An Approach for Rapid Estimates of [Fe/H], [C/Fe], and [Mg/Fe] for S-PLUS Stars

TIMOTHY C. BEERS UNIVERSITY OF NOTRE DAME, USA

With Haibo Yuan, Young Sun Lee, Yang Huang

CURRENT STATUS

Whitten et al. (2021) have established that use of a sophisticated neural network approach with S-PLUS filters is capable of obtaining estimates of stellar parameters (Teff, log g, [Fe/H] and [C/Fe]) based on S-PLUS narrow- and medium-band filters

Pros:

Appears to work extremely well, down to [Fe/H] \sim -3.5 to -4.0 Provides estimates that are robust to photometric errors in individual filters

Somewhat complex

Yet to be extended to other elements

WHITTEN ET AL. (2021)

WHITTEN ET AL. (2021)

Distribution of residuals in Teff, [Fe/H], [C/Fe] with respect to Teff

AN ALTERNATIVE APPROACH

Huang et al. (2021) have established that a combination of narrow- or medium-band filters from SkyMapper (e.g., v or u) with Gaia broad-band color (G_{BP}- G_{RP}) can provide accurate estimates of Teff and [Fe/H] based on polynomial fits

Precision of Gaia colors is extremely high

Appears to work extremely well, down to [Fe/H] \sim -3.5

Inherently simpler to apply, once filters are properly zero-pointed

Yet to be extended to other elements

Dwarfs

Giants

Distribution of residuals in [Fe/H]_{phot} with respect to [Fe/H]_{spec} for mediumand high-resolution determinations

A PROPOSAL

- Extend the Huang et al. techniques to S-PLUS for determinations of Teff, [Fe/H], [C/Fe], [Mg/Fe]
- These are the most important elements for tracing the nature of the underlying stellar populations, and can be used in constructing "population blueprints" as in the An & Beers series of papers.
- Can be obtained quickly, essentially as soon as S-PLUS data are taken and reduced, for quick estimates of these parameters that can also be used to identify stars of greatest interest for high-resolution follow-up

HAIBO YUAN ET AL. (IN PREP.)

HAIBO YUAN ET AL. (IN PREP.)

WHY DOES THIS WORK ?

- Determination of [Fe/H] based on S-PLUS narrow-band filter around the Call H & K lines is relatively insensitive to surface gravity (log g)
- Do not have to DETERMINE log g for each star, just make the relatively trivial split into dwarf and giant classification based on Gaia CMD and [Fe/H]
- The elemental abundances [C/Fe] and [Mg/Fe] ARE sensitive to gravity, BUT they are monotonic individually with color (in different ways) for dwarfs and giants

NEXT STEPS

- Extend the Huang et al. techniques to S-PLUS for determinations of Teff, [Fe/H], [C/Fe], [Mg/Fe] to lower [Fe/H] using spectroscopic params from LAMOST / SDSS obtained with the SSPP
- Currently finishing up final inspection of some 50K / 60K stars from LAMOST and SDSS with -4.5 < [Fe/H] < -1.8</p>
- Use as test cases to compare with possibly improved determinations from, e.g., Whitten et al. (2021) approach for these elements

SMSS SHALLOW SURVEY (DR2)

Figure 1. Coverage of SkyMapper DR2, colour-coded to indicate the progress on different fields: (*black*) complete Main Survey coverage in all six filters; (*red*) at least one Main Survey image in all six filters; (*orange*) Main Survey images in *iz* filters; (*yellow*) Shallow Survey images in all six filters; (*grey*) any images. Main Survey images have exposure times of 100 s in each filter, while the Shallow Survey exposures in u, v, g, r, i, z are 40, 20, 5, 5, 10, 20 s.

The SkyMapper Survey of the Southern Hemisphere

BEYOND SPECTROSCOPY: METALLICITIES, DISTANCES, AND AGE ESTIMATES FOR OVER TWENTY MILLION STARS FROM SMSS DR2 AND GAIA EDR3

QUESTIONS ?