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① AlStar – SED fitting (you’ve seen this before..) 

②  Scubes – masks & pre-processing… 

③  AlStar + Scubes: (preliminary) results 

④  Next steps and whatodowiththis 

Things are going ~ well, BUT: 
 
Ø  Need work on pre-processing / segmentation 

Ø  Check if AlStar SFHs make sense! Add UV & IR? 

Ø  Dilemas ...   



è Linear system solvable via NLLS  (except for dust attenuation) 
è Monte Carlo to estimate uncertainties 

M(λ) =   Σ  x(t,Z)  ×  Base(λ;t,Z)  × e- τ(t,Z)   × 
q(λ) 
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AlStar: Stellar base ���
 
•  80 stellar populations = 16 ages x 5 metallicites 

0 è 3M è 10M è 30M è 60M è 100M  è 250M è 450M è 700M 
   è 1G è  2G  è  3G  è 4.5G è 6.25G è 8.5G  è 11G    è 14G t = 
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AlStar: Emission Line base ���
 
•  individual lines        – too much freedom  L  

•  BPT-based line components  – smarter / realistic   J 

[OII]3727 ,  [OIII]4959+5007 ,  [NII]6548+6584 , 
[SII]6716+6731  ,  Hα+Hβ+Hγ+Hδ+... 5 line-groups : 
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1st  AlStar  results  for  Fornax  galaxies 

Roberto Cid Fernandes – UFSC 
André Luiz de Amorim – UFSC 
Fábio Herpich – ex-UFSC  
Júlia Thainá Batista – UFSC 

x  Data 
–     Fit 

–  Residual 
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Scubes: λ, Fλyx, ελyx, flagλyx 

2 
NGC 986 



2 

Ø Delimit area of interest 
Ø Mask foreground stars & other crap 
Ø Select good data: <S/N> > 2 

maskyx 

= list of pixels to fit 

Need smarter segmentation scheme! 
Rebinning / Smoothing / Voronoi / … 

Scubes: λ, Fλyx, ελyx, flagλyx   +   maskyx 



2 Scubes: λ, Fλyx, ελyx, flagλyx    +   maskyx 
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N ~ 1000 individual spectra: 
•  Fz(λ) and its error 
•  Spectral masks - mz(λ) 
•  Bad pixel flags  - bz(λ) 
•  Correlated errors 
•  Galactic extinction 
•  Rest-framing & resampling 

STARLIGHT 

Voronoi binning:  
S/N > 20 

The PyCASSO pipeline 
Python CAlifa Starlight Synthesis Organizer 

M* , v* ,σ*,  τV, 
<age*>, <Z*>, SFH, ... 
as a function of (x,y) !! 

Cleaning: spatial 
& spectral masks 

2 
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From datacubes to: 
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Maps of mean stellar age, Z, SFR, τV, …  
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1st Results 
 

ü  Examples of pixel spectral fits 

ü  A test of the photometric errors 

ü Maps & “radial” profiles 
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3 Results: empirical test of the errors ελyx 
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B. Husemann et al.: The CALIFA survey. II.

Fig. 8. Example of a stellar population fit with Starlight to the cen-
tral V500 spectrum of NGC 5966, restricted to the unvignetted part.
The observed, modeled and residual spectrum are shown together with
the pipeline produced ±1� error. Sky and galaxy emission line regions
masked during the fitting are indicated by the gray shaded areas.

Fig. 9. Histogram of the observed (O�k) minus model (M�k) residuals at
each wavelength normalized by the formal flux error (✏�k). The model
spectra are obtained from Starlight fits for the stellar continuum, ex-
cluding the main emission lines, as well as bad pixels. The histogram
describes almost a Gaussian centered at 0 with a dispersion of ⇠0.8.
The blue line indicates a Gaussian distribution centered at 0 with a dis-
persion of 1, normalized to the total number of pixels for comparison.
On the assumption that the spectral residuals are due to noise (i.e., ne-
glecting model imperfections), this figure demonstrates that the pipeline
error estimates are reliable.

a perfect fit. Selecting di↵erent wavelength ranges for this com-
parison to avoid regions with systematic template mismatches
mainly changes the centroid of the distribution whereas the stan-
dard deviation is nearly constant. Thus, the propagated errors are
overestimated by ⇠20% in the mean. This was also verified for
the V1200 setup using the same method. The overall conclusion
of this test is that the errors provided in DR1 are robust, with a
slight systematic overestimation of ⇠20% that can be taken into
account during any analysis if needed.

3.3. Characterization of spatially correlated noise

It is often necessary to spatially co-add spaxels in the datacubes
to achieve a minimum signal-to-noise ratio (S/N) in the spectra

for a specific application. For CALIFA we adopt an inverse-
distance weighted image reconstruction scheme so far, which
averages the flux among all fibers within 500 for a given spaxel
in the final datacube by assuming a 2D Gaussian profile with a
dispersion of 100 for the individual weighting factors (see S12
for details). Like many other image resampling schemes it in-
troduces significant correlation between the spaxels in the final
datacubes. This can be understood from simple arguments. Each
CALIFA dataset contains 993 physically independent spectra
from the fibers of the three dithered pointings, but the final
datacube consists of more than 4000 spectra at a sampling of
100⇥100 per spaxel. This automatically implies that the final spax-
els cannot be completely independent from each other within the
CALIFA datacubes through the complex correlation of signal
and noise between neighboring spaxels.

In the limit case of co-adding the spectra of the entire cube,
the pipeline analytically calculates an error weighting factor for
each pixel such that the formal error of the co-added spectrum
is identical to the one obtained by co-adding the individual fiber
spectra. Of course, this is an unrealistic case, because only spec-
tra within a small zone are typically co-added to preserve some
spatial resolution. A popular method for adaptive binning is the
Voronoi-binning scheme implemented for optical IFS data by
Cappellari & Copin (2003). It assumes that the spectra are com-
pletely independent of each other to compute the required bin
size for a given target S/N. Blindly adopting such a binning
scheme to CALIFA datacubes will lead to incorrect results, be-
cause the assumption that the spectra are independent is not
valid. Either the bin sizes will be smaller than required to achieve
the target S/N, or alternatively expressed, the error of the co-
added spectra will be higher than formally expected given the
error of individual spaxels.

Here, we characterize the e↵ect of the correlated noise by
determining the ratio of the “real” error (✏real), directly estimated
from the residuals R�k, to the analytically propagated error (✏bin)
of binned spectra as a function of bin for a certain target S/N.
The results obtained for all DR1 datasets are shown in Fig. 10
for the two instrumental setups with a target S/N level of 20.
The observed trends can be su�ciently described by a simple
logarithmic function1

✏real = ✏bin
⇥
1 + ↵ log n

⇤
, (1)

with n the number of spaxels per bin.
The values for the slope ↵ range from 1.35 to 1.45 with a

mean of ↵ = 1.4, for target S/N values between 10 and 60. The
fits to the data result in less accurate exponents for target S/N
ratios of 10 and 60 given the poor sampling towards large- and
small-size bins, but the overall shape is preserved. This means
that ↵ mainly depends on the number of spaxels per bin and not
on the target S/N.

4. CALIFA data format and characteristics

The CALIFA data are stored and delivered as datacubes (three-
dimensional data) in the standard binary FITS format and consist
of four FITS header/data units (HDU). These datacubes repre-
sent (1) the measured flux densities, corrected for Galactic ex-
tinction as described in S12, in units of 10�16 erg s�1 cm�2 Å�1

(primary datacube), (2) associated errors, (3) error weighting
factors, and (4) bad pixels flags (Table 2). They allow users to
1 An independent estimate of this empirical relation, proposed by Cid
Fernandes et al. (in prep.), is completely consistent within the estimated
uncertainties.
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Results: empirical test of the errors ελyx 
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3 Results: Maps & circular profiles 
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!Should do elliptical rings …   
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Things are going ~ well, BUT: 
 
Ø  Need work on masks / pre-processing / segmentation / ...  

Ø  Check if AlStar SFHs makes sense! 

Ø  Add UV & IR?  Who’s gonna do it? 

Ø  The dilemas of poor-man-IFU work ...  

 ¿ It is all worth it given CALIFA/SAMI/MaNGA/MUSE/… ? 
 ¿ What are we gonna do with it, really ?  

 

Conclusions & outlook 
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