSHOP INTERNO RCGI 21 e 22 de agosto de 2018

Outline

- Introduction
- WCCM Presentation: Comparison between numerical approaches to simulate a supersonic nozzle
- Parametric Optimization (second throat)
- Shape Optimization

Outline

- Introduction
- WCCM Presentation: Comparison between numerical approaches to simulate a supersonic nozzle
- Parametric Optimization
- Shape Optimization

Project 39: Development of gas supersonic separators - optimization, numerical simulation and experiments

Supersonic Separator

Uses the cooling properties of a converging-diverging nozzle with the principles of centrifugal separation

Advantages: Compact, no moving parts, no extra chemical products

Outline

- Introduction
- WCCM Presentation: Comparison between numerical approaches to simulate a supersonic nozzle
- Parametric Optimization
- Shape Optimization

Comparison between numerical approaches to simulate a supersonic nozzle

 13th World Congress on Computational Mechanics, July 22-27, New York-USA

 Objective: Use different numerical approaches for the same test case and compare the results (i.e. shock position, Stagnation Temperature conservation)

Computer codes

Main Hypothesis

- Inviscid (2D Compressible Euler equations)
- Perfect Gas
- No phase change
- Single component

Geometry and boundary conditions

$$Area(x) = 2.5 + 3\left(\frac{x}{5} - 1.5\right)\left(\frac{x}{5}\right)^2 \text{ for } x \le 5$$
$$Area(x) = 3.5 - \frac{x}{5}\left[6 - 4.5\left(\frac{x}{5}\right) + \left(\frac{x}{5}\right)^2\right] \text{ for } x > 5$$

Arina R., Numerical simulation of near-critical fluids, *Applied Numerical Mathematics*, Volume 51, Issue 4, 2004, Pages 409-426, ISSN 0168-9274, https://doi.org/10.1016/j.apnum.2004.06.002.

Results compared at the center line of the geometry (y=0)

Comparison - Density $[kg/m^3]$

Comparison - Density $[kg/m^3]$ - (zoom)

Comparison – Stagnation Temperature [K]

Comparison – Stagnation Temperature [K]

Conclusion of comparison

- Shock position:
 - All numerical approaches predicted the shock near 7.0
 - Nektar predicted the shock upstream
- Total Temperature conservation:
 - FVM (Fluent and SU2) no oscillations
 - FEM (Nektar and FEniCS) oscillations near shock
- Cannot discard any of the computer programs (yet)
 - Can improve the results with some tuning (using different methods and schemes)
- Still needs experimental tests to validate the solvers (for this particular case)

Outline

- Introduction
- WCCM Presentation: Comparison between numerical approaches to simulate a supersonic nozzle
- Parametric Optimization (second throat)
- Shape Optimization

CFD flow modeling

- Fluent
- Turbulence model: $k\epsilon RNG$;
- Equation of state: Ideal gas;
- Main assumptions of the flow:
 - Adiabatic flow;
 - No chemical reactions;
 - Gases flowing in equilibrium;

Second throat – Geometry definition

Second throat – Static temperature

Static temperature along axis

Second throat – Total pressure

Total pressure along axis

Outline

- Introduction
- WCCM Presentation: Comparison between numerical approaches to simulate a supersonic nozzle
- Parametric Optimization
- Shape Optimization

CH₄ as an Ideal Gas: Stagnation properties

Stagnation pressure [Pa]

CH₄ as an ideal gas: Temperature distribution [Celsius]

T_Celsius -5.939e+01 -41.4 -23.5 -5.54 1.241e+01

CH₄ as an ideal gas: Pressure distribution at several Optimization Cycles

Method: Hicks-Henne bump functions

Next Steps

- Use different computer codes: OpenFOAM, Comsol, CFD++
- Study the influence of the collector
- Study Turbulence models
- Study shape optimization
- Study real gas effects
- Implement topology optimization

Next Steps

- Use different computer codes: OpenFOAM, Comsol, CFD++
- Study the influence of the collector
- Study Turbulence models
- Improve shape optimization
- Study real gas effects
- Implement topology optimization

THANK YOU

facebook.com/GasInnovation

twitter.com/rcgipage

www.usp.br/rcgi