Extreme [OIII] emitters in S-PLUS

Amanda Lopes (ON/MCTI) amandalopes@on.br Collaborators: Eduardo Telles, Ricardo Amorín

Observatório Nacional

14th Collaboration S-PLUS Meeting December/2020

Extreme emission line galaxies

- Spectra characterized by strong emission lines,
 i.e. EW([OIII]) > 200Å ou EW(Hα) > 200Å.
- Low mass galaxies

Compact objects

Low metallicity

High specific star formation rate (sSFR = SFR/M ~ 10⁻⁷ yr)

SDSS J214459.58-001140.2

Local Analogs of high-z galaxies

- Low metallicity
- High specific star formation rate (sSFR = SFR/M $\sim 10^{-7}$ yr)
- High ionization
- Simplest starbursts in local in galactic scale with the highest SF efficiencies

Blueberries (Yang et al. 2017)

Green Peas (Cardamone et al. 2009)

XMP (I Zwicky 18)

Project goals

- Select EELG candidates at different z-ranges
 - + Hα at J0660 (z<0.016), J0861 (0.285<z<0.036)
 - + [OIII] at J0515 (0.008<z<0.05), J0660 (0.323<z<0.332)
- Characterize EELG candidates (estimate line fluxes, SFR, perform SED-fitting...)
- Select best candidates for spectroscopic follow-up

How to identify EELGs?

- Excess in a narrow band indicate the presence of a emission line
- Locate using color-color plots
- Keep in mind: high-z interlopers at J0515 (different emission lines at different z)
 - + Mg II at z~0.8 ; C III] at z~1.7 ; C IV at z~2.3 ; Ly α at z~3.2

EELGs selection

From known [OIII] EELGs:
 + J0515-r < -0.5 ; r-i < 0.18 ; g-J0515>0.5 ; J0430-J0515>0.5

Line emission flux estimates

Code for Emission Line Analysis in	
Photometric Surveys	## CODE FOR EMISSION LINE ANALYSIS IN PHOTOMETRIC SURVEYS ## # Input parameters
	# Survey and data release number. Options: SPLUS_DR1, SPLUS_iDR3, # JPLUS_DR1 survey = SPLUS_iDR3
	# File containing the input data. It needs to be in .csv format. The # file must include a column named 'ID' (id of the object). If such column is not found, one will be created based on TLE ID and NUMBER
> python photoLineEmission.py -input initial	will be displayed. The photometric data must be included as band_datatype' (flux/magnitude in a given band) and 'e_band_datatype' (magnitude error in a given band). For example: 'FS15 petro'.
> python photoLineEmission.py -check lineEmission.ini	'e_F515_petro', 'J0660_petro', 'e_J0660_petro'. An exception is survey=SPLUS_DR1, where error columns are named as eband datatype, e.g. eg_petro. If the spectroscopic redshift is available, it should be presented in a column named 'z'.
> python photoLineEmission.py -run lineEmission.ini	bs_data = test_SB_iDR3.csv Choose the type of included in the obs_data file: magnitude or flux. The magnitude units must be in AB mag and the fluxes in 1e-19 erg/s/cm^2.
	Mag_flux = mag
	<pre># Type of magnitude/flux: petro, auto, aper_3, aper_6, iso. All types # included in the obs_data file will be presented in terminal after # -check procedure. If the data_type selected is not presented in the # file, an error will be displayed. data_type = aper_6</pre>
	# Set of line emissions to be analyzed. Options are: # Halpha+NII , Hbeta+OIII , Hbeta , [OIII], [OII] lines = Halpha+NII
	# Narrow band where the line emission is located. Options are: J0378,

bandExcess = J0660

Results line emission flux and EW

Testing selection

Cross-match between SDSS DR16 e S-PLUS iDR3 (Stripe82) for all objects with spectroscopic measurements

Total: 137084 objects + 75921 galaxies + 58945 stars

+ 2218 QSOs

Testing selection

This selection loses 5 galaxies with EW([OIII]5007)>200A in 0.008<z<0.05

Candidate EELG selection in Stripe82

Searching for strong [OIII] emitters at 0.008<z<0.05 in 170 Stripe82 fields in S-PLUS

Color significance cut (> 3 σ): $\Sigma = 1 - \frac{10^{-0.4(g-J0515)}}{10^{-0.4(z_p-J0515)}\sqrt{\sigma_g^2 + \sigma_{J0515}^2}}$

Candidate EELG selection in Stripe82

For 163 fields : 251 objects (mag err<0.1)

Candidate EELG selection in Stripe82

Some known objects:

Conclusions and perspectives

- The search for extreme [OIII] emitters is promising
- We still need to correct for potential high-z interlopers
- Finalize the 170 Stripe82 fields
- Characterize the candidates (mass, SFR, stellar populations,...)
- Spectroscopic follow-up for best candidates
- Search for [OIII] emitters at J0660 and H α at J0660 and J0861
- Any comments, suggestions or questions: amandalopes@on.br