

Tropical soils have negative (-) and positive (+) charges, but negative (-) charges predominate.
\checkmark Elements in ionic form with negative (-) (anions) or positive $(+)$ (cations) charge are present in the soil solution.
\checkmark Anions are repelled by the negative charges of the ground, because like charges repel each other.
\checkmark Cations can electrostatically bond to negative charges in the ground, as opposite charges attract each other.

This characteristic means that cations are not easily lost, serving as a mechanism for storing elements in the soil.
\checkmark However, this bond is weak, allowing cations to be easily exchanged. Thus, an element that is occupying negative charges in the soil can be exchanged for another positively charged element, depending on the chemical balance in the soil.

This soil characteristic is called CATION EXCHANGE CAPACITY (CEC)

3
The strength of the bond between the elements and the ground is determined by:
\checkmark Hydrated radius: the greater the amount of water surrounding the element, the lower the bonding force with the soil;
\checkmark Ionic radius: the greater the ionic radius of the element, the greater the bond strength with the ground;
\checkmark Valence: the higher the valence of the element, the greater the bond strength with the ground. Elements can have valence $+1,+2$ or +3 which will bond to 1 , 2 or 3 negative ground charges, respectively.

4
Among the cations present in the soil:
\checkmark Some are beneficial to plants, such as $\mathrm{K}^{+1}, \mathrm{Ca}^{+2}$ and Mg^{+2}, which are nutrients required by plants. As these elements do not generate acidity, they are considered the bases of the soil.
\checkmark Some cations can be toxic to plants even in small amounts, such as H^{+1} or Al^{+3}, as they cause soil acidity and compete with nutrients for negative soil charges.

Elemental charges that may be present in the soil

Fold along the dotted lines and cut out the outer edges of the board.

Cut, fold in line dotted and glue as in the figures below.

Cut, fold on the dotted line and glue only the "ball" as shown here.

Cut only on the thickest line to separate the cards, as in the picture below.

Plant uptake Ca^{+2} from your opponent

TAKE OFF $1 \mathrm{Ca}^{+2}$ FROM YOUR OPPONENT OR ADD $1 \mathrm{Ca}^{+2}$

Limestone application
TAKE OFF $1 \mathrm{H}^{+1}$ OR $1 \mathrm{Al}^{+3}$

