

CALSAGOS: CLUSTERING ALGORITHMS APPLIED TO GALAXIES IN OVERDENSE SYSTEMS

Daniela Olave-Rojas

Galaxy Clusters

Cosmic laboratories for the study of the environmental drivers of galaxy evolution (e.g. Dressler 1980, De Lucia et al. 2007, Demarco et al. 2010, Lemaux et al. 2012, Cerulo et al. 2014).

Cluster Mass Assembly in a Hierarchical Universe

Galaxy clusters grow through accretion of less massive structures (e.g McGee et al. 2009)

Galaxy Pre-Processing

The project

Title: Understanding the effect of the environment on the evolution of galaxies

Goal: Understand the link between the evolution of galaxies and the formation of their hosting structures

Data: Photometric data from the Southern Photometric Local Universe Survey (S- PLUS; Mendes de Oliveira et al. 2019) + spectroscopic data from archive

The project

The use of the S-PLUS data allows us to:

- i. identify groups and substructures in and around galaxy clusters, reaching the outermost regions of clusters (up to ~5r 200),
- ii. determine the fraction of passive and star forming galaxies in each environment,

iii. determine the environmental quenching efficiency in substructures and clusters

CALSAGOS Clustering ALgorithmS Applied to Galaxies in Overdense Systems

CALSAGOS is a python package develop to select cluster members and to identify substructures in and around galaxy cluster

CALSAGOS uses some pre-existing python modules as:

numpy
 astropy
 matplotlib
 sys
 math
 sklearn
 scipy
 kneebow

CALSAGOS has the following modules:

utils
 redshift_boundaries
 cluster_kinematics
 ds_test
 isomer
 clumberi
 lagasu

utils: functions to estimate errors, convert quantities and estimate distances

redshift_boundaries: functions developed to establish the limits in the redshift distribution

cluster_kinematics: functions developed to estimate the kinematic properties of the cluster (velocity dispersion, escape velocity, peculiar velocity)

ds_test: functions developed to implement the Dressler-Shectman Test (DS-Test, Dressler & Shectman, 1988) in a cluster of galaxies

ISOMER: Identifier of SpectrOscopic MembERs allows to identify the spectroscopic cluster members

$$v = c \frac{z - z_{cl}}{1 + z_{cl}}$$

$$v_{esc} \simeq 927 \left(\frac{M_{200}}{10^{14} h^{-1} M_{\odot}}\right)^{1/2} \left(\frac{r_{200}}{h^{-1} M pc}\right)^{-1/2} km s^{-1}$$
(Harrison 1974)
(Diaferio 1999)

r₂₀₀ is estimated by using equation (7) presented by Finn et al. (2005)

Field interlopers are removed through a 3ơ clipping algorithm (see Yahil & Vidal 1977).

CLUMBERI: CLUster MemBER Identifier allows to identify cluster members using a 3D-Gaussian Mixture Modules (GMM)

Bayesian Information Criterion (BIC)

LAGASU: LAbeller of GAlaxies within SUbstructures assigns galaxies to different substructures in and around a galaxy cluster

DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN, Ester 1996)

Olave-Rojas et al. in prep.

DBSCAN

GMM

Developed by Pablo Araya-Araya as part of S-PLUS collaboration (for details see Araya-Araya et al. 2021)

52987 halos with 13.0 ≤ log(m₂₀₀/m_{sun}) ≤ 15.0 at 0.006 ≤ z ≤ 0.6

2524 halos with log(m₂₀₀/m_{sun}) ≥ 14.0 at 0.007 ≤ z ≤ 0.6 H = 67.3 [km s⁻¹ Mpc⁻¹] $\Omega_{\Lambda} = 0.685$ $\Omega_{m} = 0.315$

419904 galaxies

Original halo + subhalos

We remove subhalos with 2 or less members

319 members + 16 subhalos

z ≈ 0.34 log(m₂₀₀/m_{sun}) ≈ 14.89

Original halo + subhalos

LAGASU application

Original halo + subhalos

CLUMBERI + LAGASU application

Original halo + subhalos

CLUMBERI + DS-Test + LAGASU application

Olave-Rojas et al. in prep.

4 ∈ ∆||

-a0

4: a-1

Important Results

• CLUMBERI has an uncertainty around 2% in selecting cluster members and can be used with photometric data

- In general, the substructures find by using DS-Test + LAGASU are real subhalos
- In general, LAGASU finds fewer groups than real subhalos and also finds some "artificial" groups

Future Works

 Quantify the accuracy of CALSAGOS to identify substructures and groups in and around galaxy clusters

- Publish the code
- Applied CALSAGOS to clusters in S-PLUS (pilot project A1644) to study the pre-processing of galaxies

CALSAGOS: CLUSTERING ALGORITHMS APPLIED TO GALAXIES IN OVERDENSE SYSTEMS

Daniela Olave-Rojas

Detection of Substructures

Vijayaraghavan & Ricker (2013)

Detection of Substructures

δ

DS-Test (Dressler & Schectman 1988)

$$_{i}^{2} = \left(\frac{N_{nn} + 1}{\sigma_{cl}^{2}}\right) \left[(\bar{v}_{local}^{i} - \bar{v}_{cl})^{2} + (\sigma_{local}^{i} - \sigma_{cl})^{2} \right]$$

