Vórtices de meso-escala, ondas de Rossby e os espectros observados a partir de altimetria por satélites

The mesoscale dynamics in the global oceans is dominated by westward propagating signals. Pioneering studies using satellite altimetry measurements associated these observations with first-mode baroclinic Rossby waves. With the increase in altimetry data resolution, recent studies suggest that nonlinear mesoscale eddies are responsible for the westward propagating signal rather than Rossby waves. The objective of this study is to identify coherent structures associated with mesoscale eddies and distinguish them from long first-mode baroclinic Rossby waves. Sea surface height anomaly maps (η) were filtered throught wavelet analysis and an algorithm for identifying and extracting vortical structures. The extracted vortices were characterized by adjusting an elliptic paraboloid. The algorithm proved to be able to identify and extract the structures associated to mesoscale eddies. The results indicate a predominance of anti-cyclonic rings. Zonal–temporal power spectral density of η indicate that most of the variance is located at the non-dispersive region of the theoretical linear Rossby wave spectra. The observed propagation of the filtered components indicate coexistence of linear Rossby waves and mesoscale eddies, thus proving the scientific hypothesis of this study.

Tese

VOCÊ PODE GOSTAR ...