Recovering SO galaxies formation routes using S-PLUS multiwavelenghts data to find SO analogues in the IllustrisTNG simulation

A. CORTESI, L. ZENOCRATTI, M.E. DE ROSSI, C. DE BOM, F. FERRARI, G. LUCATELLI, Y. JAFFE, D. PALLERO, L. COCCATO, K. SAHA, C. MENDES DE OLIVEIRA & THE S-PLUS COLLABORATION

All roads lead to SOs?

Galaxies classification schemes (some)

HUBBLE-DE VAUCOULEURS DIAGRAM

Morgan/Yerkes classification Scheme

Galactic Shape	Explanation
В	Barred spiral
D	Rotational symmetry without pronounced spiral or elliptical
E	Elliptical
Ер	Elliptical with dust absorption
I	Irregular
L	Low surface brightness
Ν	Small bright nucleus
S	Spiral

Spectral Type	Explanation		Inclination	Explanation
a	Prominent A stars		1	Galaxy is "face-c
af	Prominent A–F stars		2	
f	Prominent F stars		3	
fg	Prominent F–G stars		4	
g	Prominent G stars		5	
gk	Prominent G–K stars		6	
k	Prominent K stars		7	Galaxy is "edge-
IX.		- <u></u>		

Numerical Hubble stage															
Hubble stage <i>T</i>	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8
de Vaucouleurs class ^[16]	cE	Е	E+	S0-	S0 ⁰	S0+	S0/a	Sa	Sab	Sb	Sbc	Sc	Scd	Sd	Sdm
approximate Hubble class ^[19]		Е			S0		S0/a	Sa	Sa- b	Sb	Sb- c		Sc		Sc- Irr

r,s (rs)= ring/no ring Sm= irregular no bulge Sd = diffuse Im = highly irregular

Some thoughts about SOs

Van den Bergh 1990

... Morgan's suggestion that the SO classification type is a repository of physically quite distinct sorts of objects that exhibit only superficial similarities. This indicates that various kinds of SO galaxies might have arrived at their present morphological state along quited different evolutionary tracks.

Bernard of Chartres(12th century), Isaac Newton 1675

Some thoughts about SOs

Some thoughts about SOs

Bedregal et al. 2006

t ~ 3 Gyr

D'Onofrio et al. 2015

What can we do?

- 1) parameters —-> see Geferson Lucatelli talk firday at 9:40
- Looking for SO galaxies in simulations 2)

We are not the only one

- Deeley et al 2021: Follow the same visual classification scheme used for the SAMI survey, found 2 main routes of forming SOs
- Y. Jaffe & Diego Pallero: Using kinematics properties as determine by studies of SOs with Muse
- Us: using S-PLUS!

Propose unique definition of SO galaxies based on morphometric (kinematics)

• We chose 2 well studied lenticular galaxies as reference:

• We used photometric parameters from MFMTK & S-PLUS pipeline to find their analog in Illustris simulation

2.2) Star-forming gas fraction <= 0.1 2.3) sSFR < 1e-11 $2.4) \log(Mstar) > 10.75$ 2.5) Sersic index in g-band 1 < n < 4 2.6) Sersic index in i-band 1.5 < n < 5.5 2.7) Colour g-i > 1 2.8) Colour u-r > 2 2.9) Concentration index in g-band 0.5 < C < 0.8 2.10) Concentration index in i-band 0.7 < C < 0.9 2.11) In g-band, G-0.14*M20 > 0.80, where G is the Gini coefficient and M20 is the M_20 statistic. 2.11) In g-band, G+0.14*M20 < 0.33, where G is the Gini coefficient and M20 is the M 20 statistic.

What did we do till now

We find 51 SOs analogs

• We compared the properties of the SO analogs and the real ones

We find 51 SOs analogs

• We compared the properties of the SO analogs and the real ones

What did we do till now

We find 51 SOs analogs

We inspect the psf convolved g/i band images of the galaxies

34 SO like

What did we do till now

17 Slike, intercations, blobs

We decomposed the SO galaxies images using GALFITM (Juliana Caffer)

NGC7684

UGC01062

We started decomposing the SO analog galaxies images using GALFITM

Bulge + disk model

residual

non parametric image

• We took our favourite SO

And we recover its merger tree

And we look at its properties

Where did the baryons go? —-> environmental effects