Dressler et al. (2013)

Detection of Substructures

Dressler-Shectman Test (Dressler & Shectman 1988) GMM DBSCAN (Ester et al. 1996)

Olave-Rojas et al. (2018)

S-PLUS MOCKS

Developed by Pablo Araya-Araya as part of S-PLUS collaboration (for details see Araya-Araya et al. 2021)

<u>W</u> indow <u>R</u> ows <u>H</u> elp										<u>N</u> ir
	2	×								ŧ
Table Browser for 5: galaxies subbalos zobot cat										
	galaxyld	haloid	RA	DEC	z_app	z_phot	firstHaloInFOF	log(m_200)		
1	6938.	16.	93.00825	-4.17524	0.43804	-99.	16.	14.27980	•	
2	14593.	16.	93.57603	-4.16326	0.44123	-99.	16.	14.27986		
3	14471.	16.	93.58762	-4.17509	0.44223	-99.	16.	14.27986		
4	14236.	16.	93.60789	-4.14288	0.44256	-99.	16.	14.27986		
5	14199.	16.	93.60483	-4.14508	0.44523	-99.	16.	14.27986		
6	14113.	16.	93.61955	-4.17627	0.447	-99.	16.	14.27986	1	
7	13802.	16.	93.5917	-4.17153	0.44407	-99.	16.	14.27986		
8	13411.	16.	93.59176	-4.12663	0.44242	-99.	16.	14.27986		
9	12034.	16.	93.64742	-4.14474	0.44212	-99.	16.	14.27986		
10	11993.	16.	93.62098	-4.16399	0.44143	-99.	16.	14.27986		
11	11946.	16.	93.61327	-4.17577	0.44362	-99.	16.	14.27986		
12	9676.	16.	93.58949	-4.17081	0.44071	-99.	16.	14.27986		
13	9647.	16.	93.61121	-4.15999	0.44606	-99.	16.	14.27986		
14	9219.	16.	93.62399	-4.16643	0.44281	-99.	16.	14.27986		
15	9186.	16.	93.59956	-4.16499	0.44118	-99.	16.	14.27986		
16	9151.	16.	93.57858	-4.16624	0.43984	-99.	16.	14.27986		
17	7797.	16.	93.61646	-4.19561	0.44345	-99.	16.	14.27986		
18	7700.	16.	93.61758	-4.17471	0.44378	-99.	16.	14.27986		
19	7445.	16.	93.57937	-4.1727	0.44422	-99.	16.	14.27986	r	
Total: 419,404 Visible: 419,404 Selected: 0										То

TOPCAT(5): Table Browser

Vindow Rows Help

Fable Browser for 3: subhalos_mock_cat

		halold	firstHaloInFOFGro	snapn	m_crit200	np	Г			
	1	4021	10	47	2.49790	20	-			
	2	4359	16	47	4.70823	27				
	3	4712	16	47	Θ.	20				
	4	6394	16	47	2.59386	24				
	5	6981	16	47	49.39023	149				
	6	8710	16	47	23.25606	34				
	7	9614	16	47	9.51124	62				
	8	10585	16	47	8.16836	38				
	9	13191	16	47	3.17026	35				
	10	14172	16	47	13.35581	97				
	11	21072	16	47	10.18374	101				
	12	22291	16	47	41.89029	327				
	13	23568	16	47	46.01419	378				
	14	26618	16	47	49.18804	235				
	15	27680	16	47	6.72517	39				
	16	33432	16	47	8.64661	57				
	17	39815	16	47	3.07441	28				
	18	4049	16	47	0.	20				
	19	4405	16	47	2.97852	22	-			

TOPCAT(3): Table Browser

Total: 262,028 Visible: 262,028 Selected:

S-PLUS MOCKS

Papelera

🝐 Mo	ocks - Google Drive ×	+						•	_ 0	8
← →	C 🔒 drive.google.com/d	drive/folders	/11IBOU	S_kYIxQJT4MrtUS6-6Rjp	7or1C4				☆ () :
🚺 Арр	s 🚩 Gmail 🣴 Translate	🗖 Funcio	onarios	in EDUCANDUS 🧕	Outlook Web 🛛 😢 Cisco Webe	ex 🧯 Microsoft Offi 🔞	NASA/ADS		🗉 Readi	ng list
4	Drive	Q Bus	scar en [Drive		크는	() () ()	ε.	000 000 000	•
+	Nuevo		Comp	oartido conmigo >	S-PLUS Galaxy Environme	ent WG > Mocks - 🔐		▦	í	81
• @	Mi unidad	ſ	Nombre	^	Propietario	Última modificación	Tamaño de archivo	_		
•	Ordenadores			galaxies_subhalos 🚢	уо	14:07 yo	156,3 MB			Ø
00	Compartido conmigo			galaxies_subhalos 🚢	уо	14:10 уо	153, <mark>4</mark> MB			
0	Reciente			subhalos_mock.cat 🚢	уо	14:13 yo	13,9 MB			+
☆	Destacados									

>

Original halo + subhalos

ISOMER + LAGASU application

Original halo + subhalos

ISOMER + DS-Test + LAGASU application

CLUMBERI + DS-Test + LAGASU

application

ISOMER + DS-Test + LAGASU application

