S-PLUS virtual meeting

Charachtersizing galaxies' morphologies in the Fornax cluster using S-PLUS data

Arianna Cortesi, **Paola Dimauro**, Analia Smith, Fabio
Herpic, Felipe de Almeida
Fernandes,
Fabricio Ferrari, Geferson
Lucatelli, Clecio De Bom

Galaxies

Galaxies formation histories and their environment

Different environment different formation histories

- * clusters: ram pressure stripping, strangulation
- * groups: minor mergers, harassment
- * field: secular evolution, fossil groups

Different formation mechanism = different galaxy properties

- * clusters: disk fading, nothing happens to the bulge
- groups: disk fading, bulge enhancement, star formation
- * field: presence of bars, pseudo bulge, diffuse light, shells

bulge Sersic index

colour gradient bulge-disk

B/T

bars

Unraveling galaxies structural parameters, colours, morphologies ...

Unraveling galaxies structural parameters, colours, morphologies ...

... understanding galaxies' formation histories

Two types of galaxies?

spirals

ellipticals

Three types of galaxies?

Two distinct components

disks

formed by cooling gas

rotational motions

spheroids

formed by mergers (& secular processes)

> random motions

MegaMorph

- Address the issues with current software:
- 1) Implement multi-band bulge-disk decomposition
- 2) Incorporate non-parametric components
- 3) Enable accurate model selection
- 4) Ensure fast enough to process large surveys (although probably needing supercomputer)
- Collaboration between astronomers, statisticians and computer scientists
- Funded by Qatar National Research Fund

MegaMorph

- This method extends current single-band fitting (GALFIT3) process by simultaneously using multiple images of the same galaxy to constrain a wavelength-dependent model.
- Explore accurate model selection and increase accuracy
- Implement multi-band bulge-disk decomposition
- Allows to push to fainter objects
- Improves fitting at high redshift
- Ensure fast enough to process large surveys

MegaMorph

Building upon existing, tried and tested, software:

by Marco Barden, et al.

by Emmanuel Bertin

GALFIT

by Chien Peng

MultiNest by Farhan Feroz & Mike Hobson

The value of colour information

simulated monochromatic observations

The value of colour information

simulated colour observations

Simplest assumption

- Each structural component has a single homogeneous SED
 - components have no wavelength dependence

Simplest assumption

- Each structural component has a single homogeneous SED
 - components have no wavelength dependence

But...

- not true (gradients)
- not practical (too many components)

Wavelength dependent structures

$$f(\lambda) = \sum_{i=0}^{m} c_i T_i(\lambda)$$

Each standard GALFIT parameter

→ polynomial function of wavelength

$$I(r) = I_e \exp\left(-b_n \left[(r/r_e)^{1/n} - 1) \right] \right)$$
 $I_e(\lambda) \qquad r_e(\lambda) \qquad n(\lambda)$

Cutting stamps

Sextractor:

cold (blue) and hot (red) catalogue extracted from reference image (high S/N)

calculate correct background (input for GALFIT)

calculate galaxy center

find neighbours (fit them if brighter than a certain threshold - including stars)

COLD

HOT

Vulcani et al 2014

High Luminosity

Keneddy 2015

Low Luminosity

Keneddy 2015

Fornax - SPLUS

Fornax - SPLUS

Fornax - SPLUS

An example SS

An example SS: residuals

An example BD

Variations of parameters with wavelengths

Variations of parameters with wavelengths

SEDs

Extremely Preliminar

Synergies

ENVIRONMENT

Thank you

