First experiments with S-PLUS galaxies data cubes

Júlia Thainá Batista Supervised: Roberto Cid Fernandes

10 Galaxies

RGB from S-PLUS filters

S-PLUS data cubes

Masking the data NGC 986

810 000 pixels

Reduction of 73%

223 645 pixels

Masking the data NGC 1365

2 250 000 pixels

Reduction of 88.6%

255 327 pixels

PCA Tomography

AlStar's Spectral Fitting

·PCA Tomography

PCA (Principal Components Analysis) changes the coordinates of the system by the variance (decreasing)

 $Flux(\lambda) = \langle Flux \rangle + PC_1 \times E_1(\lambda) + PC_2 \times E_2(\lambda) + PC_3 \times E_3(\lambda) + \dots$

(Tomogram) (Eigenspectrum)

PCA Tomography

Eigenspectra (spectra)

Tomograms

(images)

·PCA Tomography

Tomograms (images) Eigenspectra (spectra)

PCA configurations

- \succ changing variance \Rightarrow different results of PCA
- PCA of data cube
- PCA scaled by the mean spectrum
- PCA normalized each pixel by its mean flux <--
- PCA normalized by the filter r
- PCA of log of the cube

PCA normalized each pixel by its mean flux NGC 986

Eigenspectra

Interpreting the eigenspectra

PCA normalized by the filter r NGC 986

Autoespectros

Interpreting the Eigenspectra

14

Ηα

PCA Tomography for $C_{(y,x)}$ NGC 1326

Tomogram 7 for C(F(y,x)) NGC 1326

Tomogram 7 for C(F(y,x)) NGC 1326

PCA for C(F(y,x)) NGC 1326

- 1.5

-PC2 + PC3 - PC4 + PC5 - PC6 + PC7 - PC8 + PC9 - PC10 + PC11

AlStar + PCA NGC 986

Dust optical depth

PCA of the cube - tomogram 9

RGB compositions of the tomograms

AlStar

Fits and Maps from AlStar

- Spectral fits **Photometric fits** Fits of (recombination) emission lines: [OII] 3727, Hb, [OIII], Ha, [NII], [SII] 6716+6731 Maps of mass Maps of ages
- Maps of dust optical depth \mathbf{O}

Spectral synthesis AlStar

 $= \mathbf{X}_1$

 (t_1, Z_1, T_1) (t_2, Z_2, T_2) (t_3, Z_3, T_3)

+ X₂ + X₃

Spectral sythesis AlStar

Model

Mλ

+ X3

+ X₂

 $= \mathbf{X}_1$

AlStar's stellar base

t = 0, 3, 10, . . . 14 Gyr

80 stellar populations = 16 ages x 5 metalicities

AlStar NGC 986

Fits

Comparison:

Real data x Model

Model from AlStar NGC 986

S-PLUS data NGC 986

Test of photometric errors

NGC 986

Statistics of the Residuals

ελ

Maps and radial profiles from AlStar NGC 986

stellar mass surface density

average of the age log weighted by the light

Maps from AlStar NGC 1365

Observed Luminosity

Dust optical depth

RGB of ages - AlStar

R - old t > 2 Gyr
G - intermediary 10⁸ < t < 2 Gyr

 B - young t < 100 Myr

Link of the dissertation:

https://tede.ufsc.br/teses/PFSC0405-D.pdf

Conclusion

Improve pre-processing, especially in regions with low surface brightness

• PCA: Tomograms indicate good potential, but the interpretation of the eigenspectra needs further work

AlStar: We got great spectral fits, maps and consistent radial profiles for various properties

Promising study to be applied to other S-PLUS galaxies

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Acknowledgment

CAPES

DD

IGIS